Advertisement

Analgesic, anti-inflammatory, and antipyretic activity

  • H. Gerhard Vogel
  • Wolfgang H. Vogel

Abstract

Pain is a symptom of many diseases requiring treatment with analgesics. Severe pain due to cancer metastases needs the use of strong analgesics, that means opioid drugs. The addiction liability of opioids led to intensive research for compounds without this side effect. Many approaches have been used to differentiate the various actions of strong analgesics by developing animal models not only for analgesic activity but also for addiction liability. Several types of opioid receptors have been identified in the brain allowing in vitro binding tests. However, the in vitro tests can only partially substitute for animal experiments involving pain. Pain is a common phenomenon in all animals, at least in vertebral animals, similar to that felt by man. Analgesic effects in animals are comparable with the therapeutic effects in man. Needless to say, that in every instance painful stimuli to animals must be restricted as much as possible. Painful stimuli can consist of direct stimulation of the efferent sensory nerves or stimulation of pain receptors by various means such as heat or pressure. The role of endogenous peptides such as enkephalines and endorphins gives more insight into brain processes and the action of central analgesics.

Keywords

Opioid Receptor Analgesic Activity Antipyretic Activity Tooth Pulp Tail Immersion Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bannwarth B, Demotes-Mainard F, Schæverbeke T, Dahais J (1993) Where are peripheral analgesics acting? Ann Rheum Dis 52:1–4PubMedGoogle Scholar
  2. Besson JM, Chaouch A (1987) Peripheral and spinal mechanisms of nociception. Physiol Rev 67:67–186.PubMedGoogle Scholar
  3. Collier HOJ (1964) Analgesics. In: Laurence DR, Bacharach AL (eds) Evaluation of Drug Activities: Pharmacometrics. pp 183–203. Academic Press London and New YorkGoogle Scholar
  4. Lim RKS, Guzman F (1968) Manifestations of pain in analgesic evaluation in animals and man. In: Soulairac A, Cahn J, Charpentier J (eds) Pain. Academic Press, London, New York, pp 119–152Google Scholar
  5. Akiyama K, Gee KW, Mosberg HI. Hruby VJ, Yamamura HI (1985) Characterization of [3HJ[2-D-penicillamine.5-Dpenicillaminel-enkephalin binding to 6-opiate receptors in the rat brain and neuroblastoma-glioma hybrid cell line (NG 108–15). Proc Natl Acad Sci USA 82:2543–2547Google Scholar
  6. Berzetei-Gurske IP, Troll L (1992) The g-opioid activity of Kopioid receptor agonist compounds in the guinea pig ileum. Eur J Pharmacol 212:283–286PubMedGoogle Scholar
  7. Boyle SJ, Meecham KG, Hunter JC, Hughes J (1990) [3H1–C1977: a highly selective ligand for the k-opioid receptor in both guinea-pig and rat forebrain. Mol Neuropharmacol 1:23–29Google Scholar
  8. Clark CR, Birchmore B, Sharif NA, Hunter JC, Hill RG, Hughes J (1988) PD117302: a selective agonist for the Kopioid receptor. Br J Pharmacol 93:618–626PubMedGoogle Scholar
  9. Clark JA, Liu L, Price M, Hersh B, Edelson M, Pasternak GW (1989) Kappa opiate receptor multiplicity: Evidence for two U50,488 sensitive k1 subtypes and a novel K3 subtype. J Pharmacol Exp Ther 251:461–468PubMedGoogle Scholar
  10. Corbett AD, Paterson SJ, Kosterlitz HW (1992) Selectivity of ligands for opioid receptors. In: Herz A, Akil H, Simon EJ (eds) Opioids I, Handbook of Experimental Pharmacology Vol 104/I, Chapter 26, pp 645–679. Springer Berlin, Heidelberg, New YorkGoogle Scholar
  11. Cotton R, Kosterlitz HW, Paterson SJ, Rance MJ, Traynor JR (1985) The use of [3H]-[D-Pen2,D-Pen5]enkephalin as a highly selective ligand for the 6-binding site. Br J Pharmacol 84:927–932PubMedGoogle Scholar
  12. Delay-Goyet P, Seguin C, Gacel G, Roques BP (1988) [3H] [-D-Seri (O-sert-butyl),Leu5]enkephalyl-Thr6 and [D-Sere (O-tert-butyl),Leus]enkephalyl-Thr6(O-tert-butyl). Two new enkephalin analogs with both a good selectivity and high affinity towards 6-opioid binding sites. J Biol Chem 263: 4124–4130Google Scholar
  13. Goldstein A, Naidu A (1989) Multiple opioid receptors: ligand selectivity profiles and binding site signatures. Mol Pharmacol 36:265–272PubMedGoogle Scholar
  14. Hawkins KN, Knapp RJ, Lui GK, Gulya K, Kazmierski W, Wan YP, Pelton JT, Hruby VJ, Yamamura HI (1989) [3H][H-D-Phe-Cys-Tyr-D-Trp-Om-Thr-Pen-Thr-NH2] ([3H]CTOP), a potent and highly selective peptide for g-opioid receptors in rat brain. J Pharmacol Exp Ther 248:73–80Google Scholar
  15. Hawkins KN, Morelli M, Gulya K, Chang KJ, Yamamura HI (1987) Autoradiographic localization of [3H][MePhe3,DPro] morphiceptin ([3H]PL 017) to g-opioid receptors in rat brain. Eur J Pharmacol 133:351–352Google Scholar
  16. Horan PJ, Wild KD, Misicka A, Lipkowski A, Haaseth RC, Hruby VJ, Weber SJ, Davis TP, Yamamura HI, Porreca F (1993) Agonist and antagonist profiles of [D-AIa2,Glu]deltorphin and its [Cys°]- and [Ser’]-substituted derivatives: further evidence for opioid delta receptor multiplicity. J Pharmacol Exp Ther 265:896–902PubMedGoogle Scholar
  17. Kosterlitz HW, Paterson SJ (1981) Tyr-D-Ala Gly-McPheNH(CH2)20H is a selective ligand for the.r-opiate binding site. Br J Pharmacol 73:299PGoogle Scholar
  18. Lahti RA, Mickelson MM, McCall JM, von Voigtlander PF (1985) [3H]-U-69593, a highly selective ligand for the opioid K-receptor. Eur J Pharmacol 109:281–284Google Scholar
  19. Loh HH, Smith AP (1990) Molecular characterization of opioid receptors. Annu Rev Pharmacol Toxicol 30:123–147PubMedGoogle Scholar
  20. Maguire P. Tsai N, Kamal J, Cometta-Morini C, Upton C, Loew G (1992) Pharmacological profiles of fentanyl analogs at g. 6 and K opiate receptors. Eur J Pharmacol 213: 219–225Google Scholar
  21. Martin WR (1967) Opioid antagonists. Pharmacol Rev 19: 463–521PubMedGoogle Scholar
  22. McKnight AT, Rees DC (1991) Opioid receptors and their ligands. Neurotransm 7 (2):1–6Google Scholar
  23. Meng F, Xie G-X, Thompson RC, Mansour A, Goldstein A, Watson SJ, Akil H (1993) Cloning and pharmacological characterization of rat K opioid receptor. Proc Natl Acad Sci USA 90:9954–9958PubMedGoogle Scholar
  24. Miyamoto Y, Portoghese PS, Takemori AE (1993) Involvement of delta2 opioid receptors in the development of morphine dependence in mice. J Pharmacol Exp Ther 264: 1141–1145PubMedGoogle Scholar
  25. Mosberg HI, Hurst R, Hruby VJ, Gee K, Yamamura HI, Galligan JJ, Burks TF (1983) Bis-penicillamine enkephalins possess highly improved specificity toward S opioid receptors. Proc Natl Acad Sci USA, 80:5871–5874PubMedGoogle Scholar
  26. Mosberg HI, Omnaas JR, Goldstein A (1987) Structural requirements for S opioid receptor binding. Mol Pharmacol 31:599–602PubMedGoogle Scholar
  27. Paakkari P, Paakkari I, Feuerstein G, Sirén AL (1992) Evidence for differential opioid t1- and.t2-receptor-mediated regulation of heart rate in the conscious rat. Neuropharmacol 31:777–782Google Scholar
  28. Pasternak GW (1987) Opioid receptors. In: Psychopharmacology: The Third Generation of Progress. ed. by HY Meltzer, Raven Press New York, pp. 281–288Google Scholar
  29. Pasternak GW (1988) Multiple morphine and enkephaline re- ceptors and the relief of pain. JAMA. 259:1362–1367PubMedGoogle Scholar
  30. Patricia M, et al (1992) Pharmacological profiles of fentanyl analogs at ix, S, and K opiate receptors. Eur J Pharmacol 213:219–225Google Scholar
  31. Pert CB, Snyder SH (1973) Opiate receptor:Demonstration in nervous tissue. Science 179:1011–1014PubMedGoogle Scholar
  32. Porreca F, Takemori AE, Sultana M, Portoghese PS, Bowen WD, Mosberg HI (1992) Modulation of mu-mediated antinociception in the mouse involves opioid delta-2 receptors. J Pharmacol Exp Ther 263:147–152PubMedGoogle Scholar
  33. Rothman RB, Bykov V, Xue BG, Xu H, de Costa BR, Jacobson AE, Rice KC, Kleinman JE, Brady LS (1992) Interaction of opioid peptides and other drugs with multiple kappa receptors in rat and human brain. Evidence for species differences. Peptides 13:977–987PubMedGoogle Scholar
  34. Rothman RB, France CP, Bykov V, de Costa BR, Jacobson AE, Woods JH, Rice KC (1989) Pharmacological activities of optically pure enantiomers of the K opioid agonist, U50,488, and its cis diastereomer: evidence for three K receptor subtypes. Eur J Pharmacol 167:345–353PubMedGoogle Scholar
  35. Rothman RB, Xu H, Char GU, Kim A, de Costa BR, Rice KC, Zimmerman DM (1993) Phenylpiperidine opioid antagonists that promote weight loss in rats have high affinity to the K2B (enkephalin-sensitive) binding site. Peptides 14: 17–20PubMedGoogle Scholar
  36. Sheehan MJ, Hayes AG, Tyers MB (1986) Pharmacology of 8opioid receptors in the hamster vas deferens. Eur J Pharmacol 130:57–64PubMedGoogle Scholar
  37. Simon EJ, Hiller JM, Edelman I (1973) Stereospecific binding of the potent narcotic analgesic [3H]etorphine to rat-brain homogenate. Proc. Natl Acad Sci USA 70:1947–1949Google Scholar
  38. Smith JAM, Leslie FM (1992) Use of organ systems for opioid bioassay. In: Herz A, Akil H, Simon EJ (eds) Opioids I, Handbook of Experimental Pharmacology Vol 104/I, Chapter 4, pp 53–78. Springer Berlin, Heidelberg, New YorkGoogle Scholar
  39. Sofuoglu M, Portoghese PS, Takemori AE (1991) Differential antagonism of delta opioid agonists by naltrindole and its benzofuran analog (NTB) in mice: evidence for delta opioid receptor subtypes. J Pharmacol Exp Ther 257: 676–680PubMedGoogle Scholar
  40. Terenius L (1973) Stereospecific interaction between narcotic analgesics in synaptic plasma membrane of rat cerebral cortex. Acta Pharmacol Toxicol 32:317–320.Google Scholar
  41. Tiseo PJ, Yaksh TL (1993) Dose-dependent antagonism of spinal opioid receptor agonists by naloxone and naltrindole: additional evidence for 8-opioid receptor subtypes in the rat. Eur J Pharmacol 236:89–96PubMedGoogle Scholar
  42. Uphouse LA, Welch SP, Ward CR, Ellis EF, Embrey JP (1993) Antinociceptive activity of intrathecal ketorolac is blocked by the K-opioid receptor antagonist, nor-binaltorphimine. Eur J Pharmacol 242:53–58PubMedGoogle Scholar
  43. Vaughn LK, Knapp RJ, Toth G, Wan Y-P, Ruby VJ, Yamamura HI (1989) A high affinity, highly selective ligand for the delta opioid receptor: [3H]-[D-Pen2,pC1-Phe°,DPenS]enkephalin. Life Sci 45:1001–1008PubMedGoogle Scholar
  44. Wollemann M, Benyhe S, Simon (1993) The kappa-opioid receptor: evidence of different subtypes. Life Sci 52:599–611PubMedGoogle Scholar
  45. Wüster M, Schulz R, Herz A (1981) Multiple opiate receptors in peripheral tissue preparations. Biochem Pharmacol 30: 1883–1887PubMedGoogle Scholar
  46. Zukin RS, Eghbali M, Olive D, Unterwald EM, Tempel A (1988) Characterization and visualization of rat and guinea pig brain K opioid receptors: evidence for K1 and K2 opioid receptors. Proc Natl Acad Sci USA 85:4061–4065PubMedGoogle Scholar
  47. Hubbard JW, Locke KW, Forster HV, Brice AG, Pan LG, Lowry TF, Forster AML, Forster MA, Cornfeldt M, Vanselous CL, Hamer RRL, Glamkowski EJ, Fielding S (1992) Cardiorespiratory effects of the novel opioid analgesic HP 736 in the anesthetized dog and conscious goat. J Pharmacol Exp Ther260:1268–1277Google Scholar
  48. McPherson GA (1985) Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Meth 14:213–228Google Scholar
  49. Mini-Symposium (1981) The in vivo differentiation of opiate receptors. Life Sci 28:1543–1584Google Scholar
  50. Pert CB, Snyder SH (1973) Properties of opiate-receptor binding in rat brain. Proc. Natl. Acad. Sci, USA 70: 2243–2247PubMedGoogle Scholar
  51. Pert CB, Snyder SH (1974) Opiate receptor binding of agonists and antagonists affected differentially by sodium. Molec Pharmacol 10:868–879Google Scholar
  52. Pert CB, Snyder SH (1975) Differential interactions of agonists and antagonists with the opiate receptor. In: Snyder and Watthysse (eds) Opiate Receptor Mechanisms. MIT Press Cambridge. pp 73–79Google Scholar
  53. Pert CB; Pasternak G, Snyder SH (1973) Opiate agonists and antagonists discriminated by receptor binding in brain. Science 182:1359–1361PubMedGoogle Scholar
  54. Wolozin BL, Nishimura S, Pasternak GW (1982) The binding of K- and a-opiates in rat brain. J. Neurosci 2:708–713PubMedGoogle Scholar
  55. Adler MW (1981) Mini-Symposium on Opiate Receptors. Life Sci. 28:1543–1584PubMedGoogle Scholar
  56. Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 percent inhibition (150) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108PubMedGoogle Scholar
  57. Childers S, Creese 1, Snowman AM, Snyder SH (1979) Opiate receptor binding affected differentially by opiates and opioid peptides. Eur J Pharmacol 55:11–18PubMedGoogle Scholar
  58. Goldstein A (1987) Binding selectivity profiles for ligands of multiple receptor types: Focus on opioid receptors. TIPS 8:456–459Google Scholar
  59. Hubbard JW, Locke KW, Forster HV, Brice AG, Pan LG, Lowry TF, Forster AML, Forster MA, Cornfeldt M, Vanselous CL, Hamer RRL, Glamkowski EJ, Fielding S (1992) Cardiorespiratory effects of the novel opioid analgesic HP 736 in the anesthetized dog and conscious goat. J Pharmacol Exp Ther 260:1268–1277PubMedGoogle Scholar
  60. Laugwitz KL, Offermanns S, Spicher K, Schulz G (1993).t and S opioid receptors differentially couple to G protein subtypes in membranes of human neuroblastoma SH-SY5Y cells. Neuron 5:233–242Google Scholar
  61. Locke KW, Dunn RW, Hubbard JW, Vanselous ChL, Cornfeldt M, Fielding St, Strupczewski JT (1990) HP 818: A centrally acting analgesic with neuroleptic properties. Drug Dev Res 19:239–256Google Scholar
  62. Mansour A, Lewis ME, Khachaturian H, Akil H, Watson SJ (1986) Pharmacological and anatomical evidence of selective 1.48 and K opioid receptor binding in rat brain. Brain Res. 399:69–79PubMedGoogle Scholar
  63. Pasternak GW (1987) Opioid receptors. In: Psychopharmacology: The Third Generation of Progress. ed. by. HY Meltzer, Raven Press, New York pp. 281–288Google Scholar
  64. Pasternak GW, Wilson HA, Snyder SH (1975) Differential effects of protein-modifying reagents on the receptor binding of opiate agonists and antagonists. Mol Pharmacol 11: 340–351PubMedGoogle Scholar
  65. Robson LE, Foote RW, Maurer R, Kosterlitz HW (1984) Opioid binding sites of the K-type in guinea pig cerebellum. Neurosci 12:621–627Google Scholar
  66. Snyder SH (1984) Drug and neurotransmitter receptors in the brain. Science 224:22–31PubMedGoogle Scholar
  67. Wolozin BL; Nishimura S, Pasternak GW (1982) The binding of K and o opiates in rat brain. J Neurosci 2:708–713PubMedGoogle Scholar
  68. Zukin RS, Zukin SR (1981) Multiple opiate receptors: Emerging concepts. Life Sci 29:2681–2690PubMedGoogle Scholar
  69. Abbott FV et al (1986) A dose-ratio comparison of µ and K agonists in formalin and thermal pain. Life Sci 39: 2017–2024PubMedGoogle Scholar
  70. Cheng, YC, Prusoff WH (1973) Relationship between the inhibition constant (Kg) and the concentration of inhibitor which causes 50 percent inhibition (/50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108PubMedGoogle Scholar
  71. Goodman RR, Snyder SH (1982) Autoradiographic localization of kappa opiate receptors to deep layers of the cerebral cortex may explain unique sedative and analgesic effects. Life Sci 31:1291–1294PubMedGoogle Scholar
  72. Higginbottorn M, Nolan W, O’Toole J. Ratcliffe GS, Rees DC, Roberts E (1993) The design and synthesis of kappa opioid ligands based on a binding model for kappa agonists. Bioorg Med Chem Lett 3:841–846Google Scholar
  73. Hubbard JW, Locke KW, Forster HV, Brice AG, Pan LG, Lowry TF, Forster AML, Forster MA, Cornfeldt M, Vanselous CL, Hamer RRL, Glamkowski EJ, Fielding S (1992) Cardiorespiratory effects of the novel opioid analgesic HP 736 in the anesthetized dog and conscious goat. J Pharmacol Exp Ther 260:1268–1277PubMedGoogle Scholar
  74. Inenaga K, Nagamoto T, Nakao K, Yanaihara N, Yamashita HY (1994) Kappa-selective agonists decrease postsynaptic potentials and calcium components of action potentials in the supraoptic nucleus of rat hypothalamus in vitro. Neurosci 58:331–340Google Scholar
  75. Kosterlitz HW, Paterson SJ, Robson LE (1981) Characterization of the K-subtype of the opiate receptor in the guinea pig brain. Br J Pharmacol 73:939–949PubMedGoogle Scholar
  76. Mansour A, Lewis ME, Khachaturian H, Akil H, Watson SJ (1986) Pharmacological and anatomical evidence of selective p., S and K opioid receptors in brain. Brain Res 399: 69–79PubMedGoogle Scholar
  77. Peter GR et al (1987) Diuretic actions in man of a selective kappa opioid agonist: U-62,066E. J Pharmacol Exper Ther 240:128–131Google Scholar
  78. Robson LE, Foote RW, Maurer R, Kosterlitz HW (1984) Opioid binding sites of the K-type in guinea pig cerebellum. Neurosci. 12:621–627Google Scholar
  79. Salas SP, Roblero JS, Lopez LF, Tachibana S. Huidobro-Toro JP (1992) [N-Methyl-Tyr’,N-methyl-Arg’-D-Leu8)-dynorphin-A-(l-8) ethylamide, a stable dynorphin analog, produces diuresis by kappa-opiate receptor activation in the rat. J Pharmacol Exp Ther 262:979–986Google Scholar
  80. Snyder SH (1984) Drug and neurotransmitter receptors in the brain. Science 224:22–31PubMedGoogle Scholar
  81. Steinfels GF, Cook L (1986) Antinociceptive profiles of and K opioid agonists in a rat tooth pulp stimulation procedure. J Pharmacol Exper Ther 236:111–117Google Scholar
  82. Tyers MB (1982) Studies on the antinociceptive activities of mixtures of s-and K-opiate agonists and antagonists. Life Sci 31:1233–1236PubMedGoogle Scholar
  83. Wolozin BL, Nishimura S, Pasternak GW (1982) The binding of K- and a-opiates in rat brain. J Neurosci 2:708–713PubMedGoogle Scholar
  84. Zukin RS, Zukin SR (1981) Multiple opiate receptors: Emerging concepts. Life Sci 29:2681–2690PubMedGoogle Scholar
  85. Chipkin RE (1986) Inhibition of enkephalinase: The next generation of analgesics. Drugs Future 11:593–606Google Scholar
  86. Chipkin RE, Berger JG, Billard W. lorio LC, Chapman R, Barnett A (1988) Pharmacology of SCH 34826, an orally active enkephalinase inhibitor analgesic. J Pharm Exp Ther 245:829–838Google Scholar
  87. Costentin J, Vlaiculescu A, Chaillet P, Natan B, Aveaux D, Schwartz JC (1986) Dissociated effects of inhibitors of enkephalin-metabolizing peptidases or naloxone on various nociceptive responses. Eur J Pharmacol 123:37–44PubMedGoogle Scholar
  88. Florentin D, Sassi A, Roques BP (1984) A highly sensitive fluorimetric assay for “enkephalinase”, a neutral metalloendopeptidase that releases tyrosine-glycine-glycine from enkephalins. Anal Biochem 141:62–69PubMedGoogle Scholar
  89. Hughes J (1975) Isolation of an endogenous compound from. the brain with pharmacologie properties similar to morphine. Brain Res 88:295–308PubMedGoogle Scholar
  90. Ksander GM, Diefenbacher CG, Yuan AM, Clark F, Sakane Y, Ghai RD (1989) Enkephalinase inhibitors. I. 2,4-Dibenzylglutaric acid derivatives. J Med Chem 32:2519–2526PubMedGoogle Scholar
  91. Llorens C, Schwartz JC (1981) Enkephalinase activity in rat peripheral organs. Eur J Pharmacol 69:113–116PubMedGoogle Scholar
  92. Malfroy B, Schwartz JC (1982) Properties of “enkephalinase” from rat kidney: comparison of dipeptidyl-carboxypeptidase and endopeptidase activities. Biochem Biophys Res Commun 106:276–285PubMedGoogle Scholar
  93. Malfroy B, Swerts JP, Guyon A, Roques BP, Schwartz JC (1978) High-affinity enkephalin-degrading peptidase in brain is increased after morphine. Nature 276:523–526PubMedGoogle Scholar
  94. Mumford RA, Pierzchala PA, Strauss AW, Zimmerman M (1981) Purification of a membrane bound metalloendopeptidase from porcine kidney that degrades peptide hormones. Proc Natl Acad Sci USA 78:6623–6627PubMedGoogle Scholar
  95. Oshita S, Yaksh TL, Chipkin R (1990) The antinociceptive effects of intrathecally administered SCH32615, an enkephalinase inhibitor in the rat. Brain Res 515:143–148PubMedGoogle Scholar
  96. Roques BP, Fournié-Zaluski MC, Florentin D, Waksman G, Sassi A, Chaillet P, Collado H, Ciostentin J (1982) New enkephalinase inhibitors as probes to differentiate “enkephalinase” and angiotensin-converting-enzyme active sites. Life Sci 31:1749–1752PubMedGoogle Scholar
  97. Roques BP, Fournié-Zaluski MC, Soroca E, Lecomte LM, Malfroy B, Llorens C, Schwartz JC (1980) The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice. Nature 288:286–288PubMedGoogle Scholar
  98. Schwartz JC (1983) Metabolism of enkephalins and the inactivating neuropeptidase concept. TINS 1983:45–48Google Scholar
  99. Schwartz JC, Gros C, Lecomte JM, Bralet J (1990) Enkephalinase (EC 3.4.24.11) inhibitors: protection of endogenous ANF against inactivation and potential therapeutic applications. Life Sci 47:1279–1297PubMedGoogle Scholar
  100. Von Voigtlander PF (1982) Pharmacological alteration of pain: The discovery and evaluation of analgesics in animals. In: Lednicer D (ed) Central Analgetics. John Wiley and Sons, New York, pp 51–79Google Scholar
  101. Bartoszyk GD, Wild A (1989) B-vitamins potentiate the antinociceptive effect of diclofenac in carrageenin-induced hyperalgesia in the rat tail pressure test. Neurosci Lett 101: 95–100PubMedGoogle Scholar
  102. Bianchi C, Franceschini J (1954) Experimental observations on Haffner’s method for testing analgesic drugs. Br J Pharmacol 9:280–284Google Scholar
  103. Collier HOJ (1965) Multiple toe-pinch test for potential analgesic drugs. In: Keele, Smith (eds) Assessment of Pain in Man and Animals. Livingston, London, pp 262–270Google Scholar
  104. Fleisch A, Dolivo M (1953) Auswertung der Analgetica im Tierversuch. HeIv Physiol Acta 11:305–322Google Scholar
  105. Haffner F (1929) Experimentelle Pruefung schmerzstillender Mittel. Dtsch Med Wschr 55:731–733Google Scholar
  106. Koch JKE, Bodnar RJ (1993) Involvement of mug and mug opioid receptor subtypes in tail-pinch feeding in rats. Physiol Behav 53:603–605PubMedGoogle Scholar
  107. Vanderwende C, Spoerlein M (1972) Antagonism by DOPA of morphine analgesia. A hypothesis for morphine tolerance. Res Comm Chem Pathol Pharmacol 3:37–45Google Scholar
  108. Yanagisawa M, Murakoshi T, Tamai S, Otsuka M (1984) Tail-pinch method in vitro and the effects of some antinociceptive compounds. Eur J Pharmacol 106:231–239PubMedGoogle Scholar
  109. Carmon A. Frostig R (1981) Noxious stimulation of animals by brief laser induced heat: advantages to pharmacological testing of analgesics. Life Sci 29:11–16PubMedGoogle Scholar
  110. Costello AH, Hargreaves KM (1989) Suppression of carrageenan-induced hyperalgesia, hyperthermia and edema by a bradykinin antagonist. Eur J Pharmacol 171:259–263PubMedGoogle Scholar
  111. D’Amour FE, Smith DL (1941) A method for determining loss of pain sensation. J Pharmacol Exp Ther 72:74–79Google Scholar
  112. Davies OL, Raventbs J, Walpole AL (1946) A method for the evaluation of analgesic activity using rats. Br J Pharmacol 1:255–264Google Scholar
  113. Dewey WL, Harris LS, Howes JF, Nuite JA (1970) The effect of various neurohumoral modulators on the activity of morphine and the narcotic antagonists in the tail-flick and the phenylquinone tests. J Pharmacol Exp Ther 175: 435–442PubMedGoogle Scholar
  114. Geller I, Axelrod LR (1968) Methods for evaluating analgesics in laboratory animals. In: Soulairac A, Cahn J, Charpentier J (eds) Pain. Acad Press, London New York, pp 153–163Google Scholar
  115. Goldstein FJ, Malseed RT (1979) Evaluation of narcotic analgesic activity using a cat tail-flick procedure. J Pharmacol Meth 2:333–338Google Scholar
  116. Gray WD, Osterberg A, Scuto TJ (1970) Measurement of the analgesic efficacy and potency of pentazocine by the D’Armour and Smith method. J Pharmacol Exp Ther 172: 154–162PubMedGoogle Scholar
  117. Green AF, Young PA (1951) A comparison of heat and pressure analgesiometric methods in rats. Br J Pharmacol 6: 572–585Google Scholar
  118. Hargreaves KM, Dubner R, Brown F, Flores C, Joris 1 (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32:77–82PubMedGoogle Scholar
  119. Harris DP, Burton R, Sinclair G (1988) A simple microcomputer interface for tail-flick determination. J Pharmacol Meth 20:103–108Google Scholar
  120. Harris LS, Pierson AK (1964) Some narcotic antagonists in the benzomorphan series. J Pharmacol Exp Ther 143:141–148PubMedGoogle Scholar
  121. Howes JF, Harris LS, Dewey WL, Voyda CA (1969) Brain acetylcholine levels and inhibition of the tail-flick reflex in mice. J Pharmacol Exp Ther 169:23–28PubMedGoogle Scholar
  122. Hylden JLK, Thomas DA, Iadarola MJ, Nahin RL, Dubner R (1991) Spinal opioid analgesic effects are enhanced in a model of unilateral inflammation/hyperalgesia: possible involvement of noradrenergic mechanisms. Eur J Pharmacol 194:135–143PubMedGoogle Scholar
  123. Isabel G, Wright DM, Henry JL (1981) Design of an inexpensive unit for measuring tail flick latencies. J Pharmacol Meth 5:241–247Google Scholar
  124. Mohrland JS, Johnson EE, von Voigtlander PF (1983) An ultrasound-induced tail-flick procedure: evaluation of non-steroidal antiinflammatory analgesics. J Pharmacol Meth 9:297–282Google Scholar
  125. Owen JA, Milne B, Jhamandas K, Nakatsu K (1981) Assembly of an inexpensive tail flick analgesia meter. J Pharmacol Meth 6:33–37Google Scholar
  126. Perkins MN, Campell E, Dray A (1993) Antinociceptive activity of the bradykinin B1 and B2 receptor antagonists, desArg9,[Leu“I-BK and Hoe 140, in two models of persistent hyperalgesia in rats. Pain 53:191–197PubMedGoogle Scholar
  127. Perkins MN, Kelly D (1993) Induction of bradykinin B1 receptors in vivo in a model of ultra-violet irradiation-induced thermal hyperalgesia in the rat. Br J Pharmacol 110: 1441–1444PubMedGoogle Scholar
  128. Schuligoi R, Donnerer J, Amann R (1994) Bradykinin-induced sensitization of afferent neurons in the rat. Neurosci 59: 211–215Google Scholar
  129. Schumacher GA, Goodell H, Hardy JD, Wolff HG (1940) Uni- formity of the pain threshold in man. Science 92:110–112PubMedGoogle Scholar
  130. Ther L, Lindner E, Vogel G (1963) Zur pharmakodynamischen Wirkung der optischen Isomeren des Methadons. Dtsch Apoth Ztg 103:514–520Google Scholar
  131. Tulunay FC, Takemori AE (1974) The increased efficacy of narcotic antagonists induced by various narcotic analgesics. J Pharmacol Exp Ther 190:395–400PubMedGoogle Scholar
  132. Walker JM, Dixon WC (1983) A solid state device for measur- ing sensitivity to thermal pain. Physiol Behav 30:481–483PubMedGoogle Scholar
  133. Winter CA, Orahovats PD, Flataker L, Lehman EG, Lehman JT (1954) Studies on the pharmacology of N-allylnormorphine. J Pharmacol Exp Ther 112:152–160Google Scholar
  134. Wolff HG, Hardy JD, Goodell H (1940) Studies on pain. Measurement of the effect of morphine, codeine, and other opiates on the pain threshold and an analysis of their relation to the pain experience. J Clin Invest 19:659–680PubMedGoogle Scholar
  135. Yoburn BC, Morales R, Kelly DD, Inturrisi CE (1984) Constrains on the tailflick assay: morphine analgesia and tolerance are dependent upon locus of tail stimulation. Life Sci 34:1755–1762PubMedGoogle Scholar
  136. Eddy NB, Leimbach D (1953) Synthetic analgesics: II. Dithienylbutenyl-and dithienylbutylamines. J Pharmacol Exp Ther 107:385–393PubMedGoogle Scholar
  137. Jaco J, Blozovski M (1961) Action des divers analgésiques sur le comportement de souris exposées a un stimulus thermoalgésique. Arch Int Pharmacodyn 138:296–309Google Scholar
  138. Jacob J, Loiseau G, Echinard-Garin P, Barthelemy C, Lafille C (1964) Caractérisation et détection pharmacologiques des substances hallucinogènes. II.-Antagonismes vis-a-vis de la morphine chez la souris. Arch Int Pharmacodyn 148:14–30Google Scholar
  139. Kitchen 1, Crowder M (1985) Assessment of the hot-plate antinociceptive test in mice. A new method for the statistical treatment of graded data. J Pharmacol Meth 13:1–7Google Scholar
  140. Knoll J (1967) Screening and grouping of psychopharmacological agents. In: Siegler PE, Moyer HJ (eds) Animal and Clinical Pharmacologic Techniques in Drug Evaluation. Yearbook Med Publ. Inc., Chicago, pp 305–321Google Scholar
  141. O’Neill KA, Courtney C, Rankin R, Weissman A (1983) An automated, high-capacity method for measuring jump latencies on a hot plate. J Pharmacol Meth 10:13–18Google Scholar
  142. O’Callaghan JP, Holtzman SG (1975) Quantification of the analgesic activity of the narcotic antagonists by a modified hot plate procedure. J Pharm Exp Ther 192:497–505Google Scholar
  143. Plummer JL, Cmielewski PL, Gourlay GK, Owen H, Cousins MJ (1991) Assessment of antinociceptive drug effects in the presence of impaired motor performance. J Pharmacol Meth 26:79–87Google Scholar
  144. Tjolsen A, Rosland JH, Berge OG, Hole K (1991) The increasing temperature hot-plate test: an improved test of nociception in mice and rats. J Pharmacol Meth 25:241–250Google Scholar
  145. Witkin LB, Heubner CF, Galgi F, O’Keefe E, Spitaletta P, Plummer AJ (1961) Pharmacology of 2-aminino-indane hydrochloride (SU 8629): a potent non-narcotic analgesic. J Pharmacol Exp Ther 133:400–408PubMedGoogle Scholar
  146. Woolfe G, MacDonald AD (1944) The evaluation of the analgesic action of pethidine hydrochloride (DEMEROL) J Pharmacol Exper Ther 80:300–307Google Scholar
  147. Zimer PO, Wynn RL, Ford RD, Rudo FG (1986) Effect of hot plate temperature on the antinociceptive activity of mixed opioid agonist antagonist compounds. Drug Dev Res 7:277–280Google Scholar
  148. Ben-Bassat J, Peretz E, Sulman FG (1959) Analgesimetry and ranking of analgesic drugs by the receptacle method. Arch Int Pharmacodyn 122:434–447PubMedGoogle Scholar
  149. Cowan A (1990) Recent approaches in the testing of analgesics in animals. In: Modern Methods in Pharmacology, Vol. 6, Testing and Evaluation of Drugs of Abuse, pp 33–42, Wiley-Liss IncGoogle Scholar
  150. Dykstra LA, Gmerek DE, Winger G, Woods JH (1987) Kappa opioids in rhesus monkeys. Diuresis, sedation, analgesia and discriminative stimulus effects. J Pharm Exp Ther 242: 413–420Google Scholar
  151. Dykstra LA, Woods JH (1986) A tail withdrawal procedure for assessing analgesic activity in Rhesus monkeys. J Pharmacol Meth 15:263–269Google Scholar
  152. Evangelista S, Pirisino R, Perretti F, Fantozzi R, Brunelleschi S, Malmberg-Aiello P, Bartolini A (1987) The pharmacological properties of 1,4-dihydro-I-ethyl-7-phenylpyrrol(1,2-a)-pyrimidine-4-one, a new antipyretic and analgesic drug. Drugs Exp Clin Res 13:501–510PubMedGoogle Scholar
  153. Grotto M, Sulman FG (1967) Modified receptacle method for animal analgesimetry. Arch Int Pharmacodyn 165:152–159PubMedGoogle Scholar
  154. Janssen P, Niemegeers CJE, Dony JGH (1963) The inhibitory effect of Fentanyl and other morphine-like analgesics on the warm water induced tail withdrawal reflex in rats. Arzneim.-Forsch. 13:502–507Google Scholar
  155. Luttinger D (1985) Determination of antinociceptive activity of drugs in mice using different water temperatures in a tail-immersion test. J Pharmacol Meth 13:351–357Google Scholar
  156. Ono M, Satoh T (1988) Pharmacological studies of Lappaconitine. Analgesic studies. Arzneim Forsch/Drug Res 38: 892–895Google Scholar
  157. Pizziketti RJ, Pressman NS, Geller EB, Cowan A, Adler MW (1985) Rat cold water tail-flick: A novel analgesic test that distinguishes opioid agonists from mixed agonistsantagonists. Eur J Pharmacol 119:23–29PubMedGoogle Scholar
  158. Ramabadran K, Bansinath M, Turndorf H, Puig MM (1989) Tail immersion test for the evaluation of a nociceptive reaction in mice. J Pharmacol Meth 21:21–31Google Scholar
  159. Rothman RB, France CP, Bykov V, de Costa BR, Jacobson AE, Woods JH, Rice KC (1989) Pharmacological activities of optically pure enantiomers of the K opioid agonist, U50,488, and its cis diastereomer: evidence for three K receptor subtypes. Eur J Pharmacol 167:345–353PubMedGoogle Scholar
  160. Sewell RDE, Spencer PSJ (1976) Antinociceptive activity of narcotic agonist and partial agonist analgesics and other agents in the tail-immersion test in mice and rats. Neuropharmacol 15:683–688Google Scholar
  161. Tiseo PJ, Geller EB, Adler MW (1988) Antinociceptive action of intracerebroventricularly administered dynorphin and other opioid peptides in the rat. J Pharm Exp Ther 246: 449–453Google Scholar
  162. Burn JH, Finney DJ, Goodwin LG (1950) Chapter XIV: Antipyretics and analgesics. In: Biological Standardization. Oxford University Press, London, New York, pp 312–319Google Scholar
  163. Carroll MN, Lim RKS (1960) Observations on the neuropharmacology of morphine and morphinelike analgesia. Arch Int Pharmacodyn 125:383–403PubMedGoogle Scholar
  164. Charpentier J (1968) Analysis and measurement of pain in animals. A new conception of pain. In: Soulairac A, Cahn J, Charpentier J (eds) Pain. Acad Press, London New York, PP 171–200Google Scholar
  165. Hoffmeister F (1968) Tierexperimentelle Untersuchungen über den Schmerz und seine pharmakologische Beeinflussung. Arzneim Forsch, 16. Beiheft: 5–116Google Scholar
  166. Kakunaga T, Kaneto H, Hano K (1966) Pharmacological studies on analgesics. VII. Significance of the calcium ion in morphine analgesia. J Pharm Exp Ther 153:134–141Google Scholar
  167. Nilsen PL (1961) Studies on algesimetry by electrical stimula- tion of the mouse tail. Acta Pharmacol Toxicol 18:10–22Google Scholar
  168. Paalzow G, Paalzow L (1973) The effect of caffeine and theophylline on nociceptive stimulation in the rat. Acta Pharmacol Toxicol 32:22–32Google Scholar
  169. Vidal C, Girault JM, Jacob J (1982) The effect of pituitary re- moval on pain reaction in the rat. Brain Res. 233:53–64PubMedGoogle Scholar
  170. Yanaura S, Yamatake Y, Ouchi T (1976) A new analgesic testing method using ultrasonic stimulation. Effects of narcotic and non-narcotic analgesics. Jpn J Pharmacol 26: 301–308PubMedGoogle Scholar
  171. Banzinger R (1964) Animal techniques for evaluating narcotic and non-narcotic analgesics. In: Nodine JH and Siegler PE (eds) Animal and Clinical Pharmacologie Techniques in Drug Evaluation. Year Book Medical Publ, Inc., pp 392–396Google Scholar
  172. Blake L, Graeme ML, Sigg EB (1963) Grid shock test for analgesic assay in mice. Med exp 9:146–150PubMedGoogle Scholar
  173. Bonnet KA, Peterson KE (1975) A modification of the jump-flinch technique for measuring pain sensitivity in rats. Pharmacol Biochem Behav 3:47–55PubMedGoogle Scholar
  174. Charlier R, Prost M, Binon F, Deltour G (1961) Etude pharmacologique d’un antitussif, le fumarate acide de phénéthyl-1 (propyne-2 yl)-4-propionoxy-4 pipéridine. Arch Int Pharmacodyn 134:306–327PubMedGoogle Scholar
  175. Eschalier A, Marty H, Trolese JF, Moncharmont L, Fialip J (1988) An automated method to analyze vocalization of unrestrained rats submitted to noxious stimuli. J Pharmacol Meth 19:175–184Google Scholar
  176. Evans WO (1961) A new technique for the investigation of some analgesic drugs on a reflexive behavior in the rat. Psychopharmacologia 2:318–325Google Scholar
  177. Evans WO (1962) A comparison of the analgesic potency of some analgesics as measured by the “Flinch-jump” procedure. Psychopharmacol 3:51–54Google Scholar
  178. Evans WO, Bergner DP (1964) A comparison of the analgesic potencies of morphine, pentazocine, and a mixture of methamphetamine and pentazocine in the rat. J New Drugs 4:82–85Google Scholar
  179. Jokovlev V, Sofia RD, Achterrath-Tuckermann U, von Schlichtegroll A, Thiemer K (1985) Untersuchungen zur pharmakologischen Wirkung von Flupirtin, einem strukturell neuartigen Analgeticum. Arzneim Forsch/Drug Res. 35:3043Google Scholar
  180. Weiss B, Laties VG (1961) Changes in pain tolerance and other behavior produced by salicylates. J Pharm Exp Ther 131:120Google Scholar
  181. Chat’ TT (1989) Analgesic testing in animal models. In: Pharmacological Methods in the Control of Inflammation. Alan R Liss, Inc. pp 196–212Google Scholar
  182. Chin JH, Domino EF (1961) Effects of morphine on brain potentials evoked by stimulation of the tooth pulp of the dog. J Pharmacol Exp Ther 132:74–86PubMedGoogle Scholar
  183. Fleisch A, Dolivo M (1953) Auswertung der Analgetica im Tierversuch. HeIv Physiol Acta 11:305–322Google Scholar
  184. Foong FW, Satoh M, Takagi H (1982) A newly devised reliable method for evaluating analgesic potencies of drugs on trigeminal pain. J Pharmacol Meth 7:271–278Google Scholar
  185. Hertle F, Schanne O, Staib I (1957) Zur Methodik der Prüfung der Analgesie am Kaninchen. Arzneiur Forsch 7:311–314Google Scholar
  186. Hoffmeister F (1962) Über cerebrale polysynaptische Reflexe des Kaninchens und ihre Beeinflussbarkeit durch Pharmaka. Arch Int Pharmacodyn 139:512–527PubMedGoogle Scholar
  187. Hoffmeister F (1968) Tierexperimentelle Untersuchungen über den Schmerz und seine pharmakologische Beeinflussung. Arzneim Forsch 16. Beiheft:5–116Google Scholar
  188. Kidder GW, Wynn RL (1983) An automatic electronic apparatus for generating and recording a ramp stimulus for analgesia testing. J Pharmacol Meth 10:137–142Google Scholar
  189. Koll W, Fleischmann G (1941) Messungen der analgetischen Wirksamkeit einiger Antipyretica am Hund. NaunynSchmiedeberg’s Arch Exp Path Pharmakol 198:390–406Google Scholar
  190. Koll W, Reffert H (1938) Eine neue Methode zur Messung analgetischer Wirkungen im Tierversuch. Versuche mit Morphin und einigen Morphinderivaten am Hund. Arch exp Path Pharmakol 190:67–87Google Scholar
  191. Matthews B, Searle BN (1976) Electrical stimulation of teeth. Pain 2:245–251PubMedGoogle Scholar
  192. Mitchell CL (1964) A comparison of drug effects upon the jaw jerk response to electrical stimulation of the tooth pulp in dogs and cats. J Pharmacol Exp Ther 146:1–6PubMedGoogle Scholar
  193. Ruckstuhl K (1939) Beitrag zur pharmakodynamischen Prüfung der Analgetica. Inaug.-Dissertation, BernGoogle Scholar
  194. Shigena Y, Marao S, Okada K, Sakai A (1973) The effects of tooth pulp stimulation in the thalamus and hypothalamus of the rat. Brain Res 63:402–407Google Scholar
  195. Shyu KW, Lin MT, Wu TC (1984) Possible role of central serotoninergic neurons in the development of dental pain and aspirin-induced analgesia in the monkey. Exp Neurol 84:179–187PubMedGoogle Scholar
  196. Skingle M, Tyers MB (1979) Evaluation of antinociceptive activity using electrical stimulation of the tooth pulp in the conscious dog. J Pharmacol Meth 2:71–80Google Scholar
  197. Steinfels GF, Cook L (1986) Antinociceptive profiles of la and K opioid agonists in a rat tooth pulp stimulation procedure. J Pharm Exp Ther 236:111–117Google Scholar
  198. Wilhelmi G (1949) Über die pharmakologischen Eigenschaften von Irgapyrin, einem neuen Präparat aus der Pyrazolonreihe. Schweiz Med Wschr 25:577–582Google Scholar
  199. Wirth W, Hoffmeister F (1967) Zur Wirkung von Kombinationen aus Phenothiazin-Derivaten mit Analgetika-Antipyretika. Wien Med Wschr 117:973–978PubMedGoogle Scholar
  200. Wynn RL, El’Baghdady YM, Ford RD, Thut PD, Rudo FG (1984) A rabbit tooth-pulp assay to determine ED50 values and duration of action of analgesics. J Phannacol Meth II: 109–117Google Scholar
  201. Wynn RL, Ford RD, McCourt PJ, Ramkumar V, Bergman SA, Rudo FG (1986) Rabbit tooth pulp compared to 55° C mouse hot plate assay for detection of antinociceptive activity of opiate and nonopiate central analgesics. Drug Dev Res 9:233–239Google Scholar
  202. Yim GKW, Keasling HH, Gross EG, Mitchell CW (1955) Simultaneous respiratory minute volume and tooth pulp threshold changes following levorphan, morphine and levorphan-levallorphan mixtures in rabbits. J Pharmacol Exp Ther 115:96–105PubMedGoogle Scholar
  203. Bloss JL, Hammond DL (1985) Shock titration in the rhesus monkey: effects of opiate and nonopiate analgesics. J Pharmacol Exp Ther 235:423–430PubMedGoogle Scholar
  204. Campell ND, Geller I (1968) Comparison of analgesic effects of O-(4-methoxy phenyl carbamoyl)-3-diethylaminopropiophenone oxime HCI (USVP E-142), pentazocine and morphine in cynomolgous monkeys. Fed Proc FASEB 27: 653 (2465)Google Scholar
  205. Dykstra LA (1979) Effects of morphine, pentazocine and cyclazocine alone and in combination with naloxone on electric shock titration in the squirrel monkey. J Pharm Exp Ther 211:722–732Google Scholar
  206. Dykstra LA (1980) Nalorphine’s effect under several schedules of electric shock titration. Psychopharmacology 70: 69–72PubMedGoogle Scholar
  207. Dykstra LA, Macmillan DE (1977) Electric shock titration: Effects of morphine, methadone, pentazocine, nalorphine, naloxone, diazepam and amphetamine. J. Pharm Exp Ther 202:660–669Google Scholar
  208. Römer D (1968) A sensitive method for measuring analgesic effects in the monkey. In: Soulairac A, Cahn J, Charpentier J (eds) Pain. Acad Press London, New York, pp 165–170Google Scholar
  209. Weiss B, Laties VG (1964) Analgesic effects in monkeys of morphine, nalorphine, and a benzomorphan narcotic antagonist. J Pharm Exp Ther 143:169–173Google Scholar
  210. Abbott FV, Franklin KBJ, Ludwick RJ, Melzack R (1981) Apparent lack of tolerance in the Formalin test suggests different mechanisms for morphine analgesia in different types of pain. Pharmacol Biochem Behav 15:637–640PubMedGoogle Scholar
  211. Abbott FV, Melzack R, Samuel C (1982) Morphine analgesia in the tail-flick and Formalin pain tests is mediated by different neural systems. Exp Neurol 75:644–651PubMedGoogle Scholar
  212. Chau TT (1989) Analgesic testing in animal models. In: Pharmacological Methods in the Control of Inflammation. Alan R. Liss, Inc., pp 195–212Google Scholar
  213. Correa CR, Calixto JB(1993) Evidence for participation of B1 and B2 kinin receptors in formalin-induced nociceptive response in the mouse. Br J Pharmacol 110:193–198Google Scholar
  214. Cowan A (1990) Recent approaches in the testing of analgesics in animals. In: Modern Methods in Pharmacology, Vol 6, Testing and Evaluation of Drugs of Abuse. Wiley-Liss, Inc. pp 33–42Google Scholar
  215. Dubuisson D, Dennis SG (1977) The Formalin test: A quantitative study of the analgesic effects of morphine, meperidine and brain stem stimulation in rats and cats. Pain 4: 161–174PubMedGoogle Scholar
  216. Herman ZS, Felinska W (1979) Rapid test for screening of narcotic analgesics in mice. Pol J Pharmacol Pharm 31: 605–608PubMedGoogle Scholar
  217. Malmberg AB, Yaksh TL (1992) Antinociceptive actions of spinal nonsteroidal anti-inflammatory agents on the forma-lin test in the rat. J Pharm Exp Ther 263:136–146Google Scholar
  218. Murray CW, Porreca F, Cowan A (1988) Methodological refinements to the mouse paw formalin test. J Pharmacol Meth 20:175–186Google Scholar
  219. North MA (1977) Naloxone reversal of morphine analgesia but failure to alter reactivity to pain in the formalin test. Life Sci 22:295–302Google Scholar
  220. Shibata M, Ohkubo T, Takahashi H, Inoki R (1989) Modified formalin test: characteristic biphasic pain response. Pain 38:347–352Google Scholar
  221. Wheeler H, Porreca F, Cowan A (1989) Formalin is unique among potential noxious agents for the intensity of its behavioral response in rats. FASEB J 3:A278 (310)Google Scholar
  222. Pasternak GW (1987) Opioid receptors. In: Meltzer HY (ed) Psychopharmacology: The Third Generation of Progress. Raven Press New York, pp. 281–288Google Scholar
  223. Ling GSF, Spiegel K, Nishimura S, Pasternack GW (1983) Dissociation of morphine’s analgesic and respiratory depressant actions. Eur. J. Pharmacol. 86:478–488Google Scholar
  224. Ling GSF, Spiegel K, Lockhart SH, Pasternack GW (1985) Separation of opioid analgesia from respiratory depression: Evidence for different receptor mechanisms J Pharmacol Exp Ther 232: 149–155Google Scholar
  225. Ther L, Lindner E, Vogel G (1963) Zur pharmakodynamischen Wirkung der optischen Isomeren des Methadons. Dtsch Apoth Ztg 103:514–520Google Scholar
  226. Geller EB, Adler MW (1990) Drugs of abuse and body temperature. In: Modern Methods in Pharmacology, Vol 6, Testing and Evaluation of Drugs of Abuse, Wiley-Liss, Inc., pp 101–109Google Scholar
  227. Glassman JM (1971) Agents with analgesic activity and dependence liability. In: Turner RA and Hebborn P (eds) Screening Methods in Pharmacology. Vol. II, Acad. Press, New York and London., pp 227–248Google Scholar
  228. Kalant H, Khanna JM (1990) Methods for the study of tolerance. In: Modern Methods in Pharmacology, Vol 6, Testing and Evaluation of Drugs of Abuse. Wiley-Liss, Inc., pp 43–66Google Scholar
  229. Khanna JM, Mayer JM, Lê AD, Kalant H (1984) Differential response to ethanol, pentobarbital and morphine in mice specially bred for ethanol sensitivity. Alcohol 1:447–451PubMedGoogle Scholar
  230. Aceto MD (1990) Assessment of physical dependence techniques for the evaluation of abused drugs. In: Modern Methods in Pharmacology, Vol 6, Testing and Evaluation of Drugs of Abuse. Wiley-Liss, Inc., pp 67–79Google Scholar
  231. Buckett WR (1964) A new test for morphine-like physical dependence (addiction liability) in rats. Psychopharmacologia 6:410–416PubMedGoogle Scholar
  232. Deneau GA, Seevers MH (1964) Drug Dependence. In:Laurence DR, Bacharach AL (eds.) Evaluation of Drug Activities: Pharmacometrics. Academic Press, London and New York. pp 167–179Google Scholar
  233. Seevers MH (1936) Opiate addiction in the monkey. I. Methods of study. J Pharm Exp Ther 56:147–156Google Scholar
  234. Seevers MH, Deneau GA (1963) In: Root WS and Hoffman FG (eds) Physiological Pharmacology. Vol. I, pp 565, Acad. Press New York and LondonGoogle Scholar
  235. VonVoigtlander PF, Lewis RA (1983) A withdrawal hyperalgesia test for physical dependence: evaluation of and mixed-partial opioid agonists. J Pharm Meth 10:277–282Google Scholar
  236. Way EL (1993) Opioid tolerance and physical dependence and their relationship. In: Herz A, Akil H, Simon EJ (eds) Handbook of Experimental Pharmacology, Vol 104/ Opioids II, chapter 53, pp 573–596, Springer Berlin Heidelberg New YorkGoogle Scholar
  237. Way EL, Loh HH, Shen FH (1969) Simultaneous quantitative assessment of morphine tolerance and physical dependence. J Pharm Exp Ther 167:1–8Google Scholar
  238. Woods JH, France CP, Winger G, Bertamio AJ, Schwarz-Stevens K (1993) Opioid abuse liability assessment in rhesus monkeys. In: Herz A, Akil H, Simon EJ (eds) Handbook of Experimental Pharmacology, Vol 104/ Opioids II, chapter 55, pp 609–632, Springer Berlin Heidelberg New YorkGoogle Scholar
  239. Bertalmio AJ, Herling S, Hampton RY, Winger G, Woods JH (1982) A procedure for rapid evaluation of the discriminative stimulus effects of drugs. J Pharmacol Meth 7:289–299Google Scholar
  240. Bertalmio AJ, Woods JH (1987) Differentiation between µ and K receptor mediated effects in opioid drug discrimination: apparent pA2 analysis. J Pharmacol Exp Ther 243:591–598PubMedGoogle Scholar
  241. Bozarth MA (1987) Intracranial self-administration procedures for the assessment of drug reinforcement. In: Bozarth MA (ed) Methods for Assessing the Reinforcing Properties of Abused Drugs. Springer Verlag, New York, Berlin, Heidelberg, pp 178–187Google Scholar
  242. Brady JV, Griffiths RR, Hienz RD, Ator NA, Lukas SE, Lamb RJ (1987) Assessing drugs for abuse liability and dependence potential in laboratory primates. In: Bozarth MA (ed) Methods for Assessing the Reinforcing Properties of Abused Drugs. Springer Verlag, New York, Berlin, Heidelberg, pp 45–85Google Scholar
  243. Colpaert FC (1987) Drug discrimination: methods of manipulation, measurement, and analysis. In: Bozarth MA (ed) Methods for Assessing the Reinforcing Properties of Abused Drugs. Springer Verlag, New York, Berlin, Heidelberg, pp 341–372.Google Scholar
  244. Colpaert FC, Janssen PAJ (1984) Agonist and antagonist effects of prototype opiate drugs in rats discrimination fentanyl from saline: Characteristics of partial generalization. J Pharm Exp Ther 220:193–199Google Scholar
  245. Cruz SL, Salazar LA, Villarreal JE (1991) A methodological basis for improving the reliability of measurements of opiate abstinence responses in the guinea pig ileum made dependent in vitro. J Pharm Meth 25:329–342Google Scholar
  246. Deneau G, Yanagita T, Seevers MH (1969) Self-administration of psychoactive substances by the monkey. Psychopharmacologia 16:30–48PubMedGoogle Scholar
  247. Deneau GA (1964) Pharmacological techniques for evaluating addiction liability of drugs. In: Nodine JH and Siegler PE (eds). Animal and Clinical Pharmacologic Techniques in Drug Evaluation. Year Book Medical Publ, Inc., Chicago, pp 406–410Google Scholar
  248. Dykstra LA, Bertalmio AJ, Woods JH (1988) Discriminative and analgesic effects of mu and kappa opioids: in vivo pA2 analysis. In. Colpaert FC, Balster RL (eds) Transduction mechanisms of drug stimuli. Springer, Berlin Heidelberg New York, pp 107–121 (Psychopharmacology series 4)Google Scholar
  249. Dykstra LA, Gmerek DE, Winger G. Woods JH (1987) Kappa opioids in rhesus monkeys. I. Diuresis, sedation, analgesia and discriminative stimulus effects. J Pharmacol Exp Ther 242:413–420PubMedGoogle Scholar
  250. Garcia J, Kimmeldorf DJ, Koelling RA (1955) Conditioned taste aversion to saccharin resulting from exposure to gamma irradiation. Science 122:157–158PubMedGoogle Scholar
  251. Hein DW, Young AM, Herling S, Woods JH (1981) Pharmacological analysis of the discriminative stimulus characteristics of ethylketazocine in the rhesus monkey. J Pharmacol Exp Ther 218:7–15PubMedGoogle Scholar
  252. Herling S, Woods JH (1981) Discriminative stimulus effects of narcotics: evidence for multiple receptor-mediated actions. Life Sci 28:1571–1584PubMedGoogle Scholar
  253. Hoffmeister F (1979) Preclinical evaluation of reinforcing and aversive properties of analgesics. In: Beers RF, Bassett EG (eds) Mechanics of Pain and Analgesic Compounds. Raven Press New York, pp 447–466Google Scholar
  254. Hoffmeister F (1988) A comparison of the stimulus effects of codeine in rhesus monkeys under the contingencies of a two lever discrimination task and a cross self-administration paradigm: tests of generalization to pentazocine, buprenorphine, tilidine, and different doses of codeine. Psychopharmacology 94:315–320PubMedGoogle Scholar
  255. Holtzman SG (1983) Discriminative stimulus properties of opioid agonists and antagonists. In: S.J. Cooper (ed) Theory in Psychopharmacology, Vol. 2, pp 145 Academic Press, LondonGoogle Scholar
  256. Holtzman SG (1990) Discriminative stimulus effects of drugs: Relationship to potential for abuse. In: Modern Methods in Pharmacology, Vol 6, Testing and Evaluation of Drugs of Abuse. Wiley-Liss, Inc., pp. 193–210Google Scholar
  257. Iwamoto ET, Martin WR (1988) A critique of drug self-administration as a method for predicting abuse potential of drugs. In: Harris LS (ed) Proceedings of the committee on the problems of drug dependence, 1987. NIDA Res Monogr 81:457–465Google Scholar
  258. Kornetsky C, Bain B (1990) Brain-stimulation reward: A model for drug-induced euphoria. In: Modern Methods in Pharmacology, Vol 6, Testing and Evaluation of Drugs of Abuse. Wiley-Liss, Inc., pp 211–231Google Scholar
  259. Lal H, Sherman GT (1980) Interceptive discriminative stimuli in the development of CNS drugs and a case of an animal model of anxiety. Annu Rep Med Chem 15:51–58Google Scholar
  260. Littmann K, Heredia JM, Hoffmeister F (1979) Eine neue Methode zur enteralen Verabreichung von psychotrop wirksamen Substanzen beim Rhesusaffen. Arzneim Forsch/ Drug Res 29:1888–1890Google Scholar
  261. Locke KW, Gorney B, Cornfeldt M, Fielding S (1991) Comparison of the stimulus effects of ethylketocyclazocine in Fischer and Sprague-Dawley rats. Drug Dev Res 23:65–73Google Scholar
  262. Marcus R, Kornetsky C (1974) Negative and positive intracranial thresholds: Effects of morphine. Psychopharmacologia 38:1–13Google Scholar
  263. Meisch RA, Carroll ME (1987) Oral drug self-administration: Drugs as reinforcers. In: Bozarth MA (ed) Methods for Assessing the Reinforcing Properties of Abused Drugs. Springer Verlag, New York, Berlin, Heidelberg, pp 143160Google Scholar
  264. Olds J (1979) Drives and reinforcements: Behavioral studies of hypothalamic functions. Raven Press New YorkGoogle Scholar
  265. Olds J, Killam KF, Bach-y-Rita P (1956) Self-stimulation of the brain used as screening method for tranquilizing drugs. Science 124:265–266PubMedGoogle Scholar
  266. Overton DA (1987) Applications and limitations of the drug discrimination method for the study of drug abuse. In: Bozarth MA (ed) Methods for Assessing the Reinforcing Properties of Abused Drugs. Springer Verlag, New York, Berlin, Heidelberg, pp 291–340Google Scholar
  267. Shannon HE, Holtzmann SG (1976) Evaluation of the discriminative effects of morphine in the rat. J Pharm Exp Ther 198:64–65Google Scholar
  268. Shannon HE, Holtzmann SG (1986) Blockade of the discriminative effects of morphine by naltrexone and naloxone. Psychopharmacologica 50:119–124Google Scholar
  269. Sherman G, Lal H (1979) Discriminative stimulus properties of pentylenetetrazol and begrimide: some generalization and antagonism tests. Psychopharmacology 64:315–319Google Scholar
  270. Sherman GT, Lal H (1980) Generalization and antagonism studies with convulsants, GABAergic and anticonvulsant drugs in rats trained to discriminate pentylenetetrazol from saline. Neuropharmacol 19:473–479Google Scholar
  271. Sherman GT, Miksic S. Lal H (1979) Lack of tolerance development to benzodiazepines in antagonism of the pentylenetetrazol discriminative stimulus. Pharmacol Biochem Behav 10:795–797Google Scholar
  272. van Heest A, Hijzen TH, Slangen JL, Oliver B (1992) Assessment of the stimulus properties of anxiolytic drugs by means of the conditioned taste aversion procedure. Pharmacol Biochem Behav 42:487–495Google Scholar
  273. Weeks JR, Collins RJ (1987) Screening for drug reinforcement using intravenous self-administration in the rat. In: Bozarth MA (ed) Methods for Assessing the Reinforcing Properties of Abused Drugs. Springer Verlag, New York, Berlin, Heidelberg, pp 35–43Google Scholar
  274. Woods JH, France CP, Winger G, Bertamio Al, Schwarz-Stevens K (1993) Opioid abuse liability assessment in rhesus monkeys. In: Herz A, Akil H, Simon EJ (eds) Handbook of Experimental Pharmacology, Vol 104/ Opioids II, chapter 55, pp 609–632, Springer Berlin Heidelberg New YorkGoogle Scholar
  275. Woolverton WL, Nader MA (1990) Experimental evaluation of the reinforcing effects of drugs. In: Modern Methods in Pharmacology, Vol 6, Testing and Evaluation of Drugs of Abuse. Wiley-Liss, Inc., pp 165–192Google Scholar
  276. Woolverton WL, Schuster CL (1983) Intragastric selfadministration in rhesus monkeys under limited access conditions: Methodological studies. J Pharmacol Meth 10:93–106Google Scholar
  277. Yokel RA (1987) Intravenous self-administration: response rates, the effects of pharmacological challenges, and drug preference. In: Bozarth MA (ed) Methods for Assessing the Reinforcing Properties of Abused Drugs. Springer Verlag, New York, Berlin, Heidelberg, pp 1–33Google Scholar
  278. Amanuma F, Wakaumi C, Tanaka M, Muramatsu M, Aihara H (1984) The analgesic effects of non-steroidal anti-inflammatory drugs on acetylcholine-induced writhing in mice. Folia Pharmacol Japon 84:543–551Google Scholar
  279. Bhalla TN, Bhargava KP (1980) Aconitine-induced writhing as a method for assessing Aspirin-like analgesic activity. J Pharmacol Meth 3:9–14Google Scholar
  280. Björkman RL, Hedner T, Hallman KM, Henning M, Hedner J (1992) Localization of central antinociceptive effects of diclofenac in the rat. Brain Res 590:66–73PubMedGoogle Scholar
  281. Blumberg H, Wolf PS, Dayton HB (1965) Use of writhing test for evaluating activity of narcotic antagonists. Proc Soc Exp Biol Med 118:763–766PubMedGoogle Scholar
  282. Burns RBP, Alioto NJ, Hurley KE (1968) Modification of the bradykinin-induced writhing test for analgesia. Arch Int Pharmacodyn 175:41–55PubMedGoogle Scholar
  283. Carey F, Haworth D, Edmonds AE, Forder RA (1988) Simple procedure for measuring the pharmacodynamics and analgesic potential of lipoxygenase inhibitors. J Pharmacol Meth 20:347–356Google Scholar
  284. Chernov HI, Wilson DE, Fowler F, Plummer AJ (1967) Non-specificity of the mouse writhing test. Arch Int Pharmacodyn 167:171–178PubMedGoogle Scholar
  285. Collier HOJ, Dinneen LC, Johnson CA, Schneider C (1968) The abdominal constriction response and its suppression by analgesic drugs in the mouse. Br J Pharmac Chemother 32: 295–310Google Scholar
  286. Eckhardt ET, Cheplovitz F, Lipo M, Govier WM (1958) Etiology of chemically induced writhing in mouse and rat. Proc Soc Exp Biol Med 98:186–188PubMedGoogle Scholar
  287. Emele JF, Shanaman J (1963) Bradykinin writhing: A method for measuring analgesia. Proc Soc Exp Biol Med 114: 680–682PubMedGoogle Scholar
  288. Fukawa K, Kawano O, Hibi M, Misaki M, Ohba S, Hatanaka Y (1980) A method for evaluating analgesic agents in rats. J Pharmacol Meth 4:251–259Google Scholar
  289. Heapy CG, Shaw JS, Farmer SC (1993) Differential sensitivity of antinociceptive assays to the bradykinin antagonist Hoe 140. Br J Pharmacol 108:209–213PubMedGoogle Scholar
  290. Hendershot LC, Forsaith J (1959) Antagonism of the frequency of phenylquinone-induced writhing in the mouse by weak analgesics and non-analgesics. J Pharmacol Exp Ther 125:237–240PubMedGoogle Scholar
  291. Kokka N, Fairhurst AS (1977) Naloxone enhancement of acetic acid-induced writhing in rats. Life Sci 21:975–980PubMedGoogle Scholar
  292. Koster R, Anderson M, de Beer EJ (1959) Acetic acid for analgesic screening. Fed Proc 18:412Google Scholar
  293. Loux JJ, Smith S, Salem H (1978) Comparative analgesic testing of various compounds in mice using writhing techniques. Arzneim Forsch/Drug Res 28:1644–1677Google Scholar
  294. Nakamura H, Shimoda A, Ishii K, Kadokawa T (1986) Central and peripheral analgesic action of non-acidic non-steroidal anti-inflammatory drugs in mice and rats. Arch Int Pharmacodyn 282:16–25Google Scholar
  295. Nolan JC, Osman MA, Cheng LK, Sancilio LF (1990) Bromfenac, a new nonsteroidal anti-inflammatory drug: Relationship between the anti-inflammatory and analgesic activity and plasma drug levels in rodents. J Pharm Exp Ther 254:104–108Google Scholar
  296. Okun R, Liddon SC, Lasagna L (1963) The effects of aggregation, electric shock, and adrenergic blocking drugs on inhibition of the “writhing syndrome”. J Pharm Exp Ther 139:107–109Google Scholar
  297. Rae GA, Souza RLN, Takahashi RN (1986) Methylnalorphinium fails to reverse naloxone-sensitive stress-induced analgesia in mice. Pharmacol Biochem Behav 24:829–832PubMedGoogle Scholar
  298. Sancillo LF, Nolan JC, Wagner LE, Ward JW (1987) The analgesic and antiinflammatory activity and pharmacologic properties of Bromfenac. Arzneim Forsch/Drug Res 37: 513–519Google Scholar
  299. Schweizer A, Brom R, Scherrer H (1988) Combined automatic writhing/motility test for testing analgesics. Agents Actions 23:29–31PubMedGoogle Scholar
  300. Siegmund E, Cadmus R, Lu G (1957) A method for evaluating both non-narcotic and narcotic analgesics. Proc Soc Exp Biol Med 95:729PubMedGoogle Scholar
  301. Taber RI, Greenhouse DD, Rendell JK, Irwin S (1969) Agonist and antagonist interactions of opioids on acetic acid-induced abdominal stretching in mice. J Pharm Exp Ther 169:29–38Google Scholar
  302. VonVoigtlander PF, Lewis RA (1982) Air-induced writhing: a rapid broad spectrum assay for analgesics. Drug Dev Res 2:577–581Google Scholar
  303. VonVoigtlander PF, Lewis RA (1983) A withdrawal hyperalgesia test for physical dependence: evaluation of and mixed partial opioid agonists. J Pharmacol Meth 10: 277–282Google Scholar
  304. Whittle BA (1964) The use of changes in capillary permeability in mice to distinguish between narcotic and non narcotic analgesics. Br J Pharmacol 22:246–253Google Scholar
  305. Chipkin RE, Latranyi MB, Iorio LC, Barnett A (1983) Determination of analgesic drug efficacies by modification of the Randall and Selitto rat yeast paw test. J Pharmacol Meth 10:223–229Google Scholar
  306. Dubinsky B, Gebre-Mariam S, Capetola RJ, Rosenthale ME (1987) The analgesic drugs: Human therapeutic correlates of their potency in laboratory animals of hyperalgesia. Agents Actions 20:50–60PubMedGoogle Scholar
  307. Ferreira SH, Lorenzetti BB, Correa FMA (1978b) Central and peripheral antialgesic action of aspirin-like drugs. Eur J Pharmacol 53:39–48Google Scholar
  308. Ferreira SH, Lorenzetti BB, Cunha FQ, Poole S (1993b) Bradykinin release of TNF-a plays a key role in the development of inflammatory hyperalgesia. Agents Actions 38: C7–C9Google Scholar
  309. Ferreira SH, Lorenzetti BB, Poole S (1993a) Bradykinin initiates cytokine-mediated inflammatory hyperalgesia. Br J Pharmacol 110:1227–1231Google Scholar
  310. Ferreira SH, Nakamura M, DeAbreu Castro MS (1978a) The hyperalgesic effects of prostacyclin and prostaglandin E2. Prostaglandins 16:31–37Google Scholar
  311. Greindl MG, Preat S (1976) A new model of active avoidance conditioning adequate for pharmacological studies, Arch Int Pharmacodyn 223:168–170PubMedGoogle Scholar
  312. Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32:77–88PubMedGoogle Scholar
  313. Kitchen I (1984) Modification of an analgesy meter for paw-pressure antinociceptive testing in neonatal rats. J Pharmacol Meth 12:255–258Google Scholar
  314. Perkins MN, Campell E, Dray A (1993) Antinociceptive activity of the bradykinin B, and B2 receptor antagonists, desArg9,[Leuxl-BK and Hoe 140, in two models of persistent hyperalgesia in rats. Pain 53:191–197PubMedGoogle Scholar
  315. Randall LO, Selitto JJ (1957) A method for measurement of analgesic activity on inflamed tissue. Arch Int Pharmacodyn 111:409–419PubMedGoogle Scholar
  316. Rios L, Jacob JJC (1982) Inhibition of inflammatory pain by naloxone and its N-methyl quaternary analogue. Life Sci 31:1209–1212PubMedGoogle Scholar
  317. Romer D (1980) Pharmacological evaluation of mild analgesics. Br J Clin Pharmacol 10:247S–251SGoogle Scholar
  318. Takesue El, Schaefer W, Jukniewicz E (1969) Modification of the Randall-Selitto analgesic apparatus. J Pharm Pharmacol 21:788–789Google Scholar
  319. Tanaka K, Shimotori T, Makino S, Aikawa Y, Inaba T, Yoshida C, Takano S (1992) Pharmacological studies of the new antiinflammatory agent 3-formylamino-7-methylsulfonylamino-6-phenoxy-4H-l-benzopyran-4-one. 1st Communication: antiinflammatory, analgesic and other related properties. Arzneim Forsch/Drug Res 42:935–944Google Scholar
  320. Vinegar R, Truax JF, Selph JL, Johnston PR (1990) New analgesic assay utilizing trypsin-induced hyperalgesia in the hind limb of the rat. J Pharmacol Meth 23:51–61Google Scholar
  321. Winter CA, Flakater L (1965) Reaction thresholds to pressure in edematous hindpaws of rats and response to analgesic drugs. J Pharm Exp Ther 150:165–171Google Scholar
  322. Winter CW, Risley EA, Nuss GW (1962) Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Proc Soc Exp Biol Med 111:544–547PubMedGoogle Scholar
  323. Colburn RW, Coombs DW, Degnan CC, Rogers LL (1989) Mechanical visceral pain model: chronic intermittent intestinal distension in the rat. Physiol Behav 45:191–197PubMedGoogle Scholar
  324. deLeo JA, Colburn RW, Coombs DW, Ellis MA (1989) The differentiation of NSAIDs and prostaglandin action using a mechanical visceral pain model in the rat. Pharmacol Biochem Behav 33:253–255PubMedGoogle Scholar
  325. Adachi Kl, Ishii Y (1979) Vocalization response to close-arterial injection of bradykinin and other algesic agents in guinea pigs and its application to quantitative assessment of analgesic agents. J Pharm,Exp Ther 209:117–124Google Scholar
  326. Ahluwalia A, Maggi CA, Santicioli P, Lecci A, Giuliani S (1994) Characterization of the capsaicin-sensitive component of cyclophosphamide-induced inflammation in the rat urinary bladder. Br J Pharmacol 111:1017–1022PubMedGoogle Scholar
  327. Beck PW, Handwerker HO (1974) Bradykinin and serotonin effects on various types of cutaneous nerve fibres. Pflügers Arch 347:209–222PubMedGoogle Scholar
  328. Blane GF (1968) A new laboratory model for evaluating analgesic and analgesic-antagonist drugs. In: Soulairac A, Cahn J, Charpentier J (eds) Pain. Academic Press, London, New York, pp 218–222Google Scholar
  329. Collier HOJ, Lee IR (1963) Nociceptive responses of guinea-pigs to intradermal injections of bradykinin and kallidin-l0. Br J Pharmacol 21:155–164Google Scholar
  330. Davis AJ, Perkins MN (1994 a) Induction of BI receptors in vivo in a model of persistent mechanical hyperalgesia in the rat. Neuropharm 33:127–133Google Scholar
  331. Davis AJ, Perkins MN (1994 b) Involvement of bradykinin B, and B2 receptor mechanisms in cytokine-induced mechanical hyperalgesia in rats. Br J Pharmacol 113:63–68Google Scholar
  332. Deffenu G, Pegrasso L, Lumachi B (1966) The use of bradykinin-induced effects in rats as an assay for analgesic drugs. J Pharm Pharmac 18:135Google Scholar
  333. Griesbacher T, Lembeck F (1987) Effect of bradykinin antagonists on bradykinin-induced plasma extravasation, venoconstriction, prostaglandin E2 release, nociceptor stimulation and contraction of the iris sphincter muscle in the rabbit. Br J Pharmacol 92:333–340PubMedGoogle Scholar
  334. Guzman F, Braun C, Lim RKS (1962) Visceral pain and the pseudaffective response to intra-arterial injection of bradykinin and other algesic agents. Arch Int Pharmacodyn 136: 353–384PubMedGoogle Scholar
  335. Heapy CG, Shaw JS, Farmer SC (1993) Differential sensitivity of antinociceptive assays to the bradykinin antagonist Hoe 140. Br J Pharmacol 108:209–213PubMedGoogle Scholar
  336. Lecci A, Giuliani S, Meine S, Maggi CA (1995) Pharmacological analysis of the local and reflex responses to bradykinin on rat urinary bladder motility in vivo. Br J Pharmacol 114:708–714PubMedGoogle Scholar
  337. Lembeck F, Griesbacher T, Eckhardt M, Henke S, Breipohl G, Knolle J (1991) New, long acting, potent bradykinin antagonists. Br J Pharmacol 102:297–304PubMedGoogle Scholar
  338. Lim RKS (1970) Pain. Annu Rev Physiol 32:269–288Google Scholar
  339. Lim RKS, Guzman F (1968) Manifestations of pain in analgesic evaluation in animals and man. In: Soulairac A, Cahn J, Charpentier J (eds) Pain. Academic Press, London, New York, pp 119–152Google Scholar
  340. Lim RKS, Guzman F, Rodgers DW, Goto K, Braun C, Dickerson GD, Engle RI (1964) Site of action of narcotic and non-narcotic analgesics determined by blocking bradykinin-evoked visceral pain. Arch Int Pharmacodyn 152:25–58PubMedGoogle Scholar
  341. Satoh M, Kawajiri SI, Yamamoto M, Makino H, Takagi H (1979) Reversal by naloxone of adaptation of rats to noxious stimuli. Life Sci 24:685–690PubMedGoogle Scholar
  342. Teixeira MM, Doenhoff MJ, McNeice C, Williams TJ, Hellewell PG (1993) Mechanisms of the inflammatory response induced by extracts of Schistosoma mansoni larvae in guinea pig skin. J Immunol 151:5525–5534PubMedGoogle Scholar
  343. Vargaftig B (1966) Effet des Analgésiques non narcotiques sur l’hypotension due à la Bradykinine. Experientia 22: 182–183PubMedGoogle Scholar
  344. Carlsson KH, Helmreich J, Jurna I (1986) Comparison of central antinociceptive and analgesic effects of the pyrazolone derivatives, metamizol (Dipyrone) and aminophenzone („Pyramidon“). Schmerz -Pain -Douleur 3:93–100Google Scholar
  345. Carlsson KH, Monzel W, Jurna 1 (1988) Depression of morphine and the non-opioid analgesic agents, metamizol (dipyrone), lysine acetyl salicylate, and paracetamol, of activity in rat thalamus neurons evoked by electrical stimulation of nociceptive afferents. Pain 32:313–326PubMedGoogle Scholar
  346. Chapman V, Dickenson AH (1992) The spinal and peripheral roles of bradykinin and prostaglandins in nociceptive processing in the rat. Eur J Pharmacol 219:427–433PubMedGoogle Scholar
  347. Dray A, Patel IA, Perkin MN, Rueff A (1992) Bradykinininduced activation of nociceptors: receptor and mechanistic studies on the neonatal rat spinal cord-tail preparation in vitro. Br J Pharmacol 107:1129–1134PubMedGoogle Scholar
  348. He X, Neugebauer V, Schaible HG, Schmidt RF (1990 a) Effects of antipyretic analgesics on pain-related neurons of the spinal cord. In: Brune K, Santoso B (eds) Antipyretic Analgesics: New Insights. Birkhäuser Verlag, Basel, pp 13–23Google Scholar
  349. He X, Neugebauer V, Schaible HG, Schmidt RF (1990 b) New aspects of the mode of action of dipyrone. In: Brune K (ed) New Pharmacological and Epidemiological Data in Analgesics Research.. Birkhäuser Verlag, Basel, pp 9–18Google Scholar
  350. Jurna I, Brune K (1990) Central effect of the non-steroid anti-inflammatory agents, indometacin, ibuprofen, and diclofenac, determined in C fibre-evoked activity in single neurons of rat thalamus. Pain 41:71–80Google Scholar
  351. Malmberg AB, Yaksh TL (1992) Hyperalgesia mediated by spinal glutamate or substance P receptor blocked by spinal cyclooxygenase inhibition. Science 257:1276–1279PubMedGoogle Scholar
  352. Neugebauer V, Schaible HG (1990) Evidence for a central component in the sensitization of spinal neurons with joint input during development of acute arthritis in cat’s knee. J Neurophysiol 64:299–311PubMedGoogle Scholar
  353. Neugebauer V, Schaible HG, He X, Lücke T, Gündlich P, Schmidt RF (1994) Electrophysiological evidence for a spinal antinociceptive action of dipyrone. Agents Actions 41:62–70PubMedGoogle Scholar
  354. Schaible HG, Schmidt RF (1983a) Responses of fine medial articular nerve afferents to passive movements of knee joint. J Neurophysiol 49:1118–1126Google Scholar
  355. Schaible HG, Schmidt RF (1983b) Activation of groups III and IV sensory units in medial articular nerve by local mechanical stimulation of knee joint. J Neurophysiol 49: 35–44Google Scholar
  356. Schaible HG, Schmidt RF (1985) Effects of an experimental arthritis on the sensory properties of fine articular afferent units. J Neurophysiol 54:1109–1122PubMedGoogle Scholar
  357. Schaible HG, Schmidt RF (1988) Time course of mechanosensitivity changes in articular afferents during a developing experimental arthritis. J Neurophysiol 60:2180–2195PubMedGoogle Scholar
  358. Schaible HG, Schmidt RF, Willis WD (1987) Enhancement of the responses of ascending tract cells in the cat spinal cord by acute inflammation of the knee joint. Exp Brain Res 66: 489–499PubMedGoogle Scholar
  359. Alla SA, Buschko J, Quitterer U, Maidhof A, 1-laasemann M, Breipohl G, Knolle J, Muller-Esterl W (1993) Structural features of human bradykinin B2 receptor probed by agonists, antagonists, and anti-idiotypic antibodies. J Biol Chem 268:17277–17285PubMedGoogle Scholar
  360. Bascands JL, Pecher C, Rounaud S, Emond C, Tack JL, Bastie MJ, Burch R, Regoli D, Girolami JP (1993) Evidence for existence of two distinct bradykinin receptors on rat mesangial cells. Am J Physiol 264:F548–F556PubMedGoogle Scholar
  361. Brenner NJ, Stonesifer GY, Schneck KA, Burns HD, Ransom RW (1993) [’2511PIP HOE 140, a high affinity radioligand for bradykinin B2 receptors. Life Sci 53:1879–1886Google Scholar
  362. Burch RM, Fariner SG, Steranka LR (1990) Bradykinin receptor antagonists. Medicin Res Rev 10:237–239Google Scholar
  363. Burch RM, Kyle DJ (1992) Minireview: Recent developments in the understanding of bradykinin receptors. Life Sci 50: 829–838PubMedGoogle Scholar
  364. Burch RM, Kyle DJ, Stormann TM (1993) Molecular Biology and Pharmacology of Bradykinin Receptors: The Pharmacological Classification of Kinins. RG Landes Comp., Austin, pp 6–18Google Scholar
  365. Butt SK, Dawson LG, Hall JM (1995) Bradykinin B, receptors in the rabbit urinary bladder: induction of responses, smooth muscle contraction, and phopshatidylinositol hydrolysis. Br J Pharmacol 114:612–617PubMedGoogle Scholar
  366. Eggerickx D, Raspe E, Bertrand D, Vassart G, Parmentier M (1992) Molecular cloning, functional expression and pharmacological characterization of a human bradykinin B2 receptor gene. Biochem Biophys Res Commun 187:1306–1313PubMedGoogle Scholar
  367. Emond C, Bascands JL, Pecher C, Cabos-Boutot G, Pradelles P, Regoli D, Girolami JP (1990) Characterization of a BZ bradykinin receptor in rat mesangial cells. Eur J Pharmacol 190:381–392PubMedGoogle Scholar
  368. Falcone RC, Hubbs SJ, Vanderloo JD, Prosser JC, Little J, Gomes B, Aharony D, Krell RD (1993) Characterization of bradykinin receptors in guinea pig gall bladder. J Pharm Exp Ther 266:1291–1299Google Scholar
  369. Farmer SG, Burch RM, Meeker SA, Wilkins DE (1989) Evidence for a pulmonary B, bradykinin receptor. Mol Pharmacol 36:1–8PubMedGoogle Scholar
  370. Felétou M, Germain M, Thurieau C, Fauchère JL, Canet E (1994) Agonistic and antagonistic properties of the bradykinin B2 receptor antagonist, Hoe 140, in isolated blood vessels from different species. Br J Pharmacol 112:683–689PubMedGoogle Scholar
  371. Feres T, Paiva ACM, Paiva TB (1992) BK, and BK2 bradykinin receptors in the rat duodenum smooth muscle. Br J Pharmacol 107:991–995PubMedGoogle Scholar
  372. Field JL, Butt SK, Morton IKM, Hall JM (1994) Bradykinin B2 receptors and coupling mechanisms in the smooth muscle of guinea-pig taenia caeci. Br J Pharmacol 113:607–613PubMedGoogle Scholar
  373. Field JL, Hall JM, Morton IKM (1992) Putative novel bradykinin B3 receptors in the smooth muscle of the guinea-pig taenia caeci and trachea. Recent Progress on Kinins, Birkhäuser Basel, pp 540–545Google Scholar
  374. Galizzi JP, Bodinier MC, Chapelain B, Ly SM, Coussy L, Giraud S, Neliat G, Jean T (1994) Up-regulation of [3H]-desarg10-kallidin binding to the bradykinin B, receptor by interleukin-113 in isolated smooth muscle cells: correlation with B, agonist-induced PGI2 production. Br J Pharmacol 113:389–394PubMedGoogle Scholar
  375. Gobeil F, Regoli D (1994) Characterization of kinin receptors by bioassays. Braz J Med Biol Res 27:1781–1791PubMedGoogle Scholar
  376. Graneß A, Liebmann C (1994) Affinity cross-linking of bradykinin B2 receptors in guinea pig ileum membranes. Eur J Pharmacol 268:271–274PubMedGoogle Scholar
  377. Hess JKF, Borkowski JA, Young GS, Strader CD, Ramson RW (1992) Cloning and pharmacological characterization of a human bradykinin (BK-2) receptor. Biochem Biophys Res Commun 184:260–268PubMedGoogle Scholar
  378. Hock FJ, Wirth K, Albus U, Linz W, Gerhards HJ, Wiemer G, Henke S, Breipohl G, König W, Knolle J, Schölkens BA (1991) Hoe 140 a new potent and long acting bradykinin antagonist: in vitro studies. Br J Pharmacol 102:769–773PubMedGoogle Scholar
  379. Innis RB, Manning DC, Stewart JM, Snyder SH (1981) [3H]Bradykinin receptor binding in mammalian tissue membranes. Proc Natl Acad Sci USA., 78:2630–2634Google Scholar
  380. Kachur JF, Allbee W, Danjo W, Gaginella TS (1987) Bradykinin receptors: functional similarities in guinea pig gut muscle and mucosa. Regul Peptides 17:63–70Google Scholar
  381. Liebmann C, Bossé R, Escher E (1994 b) Discrimination between putative bradykinin B2 receptor subtypes in guinea pig ileum smooth muscle membranes with a selective, iodinatable, bradykinin analogue. Molec Pharmacol 46: 949–956Google Scholar
  382. Liebmann C, Mammery K, Graneß A (1994 a) Bradykinin inhibits adenylate cyclase activity in guinea pig membranes via a separate high-affinity bradykinin B2 receptor. Eur J Pharmacol 288:35–43Google Scholar
  383. Manning DC, Vavrek R, Stewart JM, Snyder SH (1986) Two bradykinin binding sites with picomolar affinities. J Pharmacol Exp Ther 237:504–512PubMedGoogle Scholar
  384. McEachern AE, Shelton ER, Bhakta S, Obernolte R, Bach C, Zuppan P, Fujisaki J, Aldrich RW, Jarnagin K (1991) Proc Natl Acad Sci USA 88:7724–7728PubMedGoogle Scholar
  385. McPherson GA (1985) Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Meth 14:213–228Google Scholar
  386. Pruneau D, Bélichard P (1993) Induction of bradykinin B, receptor-mediated relaxation in the isolated rabbit carotid artery. Eur J Pharmacol 239:63–67PubMedGoogle Scholar
  387. Regoli D, Gobeil F, Nguyen QT, Jukic D, Seoane PR, Salvino JM, Sawutz DG (1994) Bradykinin receptor types and B2 subtypes. Life Sci 55:735–749Google Scholar
  388. Rhaleb NE, Carretero OA (1994) The role of B, and B2 receptors and of nitric oxide in bradykinin-induced relaxation and contraction of isolated rat duodenum. Life Sci 55: 1351–1363PubMedGoogle Scholar
  389. Rhaleb NE, Rouissi N, Jukic D, Regoli D, Henke S, Breipohl G, Knolle J (1992) Pharmacological characterization of a new highly potent B2 receptor antagonist (HOE 140: D-arg[hyp3,thi5,D-tic7,oic“]bradykinin. Eur J Pharmacol 210: 115–120PubMedGoogle Scholar
  390. Schneck KA, Hess JF, Stonisifer GY, Ransom RW (1994) Bradykinin B, receptors in rabbit aorta smooth muscle in culture. Eur J Pharmacol, Mol Pharmacol Sect 266:277–282Google Scholar
  391. Seguin L, Widdowson PS (1993) Effects of nucleotides on [3H]bradykinin binding in guinea pig: further evidence for multiple B2 receptor subtypes. J Neurochem 60:652–757Google Scholar
  392. Seguin L, Widdowson PS, Giesen-Crouse E (1992) Existence of three subtypes of bradykinin B2 receptors in guinea pig. J Neurochem 59:2125–2133PubMedGoogle Scholar
  393. Tropea MM, Gummelt D, Herzig MS, Leeb-Lundberg LMF (1994) BI and B2 kinin receptors on cultured rabbit superior mesenteric artery smooth muscle cells: receptor specific stimulation of inositol phosphate formation and arachidonic acid release by des-arge-bradykinin and bradykinin. J Pharmacol Exp Ther 264:930–937Google Scholar
  394. Wiemer G, Wirth K (1992) Production of cyclic GMP via activation of B, and B2 kinin receptors in cultured bovine aortic endothelial cells. J Pharm Exp Ther 262:729–733Google Scholar
  395. Wirth K, Breipohl G, Stechl J, Knolle J, Henke S, Schölkens B (1991) DesArge-D-Arg[Hyp3,Thi5,D-Tic7,Oic“]bradykinin (desArg10-[Hoel40]) is a potent bradykinin B, receptor antagonist. Eur J Pharmacol 205:217–218PubMedGoogle Scholar
  396. Wirth KJ, Schölkens BA, Wiemer G (1994) The bradykinin B2 receptor antagonist WIN 64338 inhibits the effect of desarge-bradykinin in endothelial cells. Eur J Pharmacol 288: RI-R2Google Scholar
  397. Wirth KJ, Wiemer G, Schölkens BA (1992) Des-Arg1°[HOE 140] is a potent B, bradykinin antagonist. Recent Progress on Kinins. Birkhäuser, Basel, pp 406–413Google Scholar
  398. Yang CM, Luo SF, Hsia HC (1995) Pharmacological characterization of bradykinin receptors in canine cultured tracheal smooth muscle cells. Br J Pharmacol 144:67–72Google Scholar
  399. Iversen LL, Jesse]] T, Kanazawa I (1976) Release and metabolism of substance Pin rat hypothalamus. Nature 264:81–83Google Scholar
  400. Lee CM, Javitch JA, Snyder SH (1983) 3H-Substance P binding to salivary gland membranes. Mol Pharmacol 23:563–569Google Scholar
  401. Liu YF, Quirion R (1991) Presence of various carbohydrate moieties including 0-galactose and N-acetylglucosamine residues on solubilized porcine brain neurokinin1/substance P receptors. J Neurochem 57:1944–1950PubMedGoogle Scholar
  402. McLean S, Ganong AH, Seeger TF, Bryce DK, Pratt KG, Reynolds LS, Siok CJ, Lowe Ill JA, Heym J (1991) Activity of binding sites in brain of a nonpeptide substance P (NK,) receptor antagonist. Science 251:437–439PubMedGoogle Scholar
  403. McPherson GA (1985) Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Meth 14:213–228Google Scholar
  404. Mizrahi J, D’Orléans-Juste P, Drapeau G, Escher E, Regoli D (1983) Partial agonists and antagonists for substance P. Eur J Pharmacol 91:139–140PubMedGoogle Scholar
  405. Perrone MH Diehl RE, Haubrich DR (1983) Binding of [3Hlsubstance P to putative substance P receptors in rat brain membranes. Eur J Pharmacol 95:131–133PubMedGoogle Scholar
  406. Atkins PC, Norman ME, Zweiman B (1978) Antigen-induced neutrophil chemotactic activity in man. J Allergy Clin Immunol 62:149–155PubMedGoogle Scholar
  407. Boyden S (1962) The chemotactic effects of mixtures of antibody and antigen on polymorpho-nuclear leukocytes. J Exp Med 115:453–466PubMedGoogle Scholar
  408. Bray MA, Ford-Hutchinson AW, Shipley ME, Smith MJH (1980) Calcium ionophore A23187 induces release of chemokinetic and aggregating factors from polymorphonuclear leucocytes. Br J Pharmacol 71:507–512PubMedGoogle Scholar
  409. Camussi G, Tetta C, Bussolino F, Baglioni C (1990) Antiinflammatory peptides (antiflammins) inhibit synthesis of platelet-activating factor, neutrophil aggregation and chemotaxis, and intradermal inflammatory reactions. J Exp Med 171:913–927PubMedGoogle Scholar
  410. Ferrante A, Thong YH (1980) Optimal conditions for simultaneous purification of mononuclear and polymorphonuclear leukocytes from human blood by the Hypaque-Ficoll method. J Immunol Meth 36:109–117Google Scholar
  411. Figari IS, Mori NA, Palladino MA (1987) Regulation of neutrophil migration and superoxide production by recombinant tumor necrosis factors-a and -13: Comparison to recombinant interferon-y and interleukin-la. Blood 70:979–984PubMedGoogle Scholar
  412. Harvath L, Falk W, Leonard El (1980) Rapid quantitation of neutrophil chemotaxis: Use of a polyvinylpyrrolidone-free polycarbonate membrane in a multiwell assembly. J Immunol Meth 37:39–45Google Scholar
  413. Issekutz AC, Issekutz TB (1989) Quantitation of blood cell accumulation and vascular responses in inflammatory reactions. In. Pharmacological Methods in the Control of Inflammnation. Alan R. Liss, Inc., pp 129–150Google Scholar
  414. Matzner Y, Drexler R, Levy M (1984) Effect of dipyrone, acetylsalicylic acid and acetaminophen on human neutrophil chemotaxis. Eur J Clin Invest 14:440–443PubMedGoogle Scholar
  415. Nelson RD, Quie PG, Simmons RL (1975) Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. J Immunol 115:1650–1656PubMedGoogle Scholar
  416. Roch-Arveiller M, Roblin G, Allain M, Giroud JP (1985) A visual technique of chemotactic assessment for pharmacological studies. J Pharmacol Meth 14:313–321Google Scholar
  417. Shalaby MR, Palladino MA, Hirabayashi SE, Eessalu TE, Lewis GT, Shepard HM, Aggarwal BB (1987) Receptor binding and activation of polymorphonuclear neutrophils by tumor necrosis factor-alpha. J Leukoc Biol 41:196–204PubMedGoogle Scholar
  418. Watanabe K, Kinoshita S, Nakagawa H (1989) Very rapid assay of polymorphonuclear leukocyte chemotaxis in vitro. J Pharmacol Meth 22:13–18Google Scholar
  419. Bradford PG, Rubin RP (1986) The differential effects of nedocromil sodium and sodium cromoglycate on the secretory response of rabbit peritoneal neutrophils. Eur J Respir Dis 69 (Suppl 147):238–240Google Scholar
  420. Bray MA, Ford-Hutchinson AW, Shipley ME, Smith MJH (1980) Calcium ionophore A23187 induces release of chemokinetic and aggregating factors from polymorphonuclear leucocytes. Br J Pharmacol 71:507–512PubMedGoogle Scholar
  421. Bourgoin S, Borgeat P, Poubelle PE (1991) Granulocyte-macrophage colony-stimulating factor (GM-CSF) primes human neutrophils for enhanced phosphatidylcholine breakdown b;. phopsholipase D. Agents Actions 34:32–34PubMedGoogle Scholar
  422. Moqbel R, Wa’ GM, Kay AB (1986) Inhibition of human granulocyte activation by nedocromil sodium. Eur J Respir Dis 69 (Suppl 147):227–229Google Scholar
  423. Boopathy R, Balasubramanian AS (1986) Purification and characterization of sheep platelet cyclo-oxygenase. Biochem J 239:371–377PubMedGoogle Scholar
  424. Boopathy R, Balasubramanian AS (1988) Purification and characterization of sheep platelet cyclooxygenase. Biochem J 239:371–377Google Scholar
  425. Borgeat P, Samuelsson B (1979), Arachidonic acid metabolism in polymorphonuclear leukocytes: Effect of ionophore A 23187. Proc Natl Acad Sci USA 76:2148–2152PubMedGoogle Scholar
  426. Boyum A (1976) Isolation of lymphocytes, granulocytes and macrophages. Scand J Immunol 5 (Suppl 5) 9–15PubMedGoogle Scholar
  427. Bruns RF, Thomsen WJ, Pugsley TA (1983) Binding of leukotrienes C4 and D4 to membranes from guinea pig lung: regulation by ions and guanine nucleotides. Life Sci 33: 645–653PubMedGoogle Scholar
  428. Cheng JB, Cheng EIP, Kohi F, Townley RG (1986) [3H]Leukotriene B4 binding to the guinea-pig spleen membrane preparation: a rich tissue source for a high-affinity leukotriene B4 receptor site. J Pharmacol Exp Ther 236: 126–132Google Scholar
  429. Coleman RA, Smith WL, Narumiya S (1994) VIII. International union of pharmacology classification of prostanoid receptors: Properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 46:205–229PubMedGoogle Scholar
  430. Evans AT, Formukong EA, Evans FJ (1987) Actions of cannabis constituents on enzymes of arachidonate metabolism: anti-inflammatory potential. Biochem Pharmacol 36:2035–2037PubMedGoogle Scholar
  431. Funk CD, Funk LB, Kennedy ME, Pong AS, Fitzgerald GA (1991) Human platelet/erythroleukemia cell prostaglandin G/H synthase: eDNA cloning, expression, and gene chromosomal assignment, FASEB J 5:2304–2312Google Scholar
  432. Harvey J, Osborne DJ (1983) A rapid method for detecting inhibitors of both cyclo-oxygenase and lipoxygenase metabolites of arachidonic acid. J Pharmacol Meth 9:147–155Google Scholar
  433. Hedberg A, Hall SE, Ogletree ML, Harris DN, Liu ECK (1988) Characterization of [5,6–3H]SQ 29,548 as a high affinity radioligand, binding to thromboxane A2/prostaglandin H2-receptors in human platelets. J Pharmacol Exp Ther 245:786–792PubMedGoogle Scholar
  434. Herrmann F, Lindemann A, Gauss J, Mertelsmann R (1990) Cytokine-stimulation of prostaglandin synthesis from endogenous and exogenous arachidonic acids in polymorphonuclear leukocytes involving activation and new synthesis of cyclooxygenase. Eur J Immunol 20: 2513–2516PubMedGoogle Scholar
  435. Hock Fi, Wirth K, Albus U, Linz W, Gerhards Hi, Wiemer G, Henke S, Breipohl G, König W, Knolle J, Schölkens BA (1991) Hoe 140 a new potent and long acting bradykinin antagonist: in vitro studies. Br J Pharmacol 102:769–773Google Scholar
  436. Hock FJ, Wirth K, Albus U, Linz W, Gerhards HI, Wiemer G, Henke S, Breipohl G, König W, Knolle J, Schölkens BA (1991) Hoe 140 a new potent and long acting bradykinin antagonist: in vitro studies. Br J Pharmacol 102:769–773PubMedGoogle Scholar
  437. Irvine RF (1982) Review article: How is the level of free arachidonic acid controlled in mammalian cells? Biochem J 204:3–16PubMedGoogle Scholar
  438. Izumi T, Shimizu T, Seyama Y, Ohishi N, Takaku F (1986) Tissue distribution of leukotriene A4hydrolase activity in guinea pig. Biochem Biophys Res Commun 135:139–145PubMedGoogle Scholar
  439. Katsumata M, Gupta C, Goldman AS (1986) A rapid assay for activity of phospholipase A2 using radioactive substrate. Anal Biochem 154:676–681PubMedGoogle Scholar
  440. Kemal C, Louis-Flamberg P. Krupinski-Olsen R, Shorter AL (1987) Reductive inactivation of soybean lipoxygenase I by catechols: a possible mechanism for regulation of lipoxygenase activity. Biochemistry 26:7064–7072PubMedGoogle Scholar
  441. Klein T, Nüsing RM, Pfeilschifter J, Ullrich V (1994) Selective inhibition of cyclooxygenase 2. Biochem Pharmacol 48:1605–1610PubMedGoogle Scholar
  442. Kuhl P, Borbe HO, Fischer H, Römer A, Safayhi H (1986) Ebselen reduces the formation of LTB,in human and porcine leukocytes by isomerisation to its 5S,12R-6-trans-isomer. Prostaglandins 31:1029–1048PubMedGoogle Scholar
  443. Lee SH, Soyoola E, Chanmugam P, Hart S, Sun W, Zhong H, Liou S, Simmons D, Hwang D, (1992) Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. J Biol Chem 267: 25934–25938PubMedGoogle Scholar
  444. Mitchell JA, Akarasereenont P, Thiemermann C, Flower RI, Vane JR (1994) Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc Natl Acad Sci 90:11693–11697Google Scholar
  445. Mong S, Wu HL, Hogaboom GK, Clark MA, Crooke ST (1984) Characterization of the leukotriene D4 receptor in guinea-pig lung. Eur J Pharmacol 102:1–1 lGoogle Scholar
  446. Noushargh S, Hoult JRS (1986) Inhibition of human neutrophil degranulation by forskolin in the presence of phosphodiesterase inhibitors. Eur J Pharmacol 122:205–212Google Scholar
  447. O’Sullivan MG, Huggins EM Jr, Meade EA, DeWitt DL, McCall CE (1992) Lipopolysaccharide induces prostaglandin H synthase-2 in alveolar macrophages. Biochem Biophys Res Commun 187:1123–1127PubMedGoogle Scholar
  448. Powell WS (1985) Reversed-phase high-pressure liquid chromatography of arachidonic acid metabolites formed by cyclooxygenase and lipoxygenases. Analyt Bioch 148:59–69Google Scholar
  449. Pugsley TA, Spencer C, Boctor AM, Gluckman MI (1985) Selective inhibition of the cyclooxygenase pathway of the arachidonic acid cascade by the nonsteroidal antiinflammatory drug isoxicam. Drug Dev Res 5:171–178Google Scholar
  450. RAdmark O. Shimizu T, Jörnvall H, Samuelsson B (1984) Leukotriene A4 hydrolase in human leukocytes. J Biol Chem 259:12339–12345Google Scholar
  451. Safayhi H, Mack T, Sabieraj J, Anazodo Ml, Subramanian LR, Ammon HPT (1992) Boswellic acids: Novel, specific, nonredox inhibitors of 5-lipoxygenase. J Pharmacol Exp Ther 261:1143–1146PubMedGoogle Scholar
  452. Salari H, Braquet P, Borgeat P (1984) Comparative effects of indomethacin, acetylenic acids, 15-HETE, nordihydroguajaretic acid and BW 755c on the metabolism of arachidonic acid in human leukocytes and platelets. Prostagl Leukotr Med 13:53–60Google Scholar
  453. Samuelsson B (1986) Leukotrienes and other lipoxygenase products. Prog Lipid Res 25:13–18PubMedGoogle Scholar
  454. Saussy DL Jr, Mais DE, Burch RM, Halushka PV (1986) Identification of a putative thromboxane A2/prostaglandin H2 receptor in human platelet membranes. J Biol Chem 261:3025–3029PubMedGoogle Scholar
  455. Seibert K, Masferrer J, Zhang Y, Gregory S, Olson G, Hauser S, Leahy K, Perkins W, Isakson P (1995) Mediation of inflammation by cyclooxygenase-2. Agents Actions 46: 41–50Google Scholar
  456. Shimizu T, Râdmark O, Samuelsson B (1984) Enzyme with dual lipoxygenase activities catalyzes leukotriene A4 synthesis from arachidonic acid. Proc Natl Acad Sci USA 81:689–693PubMedGoogle Scholar
  457. Smith WL, Meade EA, DeWitt DL (1994) Pharmacology of prostaglandin endoperoxide synthase isoenzymes- I and-2. Ann New York Acad Sci 71:136–142Google Scholar
  458. Vane J (1987) The evolution of non-steroidal anti-inflammatory drugs and their mechanisms of action. Drugs 33 (Suppl 1) 18–27PubMedGoogle Scholar
  459. Vane J, Botting R (1987) Inflammation and the mechanism of action of anti-inflammatory drugs. FASEB J 1:89–96Google Scholar
  460. Veenstra J, van de Pol H, van der Tone H, Schaafsma G, Ockhuizen T (1988) Rapid and simple methods for the investigation of lipoxygenase pathways in human granulocytes. J Chromatogr 431:413–417Google Scholar
  461. Weithmann KU, Jeske S, Schlotte V (1994) Effect of leflunomide on constitutive and inducible pathways of cellular eicosanoid generation. Agents Actions 41:164–170PubMedGoogle Scholar
  462. Weithmann KU, Schlotte V, Seiffge D, Jeske S (1993) Concerted action of pentoxifylline in conjunction with acetylsalicylic acid on platelet cyclic AMP and aggregation. Thromb Haemorrh Dis 8:1–8Google Scholar
  463. Xie W, Robertson DL, Simmons DL (1992) Mitogen-inducible prostaglandin G/H synthase: A new target for nonsteroidal antiinflammatory drugs. Drug Dev Res 25:249–265Google Scholar
  464. Bird TA, Saklatvala J (1986) Identification of a common class of high-affinity receptors for both types of porcine interleukin-1 on connective tissue cells. Nature 324:263–266Google Scholar
  465. Boyum A (1976) Isolation of lymphocytes, granulocytes and macrophages. Scand J Immunol 5 (Suppl 5) 9–15PubMedGoogle Scholar
  466. Chin J, et al (1987) Identification of a high affinity receptor for native interleukin-la and interleukin-113 on normal human lung fibroblasts. J Exp Med 165:70–86PubMedGoogle Scholar
  467. Eugui EM, Delustro B, Rouhafza S, Wilhelm R, Allison AC (1993) Coordinate inhibition by some antioxidants of TNFa, IL-113 and IL-6 production by human peripheral blood mononuclear cells. Ann NY Acad Sci 696:171–184PubMedGoogle Scholar
  468. Grob PM, David E, Warren TC, DeLeon RP, Farina PR, Homon CA (1990) Characterization of a receptor for human monocyte-derived neutrophil chemotactic factor intereukin-8. J Biol Chem 265:8311–8316PubMedGoogle Scholar
  469. Ibelgaufts H (ed) (1992) Lexikon Zytokine, MünchenGoogle Scholar
  470. Killian PL (1986) Interleukin-la and interleukin-13 bind to the same receptor on T cells. J Immunol 136:4509–4514Google Scholar
  471. Lewis GP, Barrett ML (1986) Immunosuppressive actions of prostaglandins and the possible increase in chronic inflammation after cyclo-oxygenase inhibitors. Agents Actions 19:59–65PubMedGoogle Scholar
  472. Maloff BL, Shaw JE, Di Meo TM, Fox D, Bruin EM (1989) Development of a RIA-based primary screen for IL-1 antagonists. Clin Chim Acta 180:73–78PubMedGoogle Scholar
  473. Moser B, Schumacher C, von Tscharner V, Clark-Lewis I, Baggiolini M (1990) Neutrophil-activating peptide 2 and gro/melanoma growth-stimulatory activity interact with neutrophil-activating peptide- I /interleukin-8 receptors on human neutrophils. J Biol Chem 266:10666–10671Google Scholar
  474. Tiku K, Tiku ML, Skosey JL (1986) Interleukin-1 production by human polymorphonuclear neutrophils. J Immunol 136: 3677–3685PubMedGoogle Scholar
  475. Warren JS (1993) Inflammation. DNandP (Drugs, News and Perspectives) 6:450–459Google Scholar
  476. Whicher JT, Thompson D, Billingham MEJ, Kitchen EA (1989) Acute phase proteins. In: Pharmacological Methods in the Control of Inflammation. Alan R. Liss, Inc., pp 101–128Google Scholar
  477. Flick DA, Gifford GE (1984) Comparison of in vitro cell cytotoxic assays for tumor necrosis factor. J Immunol Meth 68:167–175Google Scholar
  478. Maloff BL, Delmendo RE (1991) Development of high throughput for interleukin-la (IL-1a) and tumor necrosis factor (TNF-a) in isolated membrane preparations. Agents Actions 34:32–34Google Scholar
  479. Gloxhuber Ch (1976) A new inflammation model. Arzneim Forsch/Drug Res 26:43–45Google Scholar
  480. Selve N (1991) EM 405: a new substance with an uncommon profile of anti-inflammatory activity. Agents Actions 32: 59–61PubMedGoogle Scholar
  481. Wilhelmi G (1949) Ueber die pharmakologischen Eigenschaften von Irgapyrin, einem neuen Präparat aus der Pyrazolreihe. Schweiz Med Wschr 79:577–582PubMedGoogle Scholar
  482. Wilhelmi G, Domenjoz H (1951) Vergleichende Untersuchungen über die Wirkung von Pyrazolen und Antihistaminen bei verschiedenen Arten der experimentellen Entzündung. Arch Int Pharmacodyn 85:129–143PubMedGoogle Scholar
  483. Winder CV, Wax J, Burr V, Been M. Rosiere CE (1958) A study of pharmacological influences on ultraviolet erythema in guinea pigs. Arch Int Pharmacodyn 116:261–292PubMedGoogle Scholar
  484. Woodward DF, Owen DAA (1979) Quantitative measurement of the vascular changes produced by UV radiation and carrageenin using the guinea-pig ear as the site of inflammation. J Pharmacol Meth 2:5–42Google Scholar
  485. Bennett AJ, West GB (1978) Measurement of the changes in vascular permeability in rat skin. J Pharmacol Meth 1: 105–108Google Scholar
  486. Blackham A, Woods FAM (1986) Immune complex mediated inflammation in the mouse peritoneal cavity. J Pharmacol Meth 15:77–85Google Scholar
  487. Collins PD, Connolly DT, Williams TJ (1993) Characterization of the increase in vascular permeability induced by vascular permeability factor in vivo. Br J Pharmacol 109: 195–199PubMedGoogle Scholar
  488. Feldberg W, Miles A (1953) Regional variations of increased permeability of skin capillaries induced by a histamine liberator and their relation to the histamine content in skin. J Physiol 120:205–213PubMedGoogle Scholar
  489. Lembeck F, Holzer P (1979) Substance P as neurogenic mediator of antidromic vasodilation and neurogenic plasma extravasation. Naunyn Schmiedeberg’s Arch Pharmacol 310: 175–183Google Scholar
  490. Nagahisa A, Kanai Y, Suga O, Taniguchi K, Tsuchiya M, Lowe III JA, Hess HJ (1992) Antiinflammatory and analgesic activity of a non-peptide substance P receptor antagonist. Eur J Pharmacol 217:191–195PubMedGoogle Scholar
  491. Saria A, Lundberg JM, Skofitsch G, Lembeck F (1983) Vascular protein leakage in various tissues induced by substance P, capsaicin, bradykinin, serotonin, histamine and by antigen challenge. Naunyn-Schmiedeberg’s Arch Pharmacol 324:212–218Google Scholar
  492. Sensch KH, Zeiller P, Raake W (1979) Zur antiexsudativen und antioedematoesen Wirkung von Sympathikomimetika. Arzneim Forsch/Drug Res 29:116–121Google Scholar
  493. Shionoya H, Ohtake S (1975) A new simple method for extraction of extravasated dye in the skin. Japan J Pharmacol 103, Suppl 25:103Google Scholar
  494. Watanabe K, Nakagawa H, Tsurufuji S (1984) A new sensitive fluorometric method for measurement of vascular permeability. J Pharmacol Meth 11:167–176Google Scholar
  495. Whittle BA (1964) The use of changes in capillary permeability in mice to distinguish between narcotic and non narcotic analgesics. Br J Pharmacol 22:246–253Google Scholar
  496. Burch RM, Connor JR, Bator JM, Weitzberg M, Laemont K, Noronha-Blob L, Sullivan JP, Steranka LR (1992) NPC 15669 inhibits the reverse passive Arthus reaction in rats by blocking neutrophil recruitment. J Pharm Exp Ther 263:933–937Google Scholar
  497. Lawrence MB, Springer TA (1991) Leukocytes roll on a selectin at physiologic flow rates: Distinction from and prerequisite for adhesion through integrins. Cell 65:859–873PubMedGoogle Scholar
  498. MacGregor RR, Spagnuolo PJ, Lentnek AL (1974) Inhibition of granulocyte adherence by ethanol, prednisone, and aspirin, measured with an assay system. New Engl J Med 291: 642–646PubMedGoogle Scholar
  499. Stecher VJ, Chinea GL (1978) The neutrophil adherence assay as a method for detecting unique anti-inflammatory agents. Agents Actions 8:258–262PubMedGoogle Scholar
  500. Zielinski T, Müller HJ, Schleyerbach R, Bartlett RR (1994) Differential effects of leflunomide on leukocytes: Inhibition of rat in vivo adhesion and human in vitro oxidative burst without affecting surface marker modulation. Agents Actions 41 Spec Conf Issue: C276–278Google Scholar
  501. Evans PD, Hossack M, Thomson DS (1971) Inhibition of contact sensitivity in the mouse by topical application of corticosteroids. Br J Pharmacol 43:403PubMedGoogle Scholar
  502. Griswold DE, DiLorenzo JA, Calabresi P (1974) Quantification and pharmacological dissection of oxazolone-induced contact sensitivity in the mouse. Cell Immunol 11:198–204PubMedGoogle Scholar
  503. Alpermann HG, Sandow J, Vogel HG (1982) Tierexperimentelle Untersuchungen zur topischen und systemischen Wirksamkeit von Prednisolon-17-ethylcarbonat-21-propionat. Arzneim Forsch/Drug Res 32:633–638Google Scholar
  504. Young JM, Young LM (1989) Cutaneous models of inflammation for the evaluation of topical and systemic pharmacological agents. In: Pharmacological Models in the Control of Inflammation. Alan R. Liss, Inc., pp 215–231Google Scholar
  505. Alpermann HG, Sandow J, Vogel HG (1982) Tierexperimentelle Untersuchungen zur topischen and systemischen Wirksamkeit von Prednisolon-17-ethylcarbonat-21-propionat. Arzneim Forsch/Drug Res 32:633–638Google Scholar
  506. Chang J, Blazek E, Skowronek M, Marinari L, Carlson RP (1987) The antiinflammatory action of guanabenz is mediated through 5-lipoxygenase and cyclooxygenase inhibition. Eur J Pharm 142:197–205Google Scholar
  507. Colorado A, Slama JT, Stavinoha WB (1991) A new method for measuring auricular inflammation in the mouse. J Pharmacol Meth 26:73–77Google Scholar
  508. Crummey A, Harper GP, Boyle EA, Mangan FR (1987) Inhibition of arachidonic acid-induced ear oedema as a model for assessing topical anti-inflammatory compounds. Agents Actions 20:69–72PubMedGoogle Scholar
  509. Griswold DE, Chabot-Fletcher M, Webb EF, Martin L, Hillegass L (1995) Antiinflammatory activity of topical auranofin in arachidonic acid-and phorbol ester-induced inflammation in mice. Drug Dev Res 34:369–375Google Scholar
  510. Maloff BL, Shaw JE, DiMeo TM (1989) IL-1 dependent model of inflammation mediated by neutrophils. J Pharmacol Meth 22:133–140Google Scholar
  511. Opas EE, Bonney RJ, Humes JL (1985) Prostaglandin and leukotriene synthesis in mouse ears inflammed by arachidonic acid. J Invest Dermatol 84:253–256PubMedGoogle Scholar
  512. Tarayre JP, Aliaga M, Barbara M, Villanova G, Caillol V, Lauressergues H (1984) Pharmacological study of cantharidin-induced ear inflammation in mice. J Pharmacol Meth 11:271–277Google Scholar
  513. Tomchek LA, Hartman DA, Lewin AC, Calhoun W, Chau TT, Carlson RP (1991) Role of corticosterone in modulation of eicosanoid biosynthesis and antiinflammatory activity by 5lipoxygenase (5-LO) and cyclooxygenase (CO) inhibitors. Agents Actions 34:20–24PubMedGoogle Scholar
  514. Tonelli G, Thibault L, Ringler I (1965) A bio-assay for the concomitant assessment of the antiphlogistic and thymolytic activities of topically applied steroids. Endocrinology 77:625–630PubMedGoogle Scholar
  515. Ueno H, Maruyama A, Miyake M, Nakao E, Nakao K, Umezu K, Nitta I (1991) Synthesis and evaluation of antiinflammatory activities of a series of corticosteroid 17a-esters containing a functional group. J Med Chem 34:2468–2473PubMedGoogle Scholar
  516. Weirich EG, Longauer JK, Kirkwood AH (1977) New experimental model for the primary evaluation of topical contra-inflammatory agents. Arch Derm Res 259:141–149Google Scholar
  517. Wilhelmi G, Domenjoz H (1951) Vergleichende Untersuchungen über die Wirkung von Pyrazolen and Antihistaminen bei verschiedenen Arten der experimentellen Entzündung. Arch Int Pharmacodyn 85:129–143Google Scholar
  518. Young JJ, Spires DA, Bedord CJ, Wagner B, Ballaron SJ, DeYoung LM (1984) The mouse ear inflammatory response to topical arachidonic acid. J Invest Dermatol 82:367–371PubMedGoogle Scholar
  519. Young JM, Wagner M, Spires DA (1983) Tachyphylaxis in 12-O-tetradecanoylphorbol acetate-and arachidonic acid-induced ear edema. J Invest Dermatol 80:48–52PubMedGoogle Scholar
  520. Alpermann HG. Magerkurth KO (1972) Messanordnung zur Bestimmung der Wirkung von Antiphlogistika. Arzneim Forsch/Drug Res 22:1078–1088Google Scholar
  521. Alpermann HG, Sandow J, Vogel HG (1982) Tierexperimentelle Untersuchungen zur topischen und systemischen Wirksamkeit von Prednisolon-17-ethylcarbonat-21-propionat. Arzneim Forsch/Drug Res 32:633–638Google Scholar
  522. Arrigoni-Martelli E, Schatti P, Selva D (1971) The influence of anti-inflammatory and immunosuppressant drugs on nystatin induced oedema. Pharmacology 5:215–224PubMedGoogle Scholar
  523. Braga da Motta JI, Cinha FQ, Vargaftig BB, Ferreira SH (1994) Drug modulation of antigen-induced paw oedema in guinea-pigs: effects of lipopolysaccharide, tumor necrosis factor and leucocyte depletion. Br J Pharmacol 112: 111–116Google Scholar
  524. Branceni D, Azadian-Boulanger A, Jequier R (1964) L’inflammation expérimentale par un analogue de l’héparine. Un test d’activité antiinflammatoire. Arch Int Pharmacodyn 152:15–24PubMedGoogle Scholar
  525. Brooks RR, Carpenter JF, Jones SM, Ziegler TC, Pong SF (1991) Canine carrageenin-induced acute paw inflammation model and its response to nonsteroidal antiinflammatory drugs. J Pharmacol Meth 25:275–283Google Scholar
  526. Burch RM, DeHaas Ch (1990) A bradykinin antagonist inhibits carrageenan edema in rats. Naunyn-Schmiedeberg’s Arch Pharmacol 342:189–193Google Scholar
  527. Chino G, Peers SH, Wallace JL, Flower RJ (1989) A study of phospholipase A2-induced oedema in rat paw. Eur J Pharmacol 166:505–510Google Scholar
  528. Damas J, Remacle-Volon G (1992) Influence of a long-acting bradykinin antagonist, Hoe 140, on some acute inflammatory reactions in the rat. Eur J Pharmacol 211:81–86PubMedGoogle Scholar
  529. Dewes R (1955) Auswerung antiphlogistischer Substanzen mit Hilfe des Hyaluronidase-Odems. Arch Int Pharmacodyn 104:19–28PubMedGoogle Scholar
  530. Gemmel DK, Cottney J, Lewis AJ (1979) Comparative effects of drugs on four paw oedeme models. Agents and Actions 9:107–116Google Scholar
  531. Griesbacher T, Sutliff RL, Lembeck F (1994) Anti-inflammatory and analgesic activity of the bradykinin antagonist, icatibant (Hoe 140), against an extract from Porphyromonas gingivalis. Br J Pharmacol 12:1004–1006Google Scholar
  532. Hofrichter G, Liehn HD, Hampel H (1969) Eine plethysmometrische Messanordnung zur Bestimmung des Rattenpfotenvolumens. Arzneim Forsch/Drug Res 19:2016–2017Google Scholar
  533. Kalbhen DA, Smalla HD (1977) Pharmakologische Studien zur antiphlogistischen Wirkung von Pentosanpolysulfat in Kombination mit Metamizol. Arzneim Forsch/Drug Res 27: 1050–1057Google Scholar
  534. Legat FJ, Griesbacher T, Lembeck F (1994) Mediation by bradykinin of rat paw oedema induced by collagenase from Clostridium histolyticum. Br J Pharmacol 112:433–460Google Scholar
  535. Lewis AJ, Cottney J, Nelson DJ (1976) Mechanisms of phytohaemagglutinin-P, concanavalin-A and kaolin-induced oedemas in the rat. Eur J Pharmacol 40:1–8PubMedGoogle Scholar
  536. Leyck S, Parnham MJ (1990) Acute antiinflammatory and gastric effects of the seleno-organic compound ebselen. Agents Actions 30:426–431PubMedGoogle Scholar
  537. Lorenz D (1961) Die Wirkung von Phenylbutazon auf das Pfotenoedem der Ratte nach oraler Applikation. NaunynSchmiedeberg’ s Arch exp Path Pharm 241:516–517Google Scholar
  538. Marek J (1980) Bentonite-induced paw edema as a tool for simultaneous testing of prophylactic and therapeutic effects of anti-inflammatory and other drugs. Pharmazie 36:46–49Google Scholar
  539. Moore E, Trottier RW (1974) Comparison of various types of carrageenin in promoting pedal edema in the rat. Res Commun Chem Pathol Pharmacol 7:625–628PubMedGoogle Scholar
  540. Nikolov R, Nikolova M, Peneva M (1978) Study of dipyrone (Analgin) antagonism toward certain pharmacological effects of prostaglandins E2 and F2a. In: Ovtcharov R, Pola W (eds) Proceedings Dipyrone. Moscow Symposium, Schattauer-Verlag, Stuttgart New York, pp 81–89Google Scholar
  541. Oyanagui Y, Sato S (1991) Inhibition by nilvadipine of ischemic and carrageenan paw edema as well as of superoxide radical production from neutrophils and xanthine oxidase. Arzneim Forsch/Drug Res 41:469–474Google Scholar
  542. Peterfalvi M, Branceni D, Azadian-Boulanger G, Chiflot L, Jequier R (1966) Etude pharmacologique d’un nouveau composé analgésique antiiflammatoire, la Glaphénine. Med Pharmacol Exp 15:254–266Google Scholar
  543. Randall LO, Baruth H (1976) Analgesic and anti-inflammatory activity of 6-chloro-alpha-methyl-carbazole-2-acetic acid (C-5720. Arch Int Pharmacodyn 220:94–114PubMedGoogle Scholar
  544. Schiatti P, Selva D, Arrigoni-Martelli E (1970) L’edema localizzato da nystatin come modello di inflammazione sperimetale. Boll Chim Farm 109:33–38PubMedGoogle Scholar
  545. Schönhöfer P (1967) Eine kritische Bemerkung zur Vergleichbarkeit der Wirkung entzündungshemmender Pharmaka auf die Glucosamin-6-phosphat-Synthese in vitro und am Rattenpfotenödem in vivo. Med Pharmacol Exp 16:66–74Google Scholar
  546. Shirota H, Kobayashi S, Shiojiri H, Igarashi T (1984) Determination of inflamed paw surface temperature in rats. J Pharmacol Meth 12:35–43Google Scholar
  547. Siegel DM, Giri SN, Scheinholtz RM, Schwartz LW (1980) Characteristics and effect of antiinflammatory drugs on adriamycin-induced inflammation in the mouse paw. Inflammation 4:233–248PubMedGoogle Scholar
  548. Souza Pinto JC, Remacle-Volon G, Sampaio CAM, Damas J (1995) Collagenase-induced oedeme in the rat paw and the kinin system. Eur J Pharmacol 274:101–107Google Scholar
  549. Tsumuri K, Kyuki K, Niwa M, Kokuba S, Fujimura H (1986) Pharmacological investigations of the new antiinflammatory agent 2-(10,11-dihydro-l0-oxodibenzo(b,f)thiepin-2yl)propionic acid. Arzneim Forsch/Drug Res 36:1796–1800Google Scholar
  550. Wagner-Jauregg Th, Jahn U, Buech 0 (1962) Die antiphlogistische Prüfung bekannter Antirheumatika am RattenpfotenKaolinödem. Arzneim Forsch/Drug Res 12:1160–1162Google Scholar
  551. Webb EF, Griswold DE (1984) Microprocessor-assisted plethysmograph for the measurement of mouse paw volume. J Pharmacol Meth 12:149–153Google Scholar
  552. Willis AL, Cornelsen M (1973) Repeated injection of prostaglandin E2 in rat paws induces chronic swelling and a marked decrease in pain threshold. Prostaglandins 3: 353–357PubMedGoogle Scholar
  553. Winter CA, Risley EA, Nuss GW (1962) Carrageenin-induced oedema in hind paw of the rat as an assay for antiinflammatory drugs. Proc Soc Exp Biol Med 111:544–547PubMedGoogle Scholar
  554. Winter CA, Risley EA, Nuss GW (1963) Antiinflammatory and antipyretic activities of indomethacin, (1-(p-chlorobenzoyl)-5-methoxy-2-methyl-indole-3-acetic acid. J Pharmacol Exp Ther 141:369–376PubMedGoogle Scholar
  555. Wirth KJ, Alpermann HG, Satoh R, Inazu M (1992) The bradykinin antagonist HOE 140 inhibits carrageenan-and thermically induced paw edema in rats. Recent Progress on Kinins, Birkhäuser, Basel, pp 428–431Google Scholar
  556. Ackerman N, Tomolonis A, Miram L, Kheifets J, Martinez S, Carter A (1980) Three day pleural inflammation: A new model to detect drug effects on macrophage accumulation. J Pharmacol Exp Ther 215:588–595PubMedGoogle Scholar
  557. De Brito FB (1989) Pleurisy and pouch models of acute inflammation. In: Pharmacological Methods in the Control of Inflammation. Alan R. Liss, Inc. pp 173–194Google Scholar
  558. Dunn CJ, Doyle DV, Willoughby DA (1993) Investigation of the acute and chronic anti-inflammatory properties of diphosphonates using a broad spectrum of immune and non-immune inflammatory reactions. Drug Dev Res 28:47–55Google Scholar
  559. Mielens ZE, Connolly K, Stecher VJ (1985) Effects of disease modifying antirheumatic drugs and nonsteroidal antiinflammatory drugs upon cellular and fibronectin responses in a pleurisy model. J Rheumatol 12:1083–1087PubMedGoogle Scholar
  560. Mikami T, Miyasaka K (1983) Effects of several anti-inflammatory drugs on the various parameters involved in the inflammation response in rat carrageenin-induced pleurisy. Eur J Pharmacol 95:1–12PubMedGoogle Scholar
  561. Sancilio L (1969) Evans blue-carrageenan pleural effusion as a model for the assay of nonsteroidal antirheumatic drugs. J Pharmacol Exp Ther 168:199–204PubMedGoogle Scholar
  562. Sancilio LF, Fishman A (1973) Application of sequential analysis to Evans blue-carrageenan-induced pleural effusion for screening of compounds for anti-inflammatory activity. Toxicol Appl Pharmacol 26:575–584PubMedGoogle Scholar
  563. Tsurumi K, Mibu H, Okada K, Hasegawa J, Fujimura H (1986) Pharmacological investigations of the new antiinflammatory agent 2-(10,11-dihydro-l0-oxodibenzo[b,f1thiepin-2yl)propionic acid. Arzneim Forsch/Drug Res 36:1806–1809Google Scholar
  564. Ushida Y, Oh-Ishi S, Tanaka K, Harada Y, Ueno A, Katori M (1982) Activation of plasma kallikrein-kinin system and its significant role in the pleural fluid accumulation of rat carrageenin-induced pleurisy. In: Fritz H (ed.) Recent Progress on Kinins. Agents and Actions Suppl Vol 9:379–383Google Scholar
  565. Boris A, Stevenson RH (1965) The effects of some non-steroidal anti-inflammatory agents on carrageenin-induced exsudate formation. Arch Int Pharmacodyn 153:205–210Google Scholar
  566. De Brito FB (1989) Pleurisy and pouch models of acute inflammation. In: Pharmacological Methods in the Control of Inflammation. Alan R. Liss, Inc. pp 173–194Google Scholar
  567. Moreno JJ (1993) Time course of phopsholipase A2, eikosanoid release and cellular accumulation in rat immunological air pouch inflammation. Int J Immunpharmacol 15: 597–603Google Scholar
  568. Robert A, Nezamis JE (1957) The granuloma pouch as a routine assay for antiphlogistic compounds. Acta Endocr (Kbh) 25:105–112Google Scholar
  569. Selye H (1953) On the mechanism through which hydrocortisone affects the resistance of tissues to injury. An experimental study with the granuloma pouch technique. J Am Med Ass 152:1207–1213Google Scholar
  570. Ueno H, Maruyama A, Miyake M, Nakao E, Nakao K, Umezu K, Nitta I (1991) Synthesis and evaluation of antiinflammatory activities of a series of corticosteroid 17a-esters containing a functional group. J Med Chem 34:2468–2473PubMedGoogle Scholar
  571. Vogel HG (1963) Intensität und Dauer der antiinflammatorischen und glykoneogenetischen Wirkung von Prednisolon und Prednisolonazetat nach oraler und subcutaner Applikation an der Ratte. Acta Endocr (Kbh) 42:85–96.Google Scholar
  572. Vogel HG. (1965) Intensität und Dauer der Wirkung von 6Methylprednisolon und seinen Estern an der Ratte. Acta Endocr. (Kbh.) 50:621–642Google Scholar
  573. Carlson RP, Datko LJ, Welch TM, Purvis WF, Shaw GW, Thompson JL, Brunner TR (1986) An automated microcomputer-based system for determining canine paw pressure quantitatively in the dog synovitis model. J Pharmacol Meth 15:95–104Google Scholar
  574. Chau TT (1989) Analgesic testing in animal models. In: Pharmacological models in the control of inflammation. Alan R. Liss, Inc., pp 195–212Google Scholar
  575. Daniel A Jouvin JL (1984) Experimentally induced inflammation of the guinea pig palatal mucosa by injection of a microcrystalline suspension of monosodium urate. J Pharmacol Meth 12:155–166Google Scholar
  576. Dubinsky B, Gebre-Mariam S, Capetola RJ, Rosenthale ME (1987) The antialgesic drugs: Human therapeutic correlates of their potency in laboratory animal models of hyperalgesia. Agents and Actions 20:50–60PubMedGoogle Scholar
  577. Faires JS, McCarty DJ (1962) Acute arthritis in man and dog after intrasynovial injection of sodium urate crystals. Lancet 2:682–685Google Scholar
  578. Fujihira E, Mori T, Nakazawa M, Ozawa H (1971) A simple method for evaluating analgesic efficacy of non-steroidal anti-inflammatory drugs. Chem Pharm Bull 19:1506–1508Google Scholar
  579. McCarty DJ, Faires JS (1963) A comparison of the duration of local anti-inflammatory effects of several adrenocorticosteroid esters — a bioassay technique. Curr Ther Res 5: 284–290PubMedGoogle Scholar
  580. McCarty DJ, Phelps P, Pyenson J (1966) Crystal-induced inflammation in canine joints. 1. An experimental model with quantification of the host response. J Exp Med 124:99–114PubMedGoogle Scholar
  581. Perkins MN, Campell EA (1992) Capsazepine reversal of the antinociceptive action of capsaicin in vivo. Br J Pharmacol 107:329–333PubMedGoogle Scholar
  582. Phelps P, McCarty DJ (1967) Animal techniques for evaluating anti-inflammatory drugs. In: Siegler PE. Moyer JH (eds) Animal and pharmacological techniques in drug evaluation. Vol 2. Year Book Medical Publishers, Inc., Chicago, pp 742–747Google Scholar
  583. Rosenthale ME, Dervinis A, Kassarich J, Singer S (1972) Prostaglandins and anti-inflammatory drugs in the dog knee joint. J Pharm Pharmacol 24:149–150PubMedGoogle Scholar
  584. Rosenthale ME, Kassarich J, Schneider F (1966) Effect of anti-inflammatory agents on acute experimental synovitis in dogs. Proc Soc Exp Biol Med 122:693–696PubMedGoogle Scholar
  585. Schaible HG, Schmidt RF (1985) Effects of an experimental arthritis on the sensory properties of fine articular afferent units. J Neurophysiol 54:1109–1122PubMedGoogle Scholar
  586. Tanaka K, Shinvotori T, Makino S, Aikawa Y, Inaba T, Yoshida C, Takano S (1992) Pharmacological studies of the new antiinflammatory agent 3-formylamino-7-methylsulfonylamino-6-phenoxy-4H-1-benzopyran-4-one. 1st Communication: antiinflammatory, analgesic and other related properties. Arzneiur Forsch/Drug Res 42:935–944Google Scholar
  587. Alpermann HG, Sandow J, Vogel HG (1982) Tierexperimentelle Untersuchungen zur topischen und systemischen Wirksamkeit von Prednisolon-17-ethylcarbonat-21-propionat. Arzneim Forsch/Drug Res 32:633–638Google Scholar
  588. Bush IE, Alexander RW (1960) An improved method for the assay of antiinflammatory substances in rats. Acta Endocr (Kbh) 35:268–276Google Scholar
  589. Hicks R (1969) The evaluation of inflammation induced by material implanted subcutaneously in the rat. J Pharm Pharmacol 21:581–588PubMedGoogle Scholar
  590. Meier R, Schuler W, Desaulles P (1950) Zur Frage des Mechanismus der Hemmung des Bindegewebswachstums durch Cortisone. Experientia 6:469–471PubMedGoogle Scholar
  591. Penn GB, Ashford A (1963) The inflammatory response to implantation of cotton pellets in the rat. J Pharm Pharmacol 15:798–803PubMedGoogle Scholar
  592. Roszkowski AP, Rooks WH, Tomolonis AJ, Miller LM (1971) Anti-inflammatory and analgesic properties of d-2-(6’methoxy-2’-naphthyl)-propionic acid (NAPROXEN). J Pharmacol Exper Ther 179:114–123Google Scholar
  593. Rudas B (1960) Zur quantitativen Bestimmung von Granulationsgewebe in experimentell erzeugten Wunden. Arzneim Forsch 10:226–229Google Scholar
  594. Tanaka A, Kobayashi F, Miyake T (1960) A new anti-inflammatory activity test for corticosteroids. The formalin-filterpaper pellet method. Endocrinol Japon 7:357–364Google Scholar
  595. Tsurumi K, Mibu H, Okada K, Hasegawa J, Fujimura H (1986) Pharmacological investigations of the new antiinflammatory agent 2-(10,11-dihydro-10-oxodibenzo[b,flthiepin-2yl)propionic acid. Arzneim Forsch/Drug Res 36:1806–1809Google Scholar
  596. Bonta IL, Adolfs MJP, Parnham MJ (1979) Cannulated sponge implants in rats for the study of time-dependent pharmacological influences on inflammatory granulomata. J Pharmacol Meth 2:1–11Google Scholar
  597. Boucek RJ, Noble NL (1955) Connective tissue. A technique for its isolation and study. AMA Arch Pathol 59:553–558PubMedGoogle Scholar
  598. Bragt PC, Bonta IL, Adolfs MJP (1980) Cannulated Teflon chamber implant in the rat: A new model for continuous studies on granulomatous inflammation. J Pharmacol Meth. 3:51–61Google Scholar
  599. Damas J, Remacle-Volon G (1992) Influence of a long-acting bradykinin antagonist, Hoe 140, on some acute inflammatory reactions in the rat. Eur J Pharmacol 211:81–86PubMedGoogle Scholar
  600. Ford-Hutchinson AW, Walker JR, Smith MJH (1978) Assessment of anti-inflammatory activity by sponge implantation techniques. J Pharmacol Meth 1:3–7Google Scholar
  601. Higgs GA (1989) Use of implanted sponges to study the acute inflammatory response. In: Pharmacological Methods in the Control of Inflammation. Alan R. Liss, Inc., pp 151–171Google Scholar
  602. Holm-Pedersen P, Zederfeldt B (1971) Granulation tissue formation in subcutaneously implanted cellulose sponges in young and adult rats. Scand J Plast Reconstr Surg 5:13–16PubMedGoogle Scholar
  603. Paulini K, Körner B, Beneke G, Endres R (1974) A quantitative study of the growth of connective tissue: Investigation on implanted polyester-polyurethane sponges. Conn Tiss Res 2:257–264Google Scholar
  604. Paulini K, Körner B, Mohr W, Sonntag W (1976) The effect of complete Freund — adjuvant on chronic proliferating inflammation in an experimental granuloma model. Z Rheumatol 35:123–131PubMedGoogle Scholar
  605. Saxena PN (1960) Effects of drugs on early inflammation reaction. Arch Int Pharmacodyn Ther 126:228–237PubMedGoogle Scholar
  606. Vogel HG (1970) Das Glasstabgranulom, eine Methode zur Untersuchung der Wirkung von Corticosteroiden auf Gewicht, Festigkeit und chemische Zusammensetzung des Granulationsgewebes an Ratten. Arzneim Forsch/Drug Res. 20:1911–1918Google Scholar
  607. Vogel HG (1975) Collagen and mechanical strength in various organs of rats treated with d-penicillamine or aminoacetonitrile. Conn Tiss Res 3:237–244Google Scholar
  608. Vogel HG (1977) Mechanical and chemical properties of connective tissue organs in rats as influenced by non-steroidal antirheumatic drugs. Conn Tiss Res 5:91–95Google Scholar
  609. Vogel HG, De Souza NJ, D’s A (1990) Effect of terpenoids isolated from Centella asiatica on granuloma tissue. Acta therapeut 16:285–298Google Scholar
  610. Cashin CH, Dawson W, Kitchen EA (1977) The pharmacology of benoxaprofen (2-[4-chlorophenyl]-a-methyl-5-benzoxazole acetic acid), LRCL 3794, a new compound with anti-inflammatory activity apparently unrelated to prostaglandin synthesis. J Pharm Pharmacol 29:330–336PubMedGoogle Scholar
  611. Goburdhun R, Gurlez K, Haruna H, West GB (1978) Testing for the gastro-intestinal irritancy of aspirin and indomethacin. J Pharmacol Meth 1:109–114Google Scholar
  612. Rainsford KD (1987) Gastric ulcerogenicity of non-steroidal anti-inflammatory drugs in mice sensitized by cholinomimetic treatment. J Pharm Pharmacol 39:669–672Google Scholar
  613. Rainsford KD (1989) Gastrointestinal side effects. In: Pharmacological Methods in the Control of Inflammation. Alan R. Liss, Inc., pp 343–362Google Scholar
  614. Szabo S, Trier JS, Brown A, Schnoor J, Howan HD, Bradford JC (1985) A quantitative method for assessing the extent of experimental gastric erosions and ulcers. J Pharmacol Methods 13:59–66PubMedGoogle Scholar
  615. Ghanayem BI, Ahmed AE (1982) Quantitative determination of gastrointestinal bleeding in rats. J Pharmacol Meth 8: 311–318Google Scholar
  616. Brune K, Alpermann H (1983) Non-acidic pyrazoles: inhibition of prostaglandin production, carrageenan oedema and yeast fever. Agents Actions 13:360–363PubMedGoogle Scholar
  617. Burn JH, Finney DJ, Goodwin LG (1950) Chapter XIV: Antipyretics and analgesics. In: Biological Standardisation, Oxford University Press, London, New York, pp 312–319.Google Scholar
  618. Clement JG, Mills P, Brockway B (1989) Use of telemetry to record body temperature and activity in mice. J Pharmacol Meth 21:129–140Google Scholar
  619. Gallaher EJ, Egner DA, Swen J (1985) Automated remote temperature measurement in small animals using a telemetry/microcomputer interface. Comput Biol Med 15:103–110Google Scholar
  620. Guillet MC, Molinié B, Laduron PM, Terlain B (1990) Effects of ketoprofen in adjuvant-induced arthritis measured in a new telemetric model test. Eur J Pharmacol 183:2266–2267Google Scholar
  621. Inoue K, Fujisawa H, Sasaki Y, Nishimura T, Nishimura I, Inoue Y, Yokota M, Masuda T, Ueda F, Shibata Y, Kimura K, Inoue K, Komiya Y, Nishioka J (1991) Pharmacological properties of the new non-steroidal anti-inflammatory agent Etodolac. Arzneinr Forsch/Drug Res 41:228–235Google Scholar
  622. Loux JJ, DePalma PD, Yankell SL (1972) Antipyretic testing of aspirin in rats. Toxicol Appl Pharmacol 22:672–675PubMedGoogle Scholar
  623. Riley JL, Thursten JR, Egemo CL, Elliot HL (1978) A radio-telemetry transmitter for transmitting temperatures from small animals. J Appl Physiol 45:1016–1018PubMedGoogle Scholar
  624. Roszkowski AP, Rooks WH, Tomolonis AJ, Miller LM (1971) Anti-inflammatory and analgesic properties of d-2-(6’methoxy-2’-naphthyl)-propionic acid (NAPROXEN). J Pharmacol Exper Ther 179:114–123Google Scholar
  625. Shimada SG, Ottemess IG, Stitt JT (1994) A study of the mechanism of action of the mild analgesic dipyrone. Agents Actions 41:188–192PubMedGoogle Scholar
  626. Smith PK, Hambourger WE (1935) The ratio of the toxicity of acetanilide to its antipyretic activity in rats. J Pharmacol Exp Ther 54:346–351Google Scholar
  627. Stitt JT, Shimada SG (1991) Calcium channel blockers inhibit endogenous pyrogen fever in rats and rabbits. J Appl Physiol 71:951–955PubMedGoogle Scholar
  628. Tanaka K, Shimotori T, Makino S, Aikawa Y, Inaba T, Yoshida C, Takano S (1992) Pharmacological studies of the new antiinflammatory agent 3-formylamino-7-methylsulfonylamino-6-phenoxy-4H-l-benzopyran-4-one. 1st Communication: antiinflammatory, analgesic and other related properties. Arzneim Forsch/Drug Res 42:935–944Google Scholar
  629. Cashin CH, Dawson W, Kitchen EA (1977) The pharmacology of benoxaprofen (2-[4-chlorophenyl]-a-methyl-5-benzoxazole acetic acid), LRCL 3794, a new compound with antiinflammatory activity apparently unrelated to prostaglandin synthesis. J Pharm Pharmacol 29:330–336PubMedGoogle Scholar
  630. Cashin CH, Heading CE (1968) The assay for anti-pyretic drugs in mice, using intracerebral injection of pyretogenins. Br J Pharmacol 34:148–158PubMedGoogle Scholar
  631. Davidson J, Flower RJ, Milton AS, Peers SH, Rotondo D (1991) Antipyretic actions of human recombinant lipocortin-1. Br J Pharmacol 102:7–9PubMedGoogle Scholar
  632. Deeter LB, Martin LW, Lipton JM (1989) Antipyretic effect of central a-MSH summates with that of acetaminophen or ibuprofen. Brain Res Bull 23:573–575PubMedGoogle Scholar
  633. Lee TF, Mora F, Myers RD (1985) Effect of intracerebroventricular vasopressin on body temperature and endotoxin fever of macaque monkey. Am J Physiol 248:R674–R678Google Scholar
  634. Matuszek M, Szreder Z, Korolkiewicz Z (1990) The antipyretic effect of some newer alpha-1 antagonists. Eur J Pharmacol 183:2279–2280Google Scholar
  635. Petrova L, Nikolova M, Nikolov R, Stefanova D (1978) Dipyrone and acetylsalicylic acid comparative pharmacological research. Antipyretic, anti-inflammatory and analgesic action. In: Ovtcharov R, Pola W (eds) Proceedings Dipyrone. Moscow Symposium, Schattauer-Verlag, Stuttgart New York, pp 99–107Google Scholar
  636. Shimada SG, Otterness IG, Stitt JT (1994) A study of the mechanism of action of the mild analgesic dipyrone. Agents Actions 41:188–192PubMedGoogle Scholar
  637. Szeder Z (1990) Comparison of the effect of prazosin with that of dihydrobenzperidol and nifedipine on thermoregulatory responses produced by pyrogen in rabbits. Gen Pharmacol 21:833–838Google Scholar
  638. Szreder Z, Korolkiewicz Z (1991) Inhibition of pyrogen Escherichia coli fever with intracerebral administration of prazosin, dihydrobenzperidol and nifedipin in the rabbits. Gen Pharmacol 22:381–388PubMedGoogle Scholar
  639. USP 23 (1995) Pyrogen test. The United States Pharmacopeia 23, p 1718Google Scholar
  640. van Miert AS, JPAM, van der Wal-Komproe, van Duin CTM (1977) Effects of antipyretic agents on fever and ruminai stasis induced by endotoxins in conscious goats. Arch Int Pharmacodyn 225:39–50PubMedGoogle Scholar
  641. Zimecki M, Schnaper HW, Wieczorek Z, Webb DR, Pierce CW (1990) Inhibition of interleukin 1 (IL-1)-elicited leukocytosis and LPS-induced fever by soluble immune response suppressor (SIRS). Immunophartnacol 19:39–46Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • H. Gerhard Vogel
    • 1
    • 2
  • Wolfgang H. Vogel
    • 3
  1. 1.Johann Wolfgang Goethe Universität FrankfurtFrankfurt am MainGermany
  2. 2.Philipps Universität MarburgMarburgGermany
  3. 3.Department of Pharmacology Jefferson Medical CollegeThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations