Skip to main content

Analgesic, anti-inflammatory, and antipyretic activity

  • Chapter
Drug Discovery and Evaluation

Abstract

Pain is a symptom of many diseases requiring treatment with analgesics. Severe pain due to cancer metastases needs the use of strong analgesics, that means opioid drugs. The addiction liability of opioids led to intensive research for compounds without this side effect. Many approaches have been used to differentiate the various actions of strong analgesics by developing animal models not only for analgesic activity but also for addiction liability. Several types of opioid receptors have been identified in the brain allowing in vitro binding tests. However, the in vitro tests can only partially substitute for animal experiments involving pain. Pain is a common phenomenon in all animals, at least in vertebral animals, similar to that felt by man. Analgesic effects in animals are comparable with the therapeutic effects in man. Needless to say, that in every instance painful stimuli to animals must be restricted as much as possible. Painful stimuli can consist of direct stimulation of the efferent sensory nerves or stimulation of pain receptors by various means such as heat or pressure. The role of endogenous peptides such as enkephalines and endorphins gives more insight into brain processes and the action of central analgesics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bannwarth B, Demotes-Mainard F, Schæverbeke T, Dahais J (1993) Where are peripheral analgesics acting? Ann Rheum Dis 52:1–4

    PubMed  CAS  Google Scholar 

  • Besson JM, Chaouch A (1987) Peripheral and spinal mechanisms of nociception. Physiol Rev 67:67–186.

    PubMed  CAS  Google Scholar 

  • Collier HOJ (1964) Analgesics. In: Laurence DR, Bacharach AL (eds) Evaluation of Drug Activities: Pharmacometrics. pp 183–203. Academic Press London and New York

    Google Scholar 

  • Lim RKS, Guzman F (1968) Manifestations of pain in analgesic evaluation in animals and man. In: Soulairac A, Cahn J, Charpentier J (eds) Pain. Academic Press, London, New York, pp 119–152

    Google Scholar 

  • Akiyama K, Gee KW, Mosberg HI. Hruby VJ, Yamamura HI (1985) Characterization of [3HJ[2-D-penicillamine.5-Dpenicillaminel-enkephalin binding to 6-opiate receptors in the rat brain and neuroblastoma-glioma hybrid cell line (NG 108–15). Proc Natl Acad Sci USA 82:2543–2547

    Google Scholar 

  • Berzetei-Gurske IP, Troll L (1992) The g-opioid activity of Kopioid receptor agonist compounds in the guinea pig ileum. Eur J Pharmacol 212:283–286

    PubMed  CAS  Google Scholar 

  • Boyle SJ, Meecham KG, Hunter JC, Hughes J (1990) [3H1–C1977: a highly selective ligand for the k-opioid receptor in both guinea-pig and rat forebrain. Mol Neuropharmacol 1:23–29

    Google Scholar 

  • Clark CR, Birchmore B, Sharif NA, Hunter JC, Hill RG, Hughes J (1988) PD117302: a selective agonist for the Kopioid receptor. Br J Pharmacol 93:618–626

    PubMed  CAS  Google Scholar 

  • Clark JA, Liu L, Price M, Hersh B, Edelson M, Pasternak GW (1989) Kappa opiate receptor multiplicity: Evidence for two U50,488 sensitive k1 subtypes and a novel K3 subtype. J Pharmacol Exp Ther 251:461–468

    PubMed  CAS  Google Scholar 

  • Corbett AD, Paterson SJ, Kosterlitz HW (1992) Selectivity of ligands for opioid receptors. In: Herz A, Akil H, Simon EJ (eds) Opioids I, Handbook of Experimental Pharmacology Vol 104/I, Chapter 26, pp 645–679. Springer Berlin, Heidelberg, New York

    Google Scholar 

  • Cotton R, Kosterlitz HW, Paterson SJ, Rance MJ, Traynor JR (1985) The use of [3H]-[D-Pen2,D-Pen5]enkephalin as a highly selective ligand for the 6-binding site. Br J Pharmacol 84:927–932

    PubMed  CAS  Google Scholar 

  • Delay-Goyet P, Seguin C, Gacel G, Roques BP (1988) [3H] [-D-Seri (O-sert-butyl),Leu5]enkephalyl-Thr6 and [D-Sere (O-tert-butyl),Leus]enkephalyl-Thr6(O-tert-butyl). Two new enkephalin analogs with both a good selectivity and high affinity towards 6-opioid binding sites. J Biol Chem 263: 4124–4130

    Google Scholar 

  • Goldstein A, Naidu A (1989) Multiple opioid receptors: ligand selectivity profiles and binding site signatures. Mol Pharmacol 36:265–272

    PubMed  CAS  Google Scholar 

  • Hawkins KN, Knapp RJ, Lui GK, Gulya K, Kazmierski W, Wan YP, Pelton JT, Hruby VJ, Yamamura HI (1989) [3H][H-D-Phe-Cys-Tyr-D-Trp-Om-Thr-Pen-Thr-NH2] ([3H]CTOP), a potent and highly selective peptide for g-opioid receptors in rat brain. J Pharmacol Exp Ther 248:73–80

    Google Scholar 

  • Hawkins KN, Morelli M, Gulya K, Chang KJ, Yamamura HI (1987) Autoradiographic localization of [3H][MePhe3,DPro] morphiceptin ([3H]PL 017) to g-opioid receptors in rat brain. Eur J Pharmacol 133:351–352

    Google Scholar 

  • Horan PJ, Wild KD, Misicka A, Lipkowski A, Haaseth RC, Hruby VJ, Weber SJ, Davis TP, Yamamura HI, Porreca F (1993) Agonist and antagonist profiles of [D-AIa2,Glu]deltorphin and its [Cys°]- and [Ser’]-substituted derivatives: further evidence for opioid delta receptor multiplicity. J Pharmacol Exp Ther 265:896–902

    PubMed  CAS  Google Scholar 

  • Kosterlitz HW, Paterson SJ (1981) Tyr-D-Ala Gly-McPheNH(CH2)20H is a selective ligand for the.r-opiate binding site. Br J Pharmacol 73:299P

    Google Scholar 

  • Lahti RA, Mickelson MM, McCall JM, von Voigtlander PF (1985) [3H]-U-69593, a highly selective ligand for the opioid K-receptor. Eur J Pharmacol 109:281–284

    Google Scholar 

  • Loh HH, Smith AP (1990) Molecular characterization of opioid receptors. Annu Rev Pharmacol Toxicol 30:123–147

    PubMed  CAS  Google Scholar 

  • Maguire P. Tsai N, Kamal J, Cometta-Morini C, Upton C, Loew G (1992) Pharmacological profiles of fentanyl analogs at g. 6 and K opiate receptors. Eur J Pharmacol 213: 219–225

    Google Scholar 

  • Martin WR (1967) Opioid antagonists. Pharmacol Rev 19: 463–521

    PubMed  CAS  Google Scholar 

  • McKnight AT, Rees DC (1991) Opioid receptors and their ligands. Neurotransm 7 (2):1–6

    Google Scholar 

  • Meng F, Xie G-X, Thompson RC, Mansour A, Goldstein A, Watson SJ, Akil H (1993) Cloning and pharmacological characterization of rat K opioid receptor. Proc Natl Acad Sci USA 90:9954–9958

    PubMed  CAS  Google Scholar 

  • Miyamoto Y, Portoghese PS, Takemori AE (1993) Involvement of delta2 opioid receptors in the development of morphine dependence in mice. J Pharmacol Exp Ther 264: 1141–1145

    PubMed  CAS  Google Scholar 

  • Mosberg HI, Hurst R, Hruby VJ, Gee K, Yamamura HI, Galligan JJ, Burks TF (1983) Bis-penicillamine enkephalins possess highly improved specificity toward S opioid receptors. Proc Natl Acad Sci USA, 80:5871–5874

    PubMed  CAS  Google Scholar 

  • Mosberg HI, Omnaas JR, Goldstein A (1987) Structural requirements for S opioid receptor binding. Mol Pharmacol 31:599–602

    PubMed  CAS  Google Scholar 

  • Paakkari P, Paakkari I, Feuerstein G, Sirén AL (1992) Evidence for differential opioid t1- and.t2-receptor-mediated regulation of heart rate in the conscious rat. Neuropharmacol 31:777–782

    CAS  Google Scholar 

  • Pasternak GW (1987) Opioid receptors. In: Psychopharmacology: The Third Generation of Progress. ed. by HY Meltzer, Raven Press New York, pp. 281–288

    Google Scholar 

  • Pasternak GW (1988) Multiple morphine and enkephaline re- ceptors and the relief of pain. JAMA. 259:1362–1367

    PubMed  CAS  Google Scholar 

  • Patricia M, et al (1992) Pharmacological profiles of fentanyl analogs at ix, S, and K opiate receptors. Eur J Pharmacol 213:219–225

    Google Scholar 

  • Pert CB, Snyder SH (1973) Opiate receptor:Demonstration in nervous tissue. Science 179:1011–1014

    PubMed  CAS  Google Scholar 

  • Porreca F, Takemori AE, Sultana M, Portoghese PS, Bowen WD, Mosberg HI (1992) Modulation of mu-mediated antinociception in the mouse involves opioid delta-2 receptors. J Pharmacol Exp Ther 263:147–152

    PubMed  CAS  Google Scholar 

  • Rothman RB, Bykov V, Xue BG, Xu H, de Costa BR, Jacobson AE, Rice KC, Kleinman JE, Brady LS (1992) Interaction of opioid peptides and other drugs with multiple kappa receptors in rat and human brain. Evidence for species differences. Peptides 13:977–987

    PubMed  CAS  Google Scholar 

  • Rothman RB, France CP, Bykov V, de Costa BR, Jacobson AE, Woods JH, Rice KC (1989) Pharmacological activities of optically pure enantiomers of the K opioid agonist, U50,488, and its cis diastereomer: evidence for three K receptor subtypes. Eur J Pharmacol 167:345–353

    PubMed  CAS  Google Scholar 

  • Rothman RB, Xu H, Char GU, Kim A, de Costa BR, Rice KC, Zimmerman DM (1993) Phenylpiperidine opioid antagonists that promote weight loss in rats have high affinity to the K2B (enkephalin-sensitive) binding site. Peptides 14: 17–20

    PubMed  CAS  Google Scholar 

  • Sheehan MJ, Hayes AG, Tyers MB (1986) Pharmacology of 8opioid receptors in the hamster vas deferens. Eur J Pharmacol 130:57–64

    PubMed  CAS  Google Scholar 

  • Simon EJ, Hiller JM, Edelman I (1973) Stereospecific binding of the potent narcotic analgesic [3H]etorphine to rat-brain homogenate. Proc. Natl Acad Sci USA 70:1947–1949

    CAS  Google Scholar 

  • Smith JAM, Leslie FM (1992) Use of organ systems for opioid bioassay. In: Herz A, Akil H, Simon EJ (eds) Opioids I, Handbook of Experimental Pharmacology Vol 104/I, Chapter 4, pp 53–78. Springer Berlin, Heidelberg, New York

    Google Scholar 

  • Sofuoglu M, Portoghese PS, Takemori AE (1991) Differential antagonism of delta opioid agonists by naltrindole and its benzofuran analog (NTB) in mice: evidence for delta opioid receptor subtypes. J Pharmacol Exp Ther 257: 676–680

    PubMed  CAS  Google Scholar 

  • Terenius L (1973) Stereospecific interaction between narcotic analgesics in synaptic plasma membrane of rat cerebral cortex. Acta Pharmacol Toxicol 32:317–320.

    CAS  Google Scholar 

  • Tiseo PJ, Yaksh TL (1993) Dose-dependent antagonism of spinal opioid receptor agonists by naloxone and naltrindole: additional evidence for 8-opioid receptor subtypes in the rat. Eur J Pharmacol 236:89–96

    PubMed  CAS  Google Scholar 

  • Uphouse LA, Welch SP, Ward CR, Ellis EF, Embrey JP (1993) Antinociceptive activity of intrathecal ketorolac is blocked by the K-opioid receptor antagonist, nor-binaltorphimine. Eur J Pharmacol 242:53–58

    PubMed  CAS  Google Scholar 

  • Vaughn LK, Knapp RJ, Toth G, Wan Y-P, Ruby VJ, Yamamura HI (1989) A high affinity, highly selective ligand for the delta opioid receptor: [3H]-[D-Pen2,pC1-Phe°,DPenS]enkephalin. Life Sci 45:1001–1008

    PubMed  CAS  Google Scholar 

  • Wollemann M, Benyhe S, Simon (1993) The kappa-opioid receptor: evidence of different subtypes. Life Sci 52:599–611

    PubMed  CAS  Google Scholar 

  • Wüster M, Schulz R, Herz A (1981) Multiple opiate receptors in peripheral tissue preparations. Biochem Pharmacol 30: 1883–1887

    PubMed  Google Scholar 

  • Zukin RS, Eghbali M, Olive D, Unterwald EM, Tempel A (1988) Characterization and visualization of rat and guinea pig brain K opioid receptors: evidence for K1 and K2 opioid receptors. Proc Natl Acad Sci USA 85:4061–4065

    PubMed  CAS  Google Scholar 

  • Hubbard JW, Locke KW, Forster HV, Brice AG, Pan LG, Lowry TF, Forster AML, Forster MA, Cornfeldt M, Vanselous CL, Hamer RRL, Glamkowski EJ, Fielding S (1992) Cardiorespiratory effects of the novel opioid analgesic HP 736 in the anesthetized dog and conscious goat. J Pharmacol Exp Ther260:1268–1277

    Google Scholar 

  • McPherson GA (1985) Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Meth 14:213–228

    CAS  Google Scholar 

  • Mini-Symposium (1981) The in vivo differentiation of opiate receptors. Life Sci 28:1543–1584

    Google Scholar 

  • Pert CB, Snyder SH (1973) Properties of opiate-receptor binding in rat brain. Proc. Natl. Acad. Sci, USA 70: 2243–2247

    PubMed  CAS  Google Scholar 

  • Pert CB, Snyder SH (1974) Opiate receptor binding of agonists and antagonists affected differentially by sodium. Molec Pharmacol 10:868–879

    CAS  Google Scholar 

  • Pert CB, Snyder SH (1975) Differential interactions of agonists and antagonists with the opiate receptor. In: Snyder and Watthysse (eds) Opiate Receptor Mechanisms. MIT Press Cambridge. pp 73–79

    Google Scholar 

  • Pert CB; Pasternak G, Snyder SH (1973) Opiate agonists and antagonists discriminated by receptor binding in brain. Science 182:1359–1361

    PubMed  CAS  Google Scholar 

  • Wolozin BL, Nishimura S, Pasternak GW (1982) The binding of K- and a-opiates in rat brain. J. Neurosci 2:708–713

    PubMed  CAS  Google Scholar 

  • Adler MW (1981) Mini-Symposium on Opiate Receptors. Life Sci. 28:1543–1584

    PubMed  CAS  Google Scholar 

  • Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 percent inhibition (150) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    PubMed  CAS  Google Scholar 

  • Childers S, Creese 1, Snowman AM, Snyder SH (1979) Opiate receptor binding affected differentially by opiates and opioid peptides. Eur J Pharmacol 55:11–18

    PubMed  CAS  Google Scholar 

  • Goldstein A (1987) Binding selectivity profiles for ligands of multiple receptor types: Focus on opioid receptors. TIPS 8:456–459

    CAS  Google Scholar 

  • Hubbard JW, Locke KW, Forster HV, Brice AG, Pan LG, Lowry TF, Forster AML, Forster MA, Cornfeldt M, Vanselous CL, Hamer RRL, Glamkowski EJ, Fielding S (1992) Cardiorespiratory effects of the novel opioid analgesic HP 736 in the anesthetized dog and conscious goat. J Pharmacol Exp Ther 260:1268–1277

    PubMed  CAS  Google Scholar 

  • Laugwitz KL, Offermanns S, Spicher K, Schulz G (1993).t and S opioid receptors differentially couple to G protein subtypes in membranes of human neuroblastoma SH-SY5Y cells. Neuron 5:233–242

    Google Scholar 

  • Locke KW, Dunn RW, Hubbard JW, Vanselous ChL, Cornfeldt M, Fielding St, Strupczewski JT (1990) HP 818: A centrally acting analgesic with neuroleptic properties. Drug Dev Res 19:239–256

    CAS  Google Scholar 

  • Mansour A, Lewis ME, Khachaturian H, Akil H, Watson SJ (1986) Pharmacological and anatomical evidence of selective 1.48 and K opioid receptor binding in rat brain. Brain Res. 399:69–79

    PubMed  CAS  Google Scholar 

  • Pasternak GW (1987) Opioid receptors. In: Psychopharmacology: The Third Generation of Progress. ed. by. HY Meltzer, Raven Press, New York pp. 281–288

    Google Scholar 

  • Pasternak GW, Wilson HA, Snyder SH (1975) Differential effects of protein-modifying reagents on the receptor binding of opiate agonists and antagonists. Mol Pharmacol 11: 340–351

    PubMed  CAS  Google Scholar 

  • Robson LE, Foote RW, Maurer R, Kosterlitz HW (1984) Opioid binding sites of the K-type in guinea pig cerebellum. Neurosci 12:621–627

    CAS  Google Scholar 

  • Snyder SH (1984) Drug and neurotransmitter receptors in the brain. Science 224:22–31

    PubMed  CAS  Google Scholar 

  • Wolozin BL; Nishimura S, Pasternak GW (1982) The binding of K and o opiates in rat brain. J Neurosci 2:708–713

    PubMed  CAS  Google Scholar 

  • Zukin RS, Zukin SR (1981) Multiple opiate receptors: Emerging concepts. Life Sci 29:2681–2690

    PubMed  CAS  Google Scholar 

  • Abbott FV et al (1986) A dose-ratio comparison of µ and K agonists in formalin and thermal pain. Life Sci 39: 2017–2024

    PubMed  CAS  Google Scholar 

  • Cheng, YC, Prusoff WH (1973) Relationship between the inhibition constant (Kg) and the concentration of inhibitor which causes 50 percent inhibition (/50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    PubMed  CAS  Google Scholar 

  • Goodman RR, Snyder SH (1982) Autoradiographic localization of kappa opiate receptors to deep layers of the cerebral cortex may explain unique sedative and analgesic effects. Life Sci 31:1291–1294

    PubMed  CAS  Google Scholar 

  • Higginbottorn M, Nolan W, O’Toole J. Ratcliffe GS, Rees DC, Roberts E (1993) The design and synthesis of kappa opioid ligands based on a binding model for kappa agonists. Bioorg Med Chem Lett 3:841–846

    Google Scholar 

  • Hubbard JW, Locke KW, Forster HV, Brice AG, Pan LG, Lowry TF, Forster AML, Forster MA, Cornfeldt M, Vanselous CL, Hamer RRL, Glamkowski EJ, Fielding S (1992) Cardiorespiratory effects of the novel opioid analgesic HP 736 in the anesthetized dog and conscious goat. J Pharmacol Exp Ther 260:1268–1277

    PubMed  CAS  Google Scholar 

  • Inenaga K, Nagamoto T, Nakao K, Yanaihara N, Yamashita HY (1994) Kappa-selective agonists decrease postsynaptic potentials and calcium components of action potentials in the supraoptic nucleus of rat hypothalamus in vitro. Neurosci 58:331–340

    CAS  Google Scholar 

  • Kosterlitz HW, Paterson SJ, Robson LE (1981) Characterization of the K-subtype of the opiate receptor in the guinea pig brain. Br J Pharmacol 73:939–949

    PubMed  CAS  Google Scholar 

  • Mansour A, Lewis ME, Khachaturian H, Akil H, Watson SJ (1986) Pharmacological and anatomical evidence of selective p., S and K opioid receptors in brain. Brain Res 399: 69–79

    PubMed  CAS  Google Scholar 

  • Peter GR et al (1987) Diuretic actions in man of a selective kappa opioid agonist: U-62,066E. J Pharmacol Exper Ther 240:128–131

    Google Scholar 

  • Robson LE, Foote RW, Maurer R, Kosterlitz HW (1984) Opioid binding sites of the K-type in guinea pig cerebellum. Neurosci. 12:621–627

    CAS  Google Scholar 

  • Salas SP, Roblero JS, Lopez LF, Tachibana S. Huidobro-Toro JP (1992) [N-Methyl-Tyr’,N-methyl-Arg’-D-Leu8)-dynorphin-A-(l-8) ethylamide, a stable dynorphin analog, produces diuresis by kappa-opiate receptor activation in the rat. J Pharmacol Exp Ther 262:979–986

    Google Scholar 

  • Snyder SH (1984) Drug and neurotransmitter receptors in the brain. Science 224:22–31

    PubMed  CAS  Google Scholar 

  • Steinfels GF, Cook L (1986) Antinociceptive profiles of and K opioid agonists in a rat tooth pulp stimulation procedure. J Pharmacol Exper Ther 236:111–117

    CAS  Google Scholar 

  • Tyers MB (1982) Studies on the antinociceptive activities of mixtures of s-and K-opiate agonists and antagonists. Life Sci 31:1233–1236

    PubMed  CAS  Google Scholar 

  • Wolozin BL, Nishimura S, Pasternak GW (1982) The binding of K- and a-opiates in rat brain. J Neurosci 2:708–713

    PubMed  CAS  Google Scholar 

  • Zukin RS, Zukin SR (1981) Multiple opiate receptors: Emerging concepts. Life Sci 29:2681–2690

    PubMed  CAS  Google Scholar 

  • Chipkin RE (1986) Inhibition of enkephalinase: The next generation of analgesics. Drugs Future 11:593–606

    Google Scholar 

  • Chipkin RE, Berger JG, Billard W. lorio LC, Chapman R, Barnett A (1988) Pharmacology of SCH 34826, an orally active enkephalinase inhibitor analgesic. J Pharm Exp Ther 245:829–838

    CAS  Google Scholar 

  • Costentin J, Vlaiculescu A, Chaillet P, Natan B, Aveaux D, Schwartz JC (1986) Dissociated effects of inhibitors of enkephalin-metabolizing peptidases or naloxone on various nociceptive responses. Eur J Pharmacol 123:37–44

    PubMed  CAS  Google Scholar 

  • Florentin D, Sassi A, Roques BP (1984) A highly sensitive fluorimetric assay for “enkephalinase”, a neutral metalloendopeptidase that releases tyrosine-glycine-glycine from enkephalins. Anal Biochem 141:62–69

    PubMed  CAS  Google Scholar 

  • Hughes J (1975) Isolation of an endogenous compound from. the brain with pharmacologie properties similar to morphine. Brain Res 88:295–308

    PubMed  CAS  Google Scholar 

  • Ksander GM, Diefenbacher CG, Yuan AM, Clark F, Sakane Y, Ghai RD (1989) Enkephalinase inhibitors. I. 2,4-Dibenzylglutaric acid derivatives. J Med Chem 32:2519–2526

    PubMed  CAS  Google Scholar 

  • Llorens C, Schwartz JC (1981) Enkephalinase activity in rat peripheral organs. Eur J Pharmacol 69:113–116

    PubMed  CAS  Google Scholar 

  • Malfroy B, Schwartz JC (1982) Properties of “enkephalinase” from rat kidney: comparison of dipeptidyl-carboxypeptidase and endopeptidase activities. Biochem Biophys Res Commun 106:276–285

    PubMed  CAS  Google Scholar 

  • Malfroy B, Swerts JP, Guyon A, Roques BP, Schwartz JC (1978) High-affinity enkephalin-degrading peptidase in brain is increased after morphine. Nature 276:523–526

    PubMed  CAS  Google Scholar 

  • Mumford RA, Pierzchala PA, Strauss AW, Zimmerman M (1981) Purification of a membrane bound metalloendopeptidase from porcine kidney that degrades peptide hormones. Proc Natl Acad Sci USA 78:6623–6627

    PubMed  CAS  Google Scholar 

  • Oshita S, Yaksh TL, Chipkin R (1990) The antinociceptive effects of intrathecally administered SCH32615, an enkephalinase inhibitor in the rat. Brain Res 515:143–148

    PubMed  CAS  Google Scholar 

  • Roques BP, Fournié-Zaluski MC, Florentin D, Waksman G, Sassi A, Chaillet P, Collado H, Ciostentin J (1982) New enkephalinase inhibitors as probes to differentiate “enkephalinase” and angiotensin-converting-enzyme active sites. Life Sci 31:1749–1752

    PubMed  CAS  Google Scholar 

  • Roques BP, Fournié-Zaluski MC, Soroca E, Lecomte LM, Malfroy B, Llorens C, Schwartz JC (1980) The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice. Nature 288:286–288

    PubMed  CAS  Google Scholar 

  • Schwartz JC (1983) Metabolism of enkephalins and the inactivating neuropeptidase concept. TINS 1983:45–48

    Google Scholar 

  • Schwartz JC, Gros C, Lecomte JM, Bralet J (1990) Enkephalinase (EC 3.4.24.11) inhibitors: protection of endogenous ANF against inactivation and potential therapeutic applications. Life Sci 47:1279–1297

    PubMed  CAS  Google Scholar 

  • Von Voigtlander PF (1982) Pharmacological alteration of pain: The discovery and evaluation of analgesics in animals. In: Lednicer D (ed) Central Analgetics. John Wiley and Sons, New York, pp 51–79

    Google Scholar 

  • Bartoszyk GD, Wild A (1989) B-vitamins potentiate the antinociceptive effect of diclofenac in carrageenin-induced hyperalgesia in the rat tail pressure test. Neurosci Lett 101: 95–100

    PubMed  CAS  Google Scholar 

  • Bianchi C, Franceschini J (1954) Experimental observations on Haffner’s method for testing analgesic drugs. Br J Pharmacol 9:280–284

    CAS  Google Scholar 

  • Collier HOJ (1965) Multiple toe-pinch test for potential analgesic drugs. In: Keele, Smith (eds) Assessment of Pain in Man and Animals. Livingston, London, pp 262–270

    Google Scholar 

  • Fleisch A, Dolivo M (1953) Auswertung der Analgetica im Tierversuch. HeIv Physiol Acta 11:305–322

    CAS  Google Scholar 

  • Haffner F (1929) Experimentelle Pruefung schmerzstillender Mittel. Dtsch Med Wschr 55:731–733

    Google Scholar 

  • Koch JKE, Bodnar RJ (1993) Involvement of mug and mug opioid receptor subtypes in tail-pinch feeding in rats. Physiol Behav 53:603–605

    PubMed  CAS  Google Scholar 

  • Vanderwende C, Spoerlein M (1972) Antagonism by DOPA of morphine analgesia. A hypothesis for morphine tolerance. Res Comm Chem Pathol Pharmacol 3:37–45

    CAS  Google Scholar 

  • Yanagisawa M, Murakoshi T, Tamai S, Otsuka M (1984) Tail-pinch method in vitro and the effects of some antinociceptive compounds. Eur J Pharmacol 106:231–239

    PubMed  CAS  Google Scholar 

  • Carmon A. Frostig R (1981) Noxious stimulation of animals by brief laser induced heat: advantages to pharmacological testing of analgesics. Life Sci 29:11–16

    PubMed  Google Scholar 

  • Costello AH, Hargreaves KM (1989) Suppression of carrageenan-induced hyperalgesia, hyperthermia and edema by a bradykinin antagonist. Eur J Pharmacol 171:259–263

    PubMed  CAS  Google Scholar 

  • D’Amour FE, Smith DL (1941) A method for determining loss of pain sensation. J Pharmacol Exp Ther 72:74–79

    Google Scholar 

  • Davies OL, Raventbs J, Walpole AL (1946) A method for the evaluation of analgesic activity using rats. Br J Pharmacol 1:255–264

    CAS  Google Scholar 

  • Dewey WL, Harris LS, Howes JF, Nuite JA (1970) The effect of various neurohumoral modulators on the activity of morphine and the narcotic antagonists in the tail-flick and the phenylquinone tests. J Pharmacol Exp Ther 175: 435–442

    PubMed  CAS  Google Scholar 

  • Geller I, Axelrod LR (1968) Methods for evaluating analgesics in laboratory animals. In: Soulairac A, Cahn J, Charpentier J (eds) Pain. Acad Press, London New York, pp 153–163

    Google Scholar 

  • Goldstein FJ, Malseed RT (1979) Evaluation of narcotic analgesic activity using a cat tail-flick procedure. J Pharmacol Meth 2:333–338

    CAS  Google Scholar 

  • Gray WD, Osterberg A, Scuto TJ (1970) Measurement of the analgesic efficacy and potency of pentazocine by the D’Armour and Smith method. J Pharmacol Exp Ther 172: 154–162

    PubMed  CAS  Google Scholar 

  • Green AF, Young PA (1951) A comparison of heat and pressure analgesiometric methods in rats. Br J Pharmacol 6: 572–585

    CAS  Google Scholar 

  • Hargreaves KM, Dubner R, Brown F, Flores C, Joris 1 (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32:77–82

    PubMed  CAS  Google Scholar 

  • Harris DP, Burton R, Sinclair G (1988) A simple microcomputer interface for tail-flick determination. J Pharmacol Meth 20:103–108

    CAS  Google Scholar 

  • Harris LS, Pierson AK (1964) Some narcotic antagonists in the benzomorphan series. J Pharmacol Exp Ther 143:141–148

    PubMed  CAS  Google Scholar 

  • Howes JF, Harris LS, Dewey WL, Voyda CA (1969) Brain acetylcholine levels and inhibition of the tail-flick reflex in mice. J Pharmacol Exp Ther 169:23–28

    PubMed  CAS  Google Scholar 

  • Hylden JLK, Thomas DA, Iadarola MJ, Nahin RL, Dubner R (1991) Spinal opioid analgesic effects are enhanced in a model of unilateral inflammation/hyperalgesia: possible involvement of noradrenergic mechanisms. Eur J Pharmacol 194:135–143

    PubMed  CAS  Google Scholar 

  • Isabel G, Wright DM, Henry JL (1981) Design of an inexpensive unit for measuring tail flick latencies. J Pharmacol Meth 5:241–247

    CAS  Google Scholar 

  • Mohrland JS, Johnson EE, von Voigtlander PF (1983) An ultrasound-induced tail-flick procedure: evaluation of non-steroidal antiinflammatory analgesics. J Pharmacol Meth 9:297–282

    Google Scholar 

  • Owen JA, Milne B, Jhamandas K, Nakatsu K (1981) Assembly of an inexpensive tail flick analgesia meter. J Pharmacol Meth 6:33–37

    CAS  Google Scholar 

  • Perkins MN, Campell E, Dray A (1993) Antinociceptive activity of the bradykinin B1 and B2 receptor antagonists, desArg9,[Leu“I-BK and Hoe 140, in two models of persistent hyperalgesia in rats. Pain 53:191–197

    PubMed  CAS  Google Scholar 

  • Perkins MN, Kelly D (1993) Induction of bradykinin B1 receptors in vivo in a model of ultra-violet irradiation-induced thermal hyperalgesia in the rat. Br J Pharmacol 110: 1441–1444

    PubMed  CAS  Google Scholar 

  • Schuligoi R, Donnerer J, Amann R (1994) Bradykinin-induced sensitization of afferent neurons in the rat. Neurosci 59: 211–215

    CAS  Google Scholar 

  • Schumacher GA, Goodell H, Hardy JD, Wolff HG (1940) Uni- formity of the pain threshold in man. Science 92:110–112

    PubMed  CAS  Google Scholar 

  • Ther L, Lindner E, Vogel G (1963) Zur pharmakodynamischen Wirkung der optischen Isomeren des Methadons. Dtsch Apoth Ztg 103:514–520

    CAS  Google Scholar 

  • Tulunay FC, Takemori AE (1974) The increased efficacy of narcotic antagonists induced by various narcotic analgesics. J Pharmacol Exp Ther 190:395–400

    PubMed  CAS  Google Scholar 

  • Walker JM, Dixon WC (1983) A solid state device for measur- ing sensitivity to thermal pain. Physiol Behav 30:481–483

    PubMed  CAS  Google Scholar 

  • Winter CA, Orahovats PD, Flataker L, Lehman EG, Lehman JT (1954) Studies on the pharmacology of N-allylnormorphine. J Pharmacol Exp Ther 112:152–160

    Google Scholar 

  • Wolff HG, Hardy JD, Goodell H (1940) Studies on pain. Measurement of the effect of morphine, codeine, and other opiates on the pain threshold and an analysis of their relation to the pain experience. J Clin Invest 19:659–680

    PubMed  CAS  Google Scholar 

  • Yoburn BC, Morales R, Kelly DD, Inturrisi CE (1984) Constrains on the tailflick assay: morphine analgesia and tolerance are dependent upon locus of tail stimulation. Life Sci 34:1755–1762

    PubMed  CAS  Google Scholar 

  • Eddy NB, Leimbach D (1953) Synthetic analgesics: II. Dithienylbutenyl-and dithienylbutylamines. J Pharmacol Exp Ther 107:385–393

    PubMed  CAS  Google Scholar 

  • Jaco J, Blozovski M (1961) Action des divers analgésiques sur le comportement de souris exposées a un stimulus thermoalgésique. Arch Int Pharmacodyn 138:296–309

    Google Scholar 

  • Jacob J, Loiseau G, Echinard-Garin P, Barthelemy C, Lafille C (1964) Caractérisation et détection pharmacologiques des substances hallucinogènes. II.-Antagonismes vis-a-vis de la morphine chez la souris. Arch Int Pharmacodyn 148:14–30

    CAS  Google Scholar 

  • Kitchen 1, Crowder M (1985) Assessment of the hot-plate antinociceptive test in mice. A new method for the statistical treatment of graded data. J Pharmacol Meth 13:1–7

    Google Scholar 

  • Knoll J (1967) Screening and grouping of psychopharmacological agents. In: Siegler PE, Moyer HJ (eds) Animal and Clinical Pharmacologic Techniques in Drug Evaluation. Yearbook Med Publ. Inc., Chicago, pp 305–321

    Google Scholar 

  • O’Neill KA, Courtney C, Rankin R, Weissman A (1983) An automated, high-capacity method for measuring jump latencies on a hot plate. J Pharmacol Meth 10:13–18

    Google Scholar 

  • O’Callaghan JP, Holtzman SG (1975) Quantification of the analgesic activity of the narcotic antagonists by a modified hot plate procedure. J Pharm Exp Ther 192:497–505

    Google Scholar 

  • Plummer JL, Cmielewski PL, Gourlay GK, Owen H, Cousins MJ (1991) Assessment of antinociceptive drug effects in the presence of impaired motor performance. J Pharmacol Meth 26:79–87

    CAS  Google Scholar 

  • Tjolsen A, Rosland JH, Berge OG, Hole K (1991) The increasing temperature hot-plate test: an improved test of nociception in mice and rats. J Pharmacol Meth 25:241–250

    CAS  Google Scholar 

  • Witkin LB, Heubner CF, Galgi F, O’Keefe E, Spitaletta P, Plummer AJ (1961) Pharmacology of 2-aminino-indane hydrochloride (SU 8629): a potent non-narcotic analgesic. J Pharmacol Exp Ther 133:400–408

    PubMed  CAS  Google Scholar 

  • Woolfe G, MacDonald AD (1944) The evaluation of the analgesic action of pethidine hydrochloride (DEMEROL) J Pharmacol Exper Ther 80:300–307

    CAS  Google Scholar 

  • Zimer PO, Wynn RL, Ford RD, Rudo FG (1986) Effect of hot plate temperature on the antinociceptive activity of mixed opioid agonist antagonist compounds. Drug Dev Res 7:277–280

    Google Scholar 

  • Ben-Bassat J, Peretz E, Sulman FG (1959) Analgesimetry and ranking of analgesic drugs by the receptacle method. Arch Int Pharmacodyn 122:434–447

    PubMed  CAS  Google Scholar 

  • Cowan A (1990) Recent approaches in the testing of analgesics in animals. In: Modern Methods in Pharmacology, Vol. 6, Testing and Evaluation of Drugs of Abuse, pp 33–42, Wiley-Liss Inc

    Google Scholar 

  • Dykstra LA, Gmerek DE, Winger G, Woods JH (1987) Kappa opioids in rhesus monkeys. Diuresis, sedation, analgesia and discriminative stimulus effects. J Pharm Exp Ther 242: 413–420

    CAS  Google Scholar 

  • Dykstra LA, Woods JH (1986) A tail withdrawal procedure for assessing analgesic activity in Rhesus monkeys. J Pharmacol Meth 15:263–269

    CAS  Google Scholar 

  • Evangelista S, Pirisino R, Perretti F, Fantozzi R, Brunelleschi S, Malmberg-Aiello P, Bartolini A (1987) The pharmacological properties of 1,4-dihydro-I-ethyl-7-phenylpyrrol(1,2-a)-pyrimidine-4-one, a new antipyretic and analgesic drug. Drugs Exp Clin Res 13:501–510

    PubMed  CAS  Google Scholar 

  • Grotto M, Sulman FG (1967) Modified receptacle method for animal analgesimetry. Arch Int Pharmacodyn 165:152–159

    PubMed  CAS  Google Scholar 

  • Janssen P, Niemegeers CJE, Dony JGH (1963) The inhibitory effect of Fentanyl and other morphine-like analgesics on the warm water induced tail withdrawal reflex in rats. Arzneim.-Forsch. 13:502–507

    CAS  Google Scholar 

  • Luttinger D (1985) Determination of antinociceptive activity of drugs in mice using different water temperatures in a tail-immersion test. J Pharmacol Meth 13:351–357

    CAS  Google Scholar 

  • Ono M, Satoh T (1988) Pharmacological studies of Lappaconitine. Analgesic studies. Arzneim Forsch/Drug Res 38: 892–895

    CAS  Google Scholar 

  • Pizziketti RJ, Pressman NS, Geller EB, Cowan A, Adler MW (1985) Rat cold water tail-flick: A novel analgesic test that distinguishes opioid agonists from mixed agonistsantagonists. Eur J Pharmacol 119:23–29

    PubMed  CAS  Google Scholar 

  • Ramabadran K, Bansinath M, Turndorf H, Puig MM (1989) Tail immersion test for the evaluation of a nociceptive reaction in mice. J Pharmacol Meth 21:21–31

    CAS  Google Scholar 

  • Rothman RB, France CP, Bykov V, de Costa BR, Jacobson AE, Woods JH, Rice KC (1989) Pharmacological activities of optically pure enantiomers of the K opioid agonist, U50,488, and its cis diastereomer: evidence for three K receptor subtypes. Eur J Pharmacol 167:345–353

    PubMed  CAS  Google Scholar 

  • Sewell RDE, Spencer PSJ (1976) Antinociceptive activity of narcotic agonist and partial agonist analgesics and other agents in the tail-immersion test in mice and rats. Neuropharmacol 15:683–688

    CAS  Google Scholar 

  • Tiseo PJ, Geller EB, Adler MW (1988) Antinociceptive action of intracerebroventricularly administered dynorphin and other opioid peptides in the rat. J Pharm Exp Ther 246: 449–453

    CAS  Google Scholar 

  • Burn JH, Finney DJ, Goodwin LG (1950) Chapter XIV: Antipyretics and analgesics. In: Biological Standardization. Oxford University Press, London, New York, pp 312–319

    Google Scholar 

  • Carroll MN, Lim RKS (1960) Observations on the neuropharmacology of morphine and morphinelike analgesia. Arch Int Pharmacodyn 125:383–403

    PubMed  CAS  Google Scholar 

  • Charpentier J (1968) Analysis and measurement of pain in animals. A new conception of pain. In: Soulairac A, Cahn J, Charpentier J (eds) Pain. Acad Press, London New York, PP 171–200

    Google Scholar 

  • Hoffmeister F (1968) Tierexperimentelle Untersuchungen über den Schmerz und seine pharmakologische Beeinflussung. Arzneim Forsch, 16. Beiheft: 5–116

    Google Scholar 

  • Kakunaga T, Kaneto H, Hano K (1966) Pharmacological studies on analgesics. VII. Significance of the calcium ion in morphine analgesia. J Pharm Exp Ther 153:134–141

    CAS  Google Scholar 

  • Nilsen PL (1961) Studies on algesimetry by electrical stimula- tion of the mouse tail. Acta Pharmacol Toxicol 18:10–22

    CAS  Google Scholar 

  • Paalzow G, Paalzow L (1973) The effect of caffeine and theophylline on nociceptive stimulation in the rat. Acta Pharmacol Toxicol 32:22–32

    CAS  Google Scholar 

  • Vidal C, Girault JM, Jacob J (1982) The effect of pituitary re- moval on pain reaction in the rat. Brain Res. 233:53–64

    PubMed  CAS  Google Scholar 

  • Yanaura S, Yamatake Y, Ouchi T (1976) A new analgesic testing method using ultrasonic stimulation. Effects of narcotic and non-narcotic analgesics. Jpn J Pharmacol 26: 301–308

    PubMed  CAS  Google Scholar 

  • Banzinger R (1964) Animal techniques for evaluating narcotic and non-narcotic analgesics. In: Nodine JH and Siegler PE (eds) Animal and Clinical Pharmacologie Techniques in Drug Evaluation. Year Book Medical Publ, Inc., pp 392–396

    Google Scholar 

  • Blake L, Graeme ML, Sigg EB (1963) Grid shock test for analgesic assay in mice. Med exp 9:146–150

    PubMed  CAS  Google Scholar 

  • Bonnet KA, Peterson KE (1975) A modification of the jump-flinch technique for measuring pain sensitivity in rats. Pharmacol Biochem Behav 3:47–55

    PubMed  CAS  Google Scholar 

  • Charlier R, Prost M, Binon F, Deltour G (1961) Etude pharmacologique d’un antitussif, le fumarate acide de phénéthyl-1 (propyne-2 yl)-4-propionoxy-4 pipéridine. Arch Int Pharmacodyn 134:306–327

    PubMed  CAS  Google Scholar 

  • Eschalier A, Marty H, Trolese JF, Moncharmont L, Fialip J (1988) An automated method to analyze vocalization of unrestrained rats submitted to noxious stimuli. J Pharmacol Meth 19:175–184

    CAS  Google Scholar 

  • Evans WO (1961) A new technique for the investigation of some analgesic drugs on a reflexive behavior in the rat. Psychopharmacologia 2:318–325

    CAS  Google Scholar 

  • Evans WO (1962) A comparison of the analgesic potency of some analgesics as measured by the “Flinch-jump” procedure. Psychopharmacol 3:51–54

    Google Scholar 

  • Evans WO, Bergner DP (1964) A comparison of the analgesic potencies of morphine, pentazocine, and a mixture of methamphetamine and pentazocine in the rat. J New Drugs 4:82–85

    Google Scholar 

  • Jokovlev V, Sofia RD, Achterrath-Tuckermann U, von Schlichtegroll A, Thiemer K (1985) Untersuchungen zur pharmakologischen Wirkung von Flupirtin, einem strukturell neuartigen Analgeticum. Arzneim Forsch/Drug Res. 35:3043

    Google Scholar 

  • Weiss B, Laties VG (1961) Changes in pain tolerance and other behavior produced by salicylates. J Pharm Exp Ther 131:120

    CAS  Google Scholar 

  • Chat’ TT (1989) Analgesic testing in animal models. In: Pharmacological Methods in the Control of Inflammation. Alan R Liss, Inc. pp 196–212

    Google Scholar 

  • Chin JH, Domino EF (1961) Effects of morphine on brain potentials evoked by stimulation of the tooth pulp of the dog. J Pharmacol Exp Ther 132:74–86

    PubMed  CAS  Google Scholar 

  • Fleisch A, Dolivo M (1953) Auswertung der Analgetica im Tierversuch. HeIv Physiol Acta 11:305–322

    CAS  Google Scholar 

  • Foong FW, Satoh M, Takagi H (1982) A newly devised reliable method for evaluating analgesic potencies of drugs on trigeminal pain. J Pharmacol Meth 7:271–278

    CAS  Google Scholar 

  • Hertle F, Schanne O, Staib I (1957) Zur Methodik der Prüfung der Analgesie am Kaninchen. Arzneiur Forsch 7:311–314

    CAS  Google Scholar 

  • Hoffmeister F (1962) Über cerebrale polysynaptische Reflexe des Kaninchens und ihre Beeinflussbarkeit durch Pharmaka. Arch Int Pharmacodyn 139:512–527

    PubMed  CAS  Google Scholar 

  • Hoffmeister F (1968) Tierexperimentelle Untersuchungen über den Schmerz und seine pharmakologische Beeinflussung. Arzneim Forsch 16. Beiheft:5–116

    Google Scholar 

  • Kidder GW, Wynn RL (1983) An automatic electronic apparatus for generating and recording a ramp stimulus for analgesia testing. J Pharmacol Meth 10:137–142

    Google Scholar 

  • Koll W, Fleischmann G (1941) Messungen der analgetischen Wirksamkeit einiger Antipyretica am Hund. NaunynSchmiedeberg’s Arch Exp Path Pharmakol 198:390–406

    CAS  Google Scholar 

  • Koll W, Reffert H (1938) Eine neue Methode zur Messung analgetischer Wirkungen im Tierversuch. Versuche mit Morphin und einigen Morphinderivaten am Hund. Arch exp Path Pharmakol 190:67–87

    Google Scholar 

  • Matthews B, Searle BN (1976) Electrical stimulation of teeth. Pain 2:245–251

    PubMed  CAS  Google Scholar 

  • Mitchell CL (1964) A comparison of drug effects upon the jaw jerk response to electrical stimulation of the tooth pulp in dogs and cats. J Pharmacol Exp Ther 146:1–6

    PubMed  CAS  Google Scholar 

  • Ruckstuhl K (1939) Beitrag zur pharmakodynamischen Prüfung der Analgetica. Inaug.-Dissertation, Bern

    Google Scholar 

  • Shigena Y, Marao S, Okada K, Sakai A (1973) The effects of tooth pulp stimulation in the thalamus and hypothalamus of the rat. Brain Res 63:402–407

    Google Scholar 

  • Shyu KW, Lin MT, Wu TC (1984) Possible role of central serotoninergic neurons in the development of dental pain and aspirin-induced analgesia in the monkey. Exp Neurol 84:179–187

    PubMed  CAS  Google Scholar 

  • Skingle M, Tyers MB (1979) Evaluation of antinociceptive activity using electrical stimulation of the tooth pulp in the conscious dog. J Pharmacol Meth 2:71–80

    CAS  Google Scholar 

  • Steinfels GF, Cook L (1986) Antinociceptive profiles of la and K opioid agonists in a rat tooth pulp stimulation procedure. J Pharm Exp Ther 236:111–117

    CAS  Google Scholar 

  • Wilhelmi G (1949) Über die pharmakologischen Eigenschaften von Irgapyrin, einem neuen Präparat aus der Pyrazolonreihe. Schweiz Med Wschr 25:577–582

    Google Scholar 

  • Wirth W, Hoffmeister F (1967) Zur Wirkung von Kombinationen aus Phenothiazin-Derivaten mit Analgetika-Antipyretika. Wien Med Wschr 117:973–978

    PubMed  CAS  Google Scholar 

  • Wynn RL, El’Baghdady YM, Ford RD, Thut PD, Rudo FG (1984) A rabbit tooth-pulp assay to determine ED50 values and duration of action of analgesics. J Phannacol Meth II: 109–117

    Google Scholar 

  • Wynn RL, Ford RD, McCourt PJ, Ramkumar V, Bergman SA, Rudo FG (1986) Rabbit tooth pulp compared to 55° C mouse hot plate assay for detection of antinociceptive activity of opiate and nonopiate central analgesics. Drug Dev Res 9:233–239

    CAS  Google Scholar 

  • Yim GKW, Keasling HH, Gross EG, Mitchell CW (1955) Simultaneous respiratory minute volume and tooth pulp threshold changes following levorphan, morphine and levorphan-levallorphan mixtures in rabbits. J Pharmacol Exp Ther 115:96–105

    PubMed  CAS  Google Scholar 

  • Bloss JL, Hammond DL (1985) Shock titration in the rhesus monkey: effects of opiate and nonopiate analgesics. J Pharmacol Exp Ther 235:423–430

    PubMed  CAS  Google Scholar 

  • Campell ND, Geller I (1968) Comparison of analgesic effects of O-(4-methoxy phenyl carbamoyl)-3-diethylaminopropiophenone oxime HCI (USVP E-142), pentazocine and morphine in cynomolgous monkeys. Fed Proc FASEB 27: 653 (2465)

    Google Scholar 

  • Dykstra LA (1979) Effects of morphine, pentazocine and cyclazocine alone and in combination with naloxone on electric shock titration in the squirrel monkey. J Pharm Exp Ther 211:722–732

    CAS  Google Scholar 

  • Dykstra LA (1980) Nalorphine’s effect under several schedules of electric shock titration. Psychopharmacology 70: 69–72

    PubMed  CAS  Google Scholar 

  • Dykstra LA, Macmillan DE (1977) Electric shock titration: Effects of morphine, methadone, pentazocine, nalorphine, naloxone, diazepam and amphetamine. J. Pharm Exp Ther 202:660–669

    CAS  Google Scholar 

  • Römer D (1968) A sensitive method for measuring analgesic effects in the monkey. In: Soulairac A, Cahn J, Charpentier J (eds) Pain. Acad Press London, New York, pp 165–170

    Google Scholar 

  • Weiss B, Laties VG (1964) Analgesic effects in monkeys of morphine, nalorphine, and a benzomorphan narcotic antagonist. J Pharm Exp Ther 143:169–173

    CAS  Google Scholar 

  • Abbott FV, Franklin KBJ, Ludwick RJ, Melzack R (1981) Apparent lack of tolerance in the Formalin test suggests different mechanisms for morphine analgesia in different types of pain. Pharmacol Biochem Behav 15:637–640

    PubMed  CAS  Google Scholar 

  • Abbott FV, Melzack R, Samuel C (1982) Morphine analgesia in the tail-flick and Formalin pain tests is mediated by different neural systems. Exp Neurol 75:644–651

    PubMed  CAS  Google Scholar 

  • Chau TT (1989) Analgesic testing in animal models. In: Pharmacological Methods in the Control of Inflammation. Alan R. Liss, Inc., pp 195–212

    Google Scholar 

  • Correa CR, Calixto JB(1993) Evidence for participation of B1 and B2 kinin receptors in formalin-induced nociceptive response in the mouse. Br J Pharmacol 110:193–198

    Google Scholar 

  • Cowan A (1990) Recent approaches in the testing of analgesics in animals. In: Modern Methods in Pharmacology, Vol 6, Testing and Evaluation of Drugs of Abuse. Wiley-Liss, Inc. pp 33–42

    Google Scholar 

  • Dubuisson D, Dennis SG (1977) The Formalin test: A quantitative study of the analgesic effects of morphine, meperidine and brain stem stimulation in rats and cats. Pain 4: 161–174

    PubMed  CAS  Google Scholar 

  • Herman ZS, Felinska W (1979) Rapid test for screening of narcotic analgesics in mice. Pol J Pharmacol Pharm 31: 605–608

    PubMed  CAS  Google Scholar 

  • Malmberg AB, Yaksh TL (1992) Antinociceptive actions of spinal nonsteroidal anti-inflammatory agents on the forma-lin test in the rat. J Pharm Exp Ther 263:136–146

    CAS  Google Scholar 

  • Murray CW, Porreca F, Cowan A (1988) Methodological refinements to the mouse paw formalin test. J Pharmacol Meth 20:175–186

    CAS  Google Scholar 

  • North MA (1977) Naloxone reversal of morphine analgesia but failure to alter reactivity to pain in the formalin test. Life Sci 22:295–302

    Google Scholar 

  • Shibata M, Ohkubo T, Takahashi H, Inoki R (1989) Modified formalin test: characteristic biphasic pain response. Pain 38:347–352

    Google Scholar 

  • Wheeler H, Porreca F, Cowan A (1989) Formalin is unique among potential noxious agents for the intensity of its behavioral response in rats. FASEB J 3:A278 (310)

    Google Scholar 

  • Pasternak GW (1987) Opioid receptors. In: Meltzer HY (ed) Psychopharmacology: The Third Generation of Progress. Raven Press New York, pp. 281–288

    Google Scholar 

  • Ling GSF, Spiegel K, Nishimura S, Pasternack GW (1983) Dissociation of morphine’s analgesic and respiratory depressant actions. Eur. J. Pharmacol. 86:478–488

    Google Scholar 

  • Ling GSF, Spiegel K, Lockhart SH, Pasternack GW (1985) Separation of opioid analgesia from respiratory depression: Evidence for different receptor mechanisms J Pharmacol Exp Ther 232: 149–155

    CAS  Google Scholar 

  • Ther L, Lindner E, Vogel G (1963) Zur pharmakodynamischen Wirkung der optischen Isomeren des Methadons. Dtsch Apoth Ztg 103:514–520

    CAS  Google Scholar 

  • Geller EB, Adler MW (1990) Drugs of abuse and body temperature. In: Modern Methods in Pharmacology, Vol 6, Testing and Evaluation of Drugs of Abuse, Wiley-Liss, Inc., pp 101–109

    Google Scholar 

  • Glassman JM (1971) Agents with analgesic activity and dependence liability. In: Turner RA and Hebborn P (eds) Screening Methods in Pharmacology. Vol. II, Acad. Press, New York and London., pp 227–248

    Google Scholar 

  • Kalant H, Khanna JM (1990) Methods for the study of tolerance. In: Modern Methods in Pharmacology, Vol 6, Testing and Evaluation of Drugs of Abuse. Wiley-Liss, Inc., pp 43–66

    Google Scholar 

  • Khanna JM, Mayer JM, Lê AD, Kalant H (1984) Differential response to ethanol, pentobarbital and morphine in mice specially bred for ethanol sensitivity. Alcohol 1:447–451

    PubMed  Google Scholar 

  • Aceto MD (1990) Assessment of physical dependence techniques for the evaluation of abused drugs. In: Modern Methods in Pharmacology, Vol 6, Testing and Evaluation of Drugs of Abuse. Wiley-Liss, Inc., pp 67–79

    Google Scholar 

  • Buckett WR (1964) A new test for morphine-like physical dependence (addiction liability) in rats. Psychopharmacologia 6:410–416

    PubMed  CAS  Google Scholar 

  • Deneau GA, Seevers MH (1964) Drug Dependence. In:Laurence DR, Bacharach AL (eds.) Evaluation of Drug Activities: Pharmacometrics. Academic Press, London and New York. pp 167–179

    Google Scholar 

  • Seevers MH (1936) Opiate addiction in the monkey. I. Methods of study. J Pharm Exp Ther 56:147–156

    CAS  Google Scholar 

  • Seevers MH, Deneau GA (1963) In: Root WS and Hoffman FG (eds) Physiological Pharmacology. Vol. I, pp 565, Acad. Press New York and London

    Google Scholar 

  • VonVoigtlander PF, Lewis RA (1983) A withdrawal hyperalgesia test for physical dependence: evaluation of and mixed-partial opioid agonists. J Pharm Meth 10:277–282

    CAS  Google Scholar 

  • Way EL (1993) Opioid tolerance and physical dependence and their relationship. In: Herz A, Akil H, Simon EJ (eds) Handbook of Experimental Pharmacology, Vol 104/ Opioids II, chapter 53, pp 573–596, Springer Berlin Heidelberg New York

    Google Scholar 

  • Way EL, Loh HH, Shen FH (1969) Simultaneous quantitative assessment of morphine tolerance and physical dependence. J Pharm Exp Ther 167:1–8

    CAS  Google Scholar 

  • Woods JH, France CP, Winger G, Bertamio AJ, Schwarz-Stevens K (1993) Opioid abuse liability assessment in rhesus monkeys. In: Herz A, Akil H, Simon EJ (eds) Handbook of Experimental Pharmacology, Vol 104/ Opioids II, chapter 55, pp 609–632, Springer Berlin Heidelberg New York

    Google Scholar 

  • Bertalmio AJ, Herling S, Hampton RY, Winger G, Woods JH (1982) A procedure for rapid evaluation of the discriminative stimulus effects of drugs. J Pharmacol Meth 7:289–299

    CAS  Google Scholar 

  • Bertalmio AJ, Woods JH (1987) Differentiation between µ and K receptor mediated effects in opioid drug discrimination: apparent pA2 analysis. J Pharmacol Exp Ther 243:591–598

    PubMed  CAS  Google Scholar 

  • Bozarth MA (1987) Intracranial self-administration procedures for the assessment of drug reinforcement. In: Bozarth MA (ed) Methods for Assessing the Reinforcing Properties of Abused Drugs. Springer Verlag, New York, Berlin, Heidelberg, pp 178–187

    Google Scholar 

  • Brady JV, Griffiths RR, Hienz RD, Ator NA, Lukas SE, Lamb RJ (1987) Assessing drugs for abuse liability and dependence potential in laboratory primates. In: Bozarth MA (ed) Methods for Assessing the Reinforcing Properties of Abused Drugs. Springer Verlag, New York, Berlin, Heidelberg, pp 45–85

    Google Scholar 

  • Colpaert FC (1987) Drug discrimination: methods of manipulation, measurement, and analysis. In: Bozarth MA (ed) Methods for Assessing the Reinforcing Properties of Abused Drugs. Springer Verlag, New York, Berlin, Heidelberg, pp 341–372.

    Google Scholar 

  • Colpaert FC, Janssen PAJ (1984) Agonist and antagonist effects of prototype opiate drugs in rats discrimination fentanyl from saline: Characteristics of partial generalization. J Pharm Exp Ther 220:193–199

    Google Scholar 

  • Cruz SL, Salazar LA, Villarreal JE (1991) A methodological basis for improving the reliability of measurements of opiate abstinence responses in the guinea pig ileum made dependent in vitro. J Pharm Meth 25:329–342

    CAS  Google Scholar 

  • Deneau G, Yanagita T, Seevers MH (1969) Self-administration of psychoactive substances by the monkey. Psychopharmacologia 16:30–48

    PubMed  CAS  Google Scholar 

  • Deneau GA (1964) Pharmacological techniques for evaluating addiction liability of drugs. In: Nodine JH and Siegler PE (eds). Animal and Clinical Pharmacologic Techniques in Drug Evaluation. Year Book Medical Publ, Inc., Chicago, pp 406–410

    Google Scholar 

  • Dykstra LA, Bertalmio AJ, Woods JH (1988) Discriminative and analgesic effects of mu and kappa opioids: in vivo pA2 analysis. In. Colpaert FC, Balster RL (eds) Transduction mechanisms of drug stimuli. Springer, Berlin Heidelberg New York, pp 107–121 (Psychopharmacology series 4)

    Google Scholar 

  • Dykstra LA, Gmerek DE, Winger G. Woods JH (1987) Kappa opioids in rhesus monkeys. I. Diuresis, sedation, analgesia and discriminative stimulus effects. J Pharmacol Exp Ther 242:413–420

    PubMed  CAS  Google Scholar 

  • Garcia J, Kimmeldorf DJ, Koelling RA (1955) Conditioned taste aversion to saccharin resulting from exposure to gamma irradiation. Science 122:157–158

    PubMed  CAS  Google Scholar 

  • Hein DW, Young AM, Herling S, Woods JH (1981) Pharmacological analysis of the discriminative stimulus characteristics of ethylketazocine in the rhesus monkey. J Pharmacol Exp Ther 218:7–15

    PubMed  CAS  Google Scholar 

  • Herling S, Woods JH (1981) Discriminative stimulus effects of narcotics: evidence for multiple receptor-mediated actions. Life Sci 28:1571–1584

    PubMed  CAS  Google Scholar 

  • Hoffmeister F (1979) Preclinical evaluation of reinforcing and aversive properties of analgesics. In: Beers RF, Bassett EG (eds) Mechanics of Pain and Analgesic Compounds. Raven Press New York, pp 447–466

    Google Scholar 

  • Hoffmeister F (1988) A comparison of the stimulus effects of codeine in rhesus monkeys under the contingencies of a two lever discrimination task and a cross self-administration paradigm: tests of generalization to pentazocine, buprenorphine, tilidine, and different doses of codeine. Psychopharmacology 94:315–320

    PubMed  CAS  Google Scholar 

  • Holtzman SG (1983) Discriminative stimulus properties of opioid agonists and antagonists. In: S.J. Cooper (ed) Theory in Psychopharmacology, Vol. 2, pp 145 Academic Press, London

    Google Scholar 

  • Holtzman SG (1990) Discriminative stimulus effects of drugs: Relationship to potential for abuse. In: Modern Methods in Pharmacology, Vol 6, Testing and Evaluation of Drugs of Abuse. Wiley-Liss, Inc., pp. 193–210

    Google Scholar 

  • Iwamoto ET, Martin WR (1988) A critique of drug self-administration as a method for predicting abuse potential of drugs. In: Harris LS (ed) Proceedings of the committee on the problems of drug dependence, 1987. NIDA Res Monogr 81:457–465

    Google Scholar 

  • Kornetsky C, Bain B (1990) Brain-stimulation reward: A model for drug-induced euphoria. In: Modern Methods in Pharmacology, Vol 6, Testing and Evaluation of Drugs of Abuse. Wiley-Liss, Inc., pp 211–231

    Google Scholar 

  • Lal H, Sherman GT (1980) Interceptive discriminative stimuli in the development of CNS drugs and a case of an animal model of anxiety. Annu Rep Med Chem 15:51–58

    CAS  Google Scholar 

  • Littmann K, Heredia JM, Hoffmeister F (1979) Eine neue Methode zur enteralen Verabreichung von psychotrop wirksamen Substanzen beim Rhesusaffen. Arzneim Forsch/ Drug Res 29:1888–1890

    CAS  Google Scholar 

  • Locke KW, Gorney B, Cornfeldt M, Fielding S (1991) Comparison of the stimulus effects of ethylketocyclazocine in Fischer and Sprague-Dawley rats. Drug Dev Res 23:65–73

    CAS  Google Scholar 

  • Marcus R, Kornetsky C (1974) Negative and positive intracranial thresholds: Effects of morphine. Psychopharmacologia 38:1–13

    CAS  Google Scholar 

  • Meisch RA, Carroll ME (1987) Oral drug self-administration: Drugs as reinforcers. In: Bozarth MA (ed) Methods for Assessing the Reinforcing Properties of Abused Drugs. Springer Verlag, New York, Berlin, Heidelberg, pp 143160

    Google Scholar 

  • Olds J (1979) Drives and reinforcements: Behavioral studies of hypothalamic functions. Raven Press New York

    Google Scholar 

  • Olds J, Killam KF, Bach-y-Rita P (1956) Self-stimulation of the brain used as screening method for tranquilizing drugs. Science 124:265–266

    PubMed  CAS  Google Scholar 

  • Overton DA (1987) Applications and limitations of the drug discrimination method for the study of drug abuse. In: Bozarth MA (ed) Methods for Assessing the Reinforcing Properties of Abused Drugs. Springer Verlag, New York, Berlin, Heidelberg, pp 291–340

    Google Scholar 

  • Shannon HE, Holtzmann SG (1976) Evaluation of the discriminative effects of morphine in the rat. J Pharm Exp Ther 198:64–65

    Google Scholar 

  • Shannon HE, Holtzmann SG (1986) Blockade of the discriminative effects of morphine by naltrexone and naloxone. Psychopharmacologica 50:119–124

    Google Scholar 

  • Sherman G, Lal H (1979) Discriminative stimulus properties of pentylenetetrazol and begrimide: some generalization and antagonism tests. Psychopharmacology 64:315–319

    Google Scholar 

  • Sherman GT, Lal H (1980) Generalization and antagonism studies with convulsants, GABAergic and anticonvulsant drugs in rats trained to discriminate pentylenetetrazol from saline. Neuropharmacol 19:473–479

    Google Scholar 

  • Sherman GT, Miksic S. Lal H (1979) Lack of tolerance development to benzodiazepines in antagonism of the pentylenetetrazol discriminative stimulus. Pharmacol Biochem Behav 10:795–797

    Google Scholar 

  • van Heest A, Hijzen TH, Slangen JL, Oliver B (1992) Assessment of the stimulus properties of anxiolytic drugs by means of the conditioned taste aversion procedure. Pharmacol Biochem Behav 42:487–495

    Google Scholar 

  • Weeks JR, Collins RJ (1987) Screening for drug reinforcement using intravenous self-administration in the rat. In: Bozarth MA (ed) Methods for Assessing the Reinforcing Properties of Abused Drugs. Springer Verlag, New York, Berlin, Heidelberg, pp 35–43

    Google Scholar 

  • Woods JH, France CP, Winger G, Bertamio Al, Schwarz-Stevens K (1993) Opioid abuse liability assessment in rhesus monkeys. In: Herz A, Akil H, Simon EJ (eds) Handbook of Experimental Pharmacology, Vol 104/ Opioids II, chapter 55, pp 609–632, Springer Berlin Heidelberg New York

    Google Scholar 

  • Woolverton WL, Nader MA (1990) Experimental evaluation of the reinforcing effects of drugs. In: Modern Methods in Pharmacology, Vol 6, Testing and Evaluation of Drugs of Abuse. Wiley-Liss, Inc., pp 165–192

    Google Scholar 

  • Woolverton WL, Schuster CL (1983) Intragastric selfadministration in rhesus monkeys under limited access conditions: Methodological studies. J Pharmacol Meth 10:93–106

    CAS  Google Scholar 

  • Yokel RA (1987) Intravenous self-administration: response rates, the effects of pharmacological challenges, and drug preference. In: Bozarth MA (ed) Methods for Assessing the Reinforcing Properties of Abused Drugs. Springer Verlag, New York, Berlin, Heidelberg, pp 1–33

    Google Scholar 

  • Amanuma F, Wakaumi C, Tanaka M, Muramatsu M, Aihara H (1984) The analgesic effects of non-steroidal anti-inflammatory drugs on acetylcholine-induced writhing in mice. Folia Pharmacol Japon 84:543–551

    CAS  Google Scholar 

  • Bhalla TN, Bhargava KP (1980) Aconitine-induced writhing as a method for assessing Aspirin-like analgesic activity. J Pharmacol Meth 3:9–14

    CAS  Google Scholar 

  • Björkman RL, Hedner T, Hallman KM, Henning M, Hedner J (1992) Localization of central antinociceptive effects of diclofenac in the rat. Brain Res 590:66–73

    PubMed  Google Scholar 

  • Blumberg H, Wolf PS, Dayton HB (1965) Use of writhing test for evaluating activity of narcotic antagonists. Proc Soc Exp Biol Med 118:763–766

    PubMed  CAS  Google Scholar 

  • Burns RBP, Alioto NJ, Hurley KE (1968) Modification of the bradykinin-induced writhing test for analgesia. Arch Int Pharmacodyn 175:41–55

    PubMed  CAS  Google Scholar 

  • Carey F, Haworth D, Edmonds AE, Forder RA (1988) Simple procedure for measuring the pharmacodynamics and analgesic potential of lipoxygenase inhibitors. J Pharmacol Meth 20:347–356

    CAS  Google Scholar 

  • Chernov HI, Wilson DE, Fowler F, Plummer AJ (1967) Non-specificity of the mouse writhing test. Arch Int Pharmacodyn 167:171–178

    PubMed  CAS  Google Scholar 

  • Collier HOJ, Dinneen LC, Johnson CA, Schneider C (1968) The abdominal constriction response and its suppression by analgesic drugs in the mouse. Br J Pharmac Chemother 32: 295–310

    CAS  Google Scholar 

  • Eckhardt ET, Cheplovitz F, Lipo M, Govier WM (1958) Etiology of chemically induced writhing in mouse and rat. Proc Soc Exp Biol Med 98:186–188

    PubMed  CAS  Google Scholar 

  • Emele JF, Shanaman J (1963) Bradykinin writhing: A method for measuring analgesia. Proc Soc Exp Biol Med 114: 680–682

    PubMed  CAS  Google Scholar 

  • Fukawa K, Kawano O, Hibi M, Misaki M, Ohba S, Hatanaka Y (1980) A method for evaluating analgesic agents in rats. J Pharmacol Meth 4:251–259

    CAS  Google Scholar 

  • Heapy CG, Shaw JS, Farmer SC (1993) Differential sensitivity of antinociceptive assays to the bradykinin antagonist Hoe 140. Br J Pharmacol 108:209–213

    PubMed  CAS  Google Scholar 

  • Hendershot LC, Forsaith J (1959) Antagonism of the frequency of phenylquinone-induced writhing in the mouse by weak analgesics and non-analgesics. J Pharmacol Exp Ther 125:237–240

    PubMed  CAS  Google Scholar 

  • Kokka N, Fairhurst AS (1977) Naloxone enhancement of acetic acid-induced writhing in rats. Life Sci 21:975–980

    PubMed  CAS  Google Scholar 

  • Koster R, Anderson M, de Beer EJ (1959) Acetic acid for analgesic screening. Fed Proc 18:412

    Google Scholar 

  • Loux JJ, Smith S, Salem H (1978) Comparative analgesic testing of various compounds in mice using writhing techniques. Arzneim Forsch/Drug Res 28:1644–1677

    CAS  Google Scholar 

  • Nakamura H, Shimoda A, Ishii K, Kadokawa T (1986) Central and peripheral analgesic action of non-acidic non-steroidal anti-inflammatory drugs in mice and rats. Arch Int Pharmacodyn 282:16–25

    Google Scholar 

  • Nolan JC, Osman MA, Cheng LK, Sancilio LF (1990) Bromfenac, a new nonsteroidal anti-inflammatory drug: Relationship between the anti-inflammatory and analgesic activity and plasma drug levels in rodents. J Pharm Exp Ther 254:104–108

    CAS  Google Scholar 

  • Okun R, Liddon SC, Lasagna L (1963) The effects of aggregation, electric shock, and adrenergic blocking drugs on inhibition of the “writhing syndrome”. J Pharm Exp Ther 139:107–109

    CAS  Google Scholar 

  • Rae GA, Souza RLN, Takahashi RN (1986) Methylnalorphinium fails to reverse naloxone-sensitive stress-induced analgesia in mice. Pharmacol Biochem Behav 24:829–832

    PubMed  CAS  Google Scholar 

  • Sancillo LF, Nolan JC, Wagner LE, Ward JW (1987) The analgesic and antiinflammatory activity and pharmacologic properties of Bromfenac. Arzneim Forsch/Drug Res 37: 513–519

    Google Scholar 

  • Schweizer A, Brom R, Scherrer H (1988) Combined automatic writhing/motility test for testing analgesics. Agents Actions 23:29–31

    PubMed  CAS  Google Scholar 

  • Siegmund E, Cadmus R, Lu G (1957) A method for evaluating both non-narcotic and narcotic analgesics. Proc Soc Exp Biol Med 95:729

    PubMed  CAS  Google Scholar 

  • Taber RI, Greenhouse DD, Rendell JK, Irwin S (1969) Agonist and antagonist interactions of opioids on acetic acid-induced abdominal stretching in mice. J Pharm Exp Ther 169:29–38

    CAS  Google Scholar 

  • VonVoigtlander PF, Lewis RA (1982) Air-induced writhing: a rapid broad spectrum assay for analgesics. Drug Dev Res 2:577–581

    Google Scholar 

  • VonVoigtlander PF, Lewis RA (1983) A withdrawal hyperalgesia test for physical dependence: evaluation of and mixed partial opioid agonists. J Pharmacol Meth 10: 277–282

    CAS  Google Scholar 

  • Whittle BA (1964) The use of changes in capillary permeability in mice to distinguish between narcotic and non narcotic analgesics. Br J Pharmacol 22:246–253

    CAS  Google Scholar 

  • Chipkin RE, Latranyi MB, Iorio LC, Barnett A (1983) Determination of analgesic drug efficacies by modification of the Randall and Selitto rat yeast paw test. J Pharmacol Meth 10:223–229

    CAS  Google Scholar 

  • Dubinsky B, Gebre-Mariam S, Capetola RJ, Rosenthale ME (1987) The analgesic drugs: Human therapeutic correlates of their potency in laboratory animals of hyperalgesia. Agents Actions 20:50–60

    PubMed  CAS  Google Scholar 

  • Ferreira SH, Lorenzetti BB, Correa FMA (1978b) Central and peripheral antialgesic action of aspirin-like drugs. Eur J Pharmacol 53:39–48

    CAS  Google Scholar 

  • Ferreira SH, Lorenzetti BB, Cunha FQ, Poole S (1993b) Bradykinin release of TNF-a plays a key role in the development of inflammatory hyperalgesia. Agents Actions 38: C7–C9

    CAS  Google Scholar 

  • Ferreira SH, Lorenzetti BB, Poole S (1993a) Bradykinin initiates cytokine-mediated inflammatory hyperalgesia. Br J Pharmacol 110:1227–1231

    CAS  Google Scholar 

  • Ferreira SH, Nakamura M, DeAbreu Castro MS (1978a) The hyperalgesic effects of prostacyclin and prostaglandin E2. Prostaglandins 16:31–37

    CAS  Google Scholar 

  • Greindl MG, Preat S (1976) A new model of active avoidance conditioning adequate for pharmacological studies, Arch Int Pharmacodyn 223:168–170

    PubMed  CAS  Google Scholar 

  • Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32:77–88

    PubMed  CAS  Google Scholar 

  • Kitchen I (1984) Modification of an analgesy meter for paw-pressure antinociceptive testing in neonatal rats. J Pharmacol Meth 12:255–258

    CAS  Google Scholar 

  • Perkins MN, Campell E, Dray A (1993) Antinociceptive activity of the bradykinin B, and B2 receptor antagonists, desArg9,[Leuxl-BK and Hoe 140, in two models of persistent hyperalgesia in rats. Pain 53:191–197

    PubMed  CAS  Google Scholar 

  • Randall LO, Selitto JJ (1957) A method for measurement of analgesic activity on inflamed tissue. Arch Int Pharmacodyn 111:409–419

    PubMed  CAS  Google Scholar 

  • Rios L, Jacob JJC (1982) Inhibition of inflammatory pain by naloxone and its N-methyl quaternary analogue. Life Sci 31:1209–1212

    PubMed  CAS  Google Scholar 

  • Romer D (1980) Pharmacological evaluation of mild analgesics. Br J Clin Pharmacol 10:247S–251S

    Google Scholar 

  • Takesue El, Schaefer W, Jukniewicz E (1969) Modification of the Randall-Selitto analgesic apparatus. J Pharm Pharmacol 21:788–789

    Google Scholar 

  • Tanaka K, Shimotori T, Makino S, Aikawa Y, Inaba T, Yoshida C, Takano S (1992) Pharmacological studies of the new antiinflammatory agent 3-formylamino-7-methylsulfonylamino-6-phenoxy-4H-l-benzopyran-4-one. 1st Communication: antiinflammatory, analgesic and other related properties. Arzneim Forsch/Drug Res 42:935–944

    CAS  Google Scholar 

  • Vinegar R, Truax JF, Selph JL, Johnston PR (1990) New analgesic assay utilizing trypsin-induced hyperalgesia in the hind limb of the rat. J Pharmacol Meth 23:51–61

    CAS  Google Scholar 

  • Winter CA, Flakater L (1965) Reaction thresholds to pressure in edematous hindpaws of rats and response to analgesic drugs. J Pharm Exp Ther 150:165–171

    CAS  Google Scholar 

  • Winter CW, Risley EA, Nuss GW (1962) Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Proc Soc Exp Biol Med 111:544–547

    PubMed  CAS  Google Scholar 

  • Colburn RW, Coombs DW, Degnan CC, Rogers LL (1989) Mechanical visceral pain model: chronic intermittent intestinal distension in the rat. Physiol Behav 45:191–197

    PubMed  CAS  Google Scholar 

  • deLeo JA, Colburn RW, Coombs DW, Ellis MA (1989) The differentiation of NSAIDs and prostaglandin action using a mechanical visceral pain model in the rat. Pharmacol Biochem Behav 33:253–255

    PubMed  CAS  Google Scholar 

  • Adachi Kl, Ishii Y (1979) Vocalization response to close-arterial injection of bradykinin and other algesic agents in guinea pigs and its application to quantitative assessment of analgesic agents. J Pharm,Exp Ther 209:117–124

    Google Scholar 

  • Ahluwalia A, Maggi CA, Santicioli P, Lecci A, Giuliani S (1994) Characterization of the capsaicin-sensitive component of cyclophosphamide-induced inflammation in the rat urinary bladder. Br J Pharmacol 111:1017–1022

    PubMed  CAS  Google Scholar 

  • Beck PW, Handwerker HO (1974) Bradykinin and serotonin effects on various types of cutaneous nerve fibres. Pflügers Arch 347:209–222

    PubMed  CAS  Google Scholar 

  • Blane GF (1968) A new laboratory model for evaluating analgesic and analgesic-antagonist drugs. In: Soulairac A, Cahn J, Charpentier J (eds) Pain. Academic Press, London, New York, pp 218–222

    Google Scholar 

  • Collier HOJ, Lee IR (1963) Nociceptive responses of guinea-pigs to intradermal injections of bradykinin and kallidin-l0. Br J Pharmacol 21:155–164

    CAS  Google Scholar 

  • Davis AJ, Perkins MN (1994 a) Induction of BI receptors in vivo in a model of persistent mechanical hyperalgesia in the rat. Neuropharm 33:127–133

    Google Scholar 

  • Davis AJ, Perkins MN (1994 b) Involvement of bradykinin B, and B2 receptor mechanisms in cytokine-induced mechanical hyperalgesia in rats. Br J Pharmacol 113:63–68

    Google Scholar 

  • Deffenu G, Pegrasso L, Lumachi B (1966) The use of bradykinin-induced effects in rats as an assay for analgesic drugs. J Pharm Pharmac 18:135

    CAS  Google Scholar 

  • Griesbacher T, Lembeck F (1987) Effect of bradykinin antagonists on bradykinin-induced plasma extravasation, venoconstriction, prostaglandin E2 release, nociceptor stimulation and contraction of the iris sphincter muscle in the rabbit. Br J Pharmacol 92:333–340

    PubMed  CAS  Google Scholar 

  • Guzman F, Braun C, Lim RKS (1962) Visceral pain and the pseudaffective response to intra-arterial injection of bradykinin and other algesic agents. Arch Int Pharmacodyn 136: 353–384

    PubMed  CAS  Google Scholar 

  • Heapy CG, Shaw JS, Farmer SC (1993) Differential sensitivity of antinociceptive assays to the bradykinin antagonist Hoe 140. Br J Pharmacol 108:209–213

    PubMed  CAS  Google Scholar 

  • Lecci A, Giuliani S, Meine S, Maggi CA (1995) Pharmacological analysis of the local and reflex responses to bradykinin on rat urinary bladder motility in vivo. Br J Pharmacol 114:708–714

    PubMed  CAS  Google Scholar 

  • Lembeck F, Griesbacher T, Eckhardt M, Henke S, Breipohl G, Knolle J (1991) New, long acting, potent bradykinin antagonists. Br J Pharmacol 102:297–304

    PubMed  CAS  Google Scholar 

  • Lim RKS (1970) Pain. Annu Rev Physiol 32:269–288

    CAS  Google Scholar 

  • Lim RKS, Guzman F (1968) Manifestations of pain in analgesic evaluation in animals and man. In: Soulairac A, Cahn J, Charpentier J (eds) Pain. Academic Press, London, New York, pp 119–152

    Google Scholar 

  • Lim RKS, Guzman F, Rodgers DW, Goto K, Braun C, Dickerson GD, Engle RI (1964) Site of action of narcotic and non-narcotic analgesics determined by blocking bradykinin-evoked visceral pain. Arch Int Pharmacodyn 152:25–58

    PubMed  CAS  Google Scholar 

  • Satoh M, Kawajiri SI, Yamamoto M, Makino H, Takagi H (1979) Reversal by naloxone of adaptation of rats to noxious stimuli. Life Sci 24:685–690

    PubMed  CAS  Google Scholar 

  • Teixeira MM, Doenhoff MJ, McNeice C, Williams TJ, Hellewell PG (1993) Mechanisms of the inflammatory response induced by extracts of Schistosoma mansoni larvae in guinea pig skin. J Immunol 151:5525–5534

    PubMed  CAS  Google Scholar 

  • Vargaftig B (1966) Effet des Analgésiques non narcotiques sur l’hypotension due à la Bradykinine. Experientia 22: 182–183

    PubMed  CAS  Google Scholar 

  • Carlsson KH, Helmreich J, Jurna I (1986) Comparison of central antinociceptive and analgesic effects of the pyrazolone derivatives, metamizol (Dipyrone) and aminophenzone („Pyramidon“). Schmerz -Pain -Douleur 3:93–100

    Google Scholar 

  • Carlsson KH, Monzel W, Jurna 1 (1988) Depression of morphine and the non-opioid analgesic agents, metamizol (dipyrone), lysine acetyl salicylate, and paracetamol, of activity in rat thalamus neurons evoked by electrical stimulation of nociceptive afferents. Pain 32:313–326

    PubMed  CAS  Google Scholar 

  • Chapman V, Dickenson AH (1992) The spinal and peripheral roles of bradykinin and prostaglandins in nociceptive processing in the rat. Eur J Pharmacol 219:427–433

    PubMed  CAS  Google Scholar 

  • Dray A, Patel IA, Perkin MN, Rueff A (1992) Bradykinininduced activation of nociceptors: receptor and mechanistic studies on the neonatal rat spinal cord-tail preparation in vitro. Br J Pharmacol 107:1129–1134

    PubMed  CAS  Google Scholar 

  • He X, Neugebauer V, Schaible HG, Schmidt RF (1990 a) Effects of antipyretic analgesics on pain-related neurons of the spinal cord. In: Brune K, Santoso B (eds) Antipyretic Analgesics: New Insights. Birkhäuser Verlag, Basel, pp 13–23

    Google Scholar 

  • He X, Neugebauer V, Schaible HG, Schmidt RF (1990 b) New aspects of the mode of action of dipyrone. In: Brune K (ed) New Pharmacological and Epidemiological Data in Analgesics Research.. Birkhäuser Verlag, Basel, pp 9–18

    Google Scholar 

  • Jurna I, Brune K (1990) Central effect of the non-steroid anti-inflammatory agents, indometacin, ibuprofen, and diclofenac, determined in C fibre-evoked activity in single neurons of rat thalamus. Pain 41:71–80

    Google Scholar 

  • Malmberg AB, Yaksh TL (1992) Hyperalgesia mediated by spinal glutamate or substance P receptor blocked by spinal cyclooxygenase inhibition. Science 257:1276–1279

    PubMed  CAS  Google Scholar 

  • Neugebauer V, Schaible HG (1990) Evidence for a central component in the sensitization of spinal neurons with joint input during development of acute arthritis in cat’s knee. J Neurophysiol 64:299–311

    PubMed  CAS  Google Scholar 

  • Neugebauer V, Schaible HG, He X, Lücke T, Gündlich P, Schmidt RF (1994) Electrophysiological evidence for a spinal antinociceptive action of dipyrone. Agents Actions 41:62–70

    PubMed  CAS  Google Scholar 

  • Schaible HG, Schmidt RF (1983a) Responses of fine medial articular nerve afferents to passive movements of knee joint. J Neurophysiol 49:1118–1126

    CAS  Google Scholar 

  • Schaible HG, Schmidt RF (1983b) Activation of groups III and IV sensory units in medial articular nerve by local mechanical stimulation of knee joint. J Neurophysiol 49: 35–44

    CAS  Google Scholar 

  • Schaible HG, Schmidt RF (1985) Effects of an experimental arthritis on the sensory properties of fine articular afferent units. J Neurophysiol 54:1109–1122

    PubMed  CAS  Google Scholar 

  • Schaible HG, Schmidt RF (1988) Time course of mechanosensitivity changes in articular afferents during a developing experimental arthritis. J Neurophysiol 60:2180–2195

    PubMed  CAS  Google Scholar 

  • Schaible HG, Schmidt RF, Willis WD (1987) Enhancement of the responses of ascending tract cells in the cat spinal cord by acute inflammation of the knee joint. Exp Brain Res 66: 489–499

    PubMed  CAS  Google Scholar 

  • Alla SA, Buschko J, Quitterer U, Maidhof A, 1-laasemann M, Breipohl G, Knolle J, Muller-Esterl W (1993) Structural features of human bradykinin B2 receptor probed by agonists, antagonists, and anti-idiotypic antibodies. J Biol Chem 268:17277–17285

    PubMed  CAS  Google Scholar 

  • Bascands JL, Pecher C, Rounaud S, Emond C, Tack JL, Bastie MJ, Burch R, Regoli D, Girolami JP (1993) Evidence for existence of two distinct bradykinin receptors on rat mesangial cells. Am J Physiol 264:F548–F556

    PubMed  CAS  Google Scholar 

  • Brenner NJ, Stonesifer GY, Schneck KA, Burns HD, Ransom RW (1993) [’2511PIP HOE 140, a high affinity radioligand for bradykinin B2 receptors. Life Sci 53:1879–1886

    Google Scholar 

  • Burch RM, Fariner SG, Steranka LR (1990) Bradykinin receptor antagonists. Medicin Res Rev 10:237–239

    CAS  Google Scholar 

  • Burch RM, Kyle DJ (1992) Minireview: Recent developments in the understanding of bradykinin receptors. Life Sci 50: 829–838

    PubMed  CAS  Google Scholar 

  • Burch RM, Kyle DJ, Stormann TM (1993) Molecular Biology and Pharmacology of Bradykinin Receptors: The Pharmacological Classification of Kinins. RG Landes Comp., Austin, pp 6–18

    Google Scholar 

  • Butt SK, Dawson LG, Hall JM (1995) Bradykinin B, receptors in the rabbit urinary bladder: induction of responses, smooth muscle contraction, and phopshatidylinositol hydrolysis. Br J Pharmacol 114:612–617

    PubMed  CAS  Google Scholar 

  • Eggerickx D, Raspe E, Bertrand D, Vassart G, Parmentier M (1992) Molecular cloning, functional expression and pharmacological characterization of a human bradykinin B2 receptor gene. Biochem Biophys Res Commun 187:1306–1313

    PubMed  CAS  Google Scholar 

  • Emond C, Bascands JL, Pecher C, Cabos-Boutot G, Pradelles P, Regoli D, Girolami JP (1990) Characterization of a BZ bradykinin receptor in rat mesangial cells. Eur J Pharmacol 190:381–392

    PubMed  CAS  Google Scholar 

  • Falcone RC, Hubbs SJ, Vanderloo JD, Prosser JC, Little J, Gomes B, Aharony D, Krell RD (1993) Characterization of bradykinin receptors in guinea pig gall bladder. J Pharm Exp Ther 266:1291–1299

    CAS  Google Scholar 

  • Farmer SG, Burch RM, Meeker SA, Wilkins DE (1989) Evidence for a pulmonary B, bradykinin receptor. Mol Pharmacol 36:1–8

    PubMed  CAS  Google Scholar 

  • Felétou M, Germain M, Thurieau C, Fauchère JL, Canet E (1994) Agonistic and antagonistic properties of the bradykinin B2 receptor antagonist, Hoe 140, in isolated blood vessels from different species. Br J Pharmacol 112:683–689

    PubMed  Google Scholar 

  • Feres T, Paiva ACM, Paiva TB (1992) BK, and BK2 bradykinin receptors in the rat duodenum smooth muscle. Br J Pharmacol 107:991–995

    PubMed  CAS  Google Scholar 

  • Field JL, Butt SK, Morton IKM, Hall JM (1994) Bradykinin B2 receptors and coupling mechanisms in the smooth muscle of guinea-pig taenia caeci. Br J Pharmacol 113:607–613

    PubMed  CAS  Google Scholar 

  • Field JL, Hall JM, Morton IKM (1992) Putative novel bradykinin B3 receptors in the smooth muscle of the guinea-pig taenia caeci and trachea. Recent Progress on Kinins, Birkhäuser Basel, pp 540–545

    Google Scholar 

  • Galizzi JP, Bodinier MC, Chapelain B, Ly SM, Coussy L, Giraud S, Neliat G, Jean T (1994) Up-regulation of [3H]-desarg10-kallidin binding to the bradykinin B, receptor by interleukin-113 in isolated smooth muscle cells: correlation with B, agonist-induced PGI2 production. Br J Pharmacol 113:389–394

    PubMed  CAS  Google Scholar 

  • Gobeil F, Regoli D (1994) Characterization of kinin receptors by bioassays. Braz J Med Biol Res 27:1781–1791

    PubMed  CAS  Google Scholar 

  • Graneß A, Liebmann C (1994) Affinity cross-linking of bradykinin B2 receptors in guinea pig ileum membranes. Eur J Pharmacol 268:271–274

    PubMed  Google Scholar 

  • Hess JKF, Borkowski JA, Young GS, Strader CD, Ramson RW (1992) Cloning and pharmacological characterization of a human bradykinin (BK-2) receptor. Biochem Biophys Res Commun 184:260–268

    PubMed  CAS  Google Scholar 

  • Hock FJ, Wirth K, Albus U, Linz W, Gerhards HJ, Wiemer G, Henke S, Breipohl G, König W, Knolle J, Schölkens BA (1991) Hoe 140 a new potent and long acting bradykinin antagonist: in vitro studies. Br J Pharmacol 102:769–773

    PubMed  CAS  Google Scholar 

  • Innis RB, Manning DC, Stewart JM, Snyder SH (1981) [3H]Bradykinin receptor binding in mammalian tissue membranes. Proc Natl Acad Sci USA., 78:2630–2634

    Google Scholar 

  • Kachur JF, Allbee W, Danjo W, Gaginella TS (1987) Bradykinin receptors: functional similarities in guinea pig gut muscle and mucosa. Regul Peptides 17:63–70

    CAS  Google Scholar 

  • Liebmann C, Bossé R, Escher E (1994 b) Discrimination between putative bradykinin B2 receptor subtypes in guinea pig ileum smooth muscle membranes with a selective, iodinatable, bradykinin analogue. Molec Pharmacol 46: 949–956

    Google Scholar 

  • Liebmann C, Mammery K, Graneß A (1994 a) Bradykinin inhibits adenylate cyclase activity in guinea pig membranes via a separate high-affinity bradykinin B2 receptor. Eur J Pharmacol 288:35–43

    Google Scholar 

  • Manning DC, Vavrek R, Stewart JM, Snyder SH (1986) Two bradykinin binding sites with picomolar affinities. J Pharmacol Exp Ther 237:504–512

    PubMed  CAS  Google Scholar 

  • McEachern AE, Shelton ER, Bhakta S, Obernolte R, Bach C, Zuppan P, Fujisaki J, Aldrich RW, Jarnagin K (1991) Proc Natl Acad Sci USA 88:7724–7728

    PubMed  CAS  Google Scholar 

  • McPherson GA (1985) Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Meth 14:213–228

    CAS  Google Scholar 

  • Pruneau D, Bélichard P (1993) Induction of bradykinin B, receptor-mediated relaxation in the isolated rabbit carotid artery. Eur J Pharmacol 239:63–67

    PubMed  CAS  Google Scholar 

  • Regoli D, Gobeil F, Nguyen QT, Jukic D, Seoane PR, Salvino JM, Sawutz DG (1994) Bradykinin receptor types and B2 subtypes. Life Sci 55:735–749

    CAS  Google Scholar 

  • Rhaleb NE, Carretero OA (1994) The role of B, and B2 receptors and of nitric oxide in bradykinin-induced relaxation and contraction of isolated rat duodenum. Life Sci 55: 1351–1363

    PubMed  CAS  Google Scholar 

  • Rhaleb NE, Rouissi N, Jukic D, Regoli D, Henke S, Breipohl G, Knolle J (1992) Pharmacological characterization of a new highly potent B2 receptor antagonist (HOE 140: D-arg[hyp3,thi5,D-tic7,oic“]bradykinin. Eur J Pharmacol 210: 115–120

    PubMed  CAS  Google Scholar 

  • Schneck KA, Hess JF, Stonisifer GY, Ransom RW (1994) Bradykinin B, receptors in rabbit aorta smooth muscle in culture. Eur J Pharmacol, Mol Pharmacol Sect 266:277–282

    Google Scholar 

  • Seguin L, Widdowson PS (1993) Effects of nucleotides on [3H]bradykinin binding in guinea pig: further evidence for multiple B2 receptor subtypes. J Neurochem 60:652–757

    Google Scholar 

  • Seguin L, Widdowson PS, Giesen-Crouse E (1992) Existence of three subtypes of bradykinin B2 receptors in guinea pig. J Neurochem 59:2125–2133

    PubMed  CAS  Google Scholar 

  • Tropea MM, Gummelt D, Herzig MS, Leeb-Lundberg LMF (1994) BI and B2 kinin receptors on cultured rabbit superior mesenteric artery smooth muscle cells: receptor specific stimulation of inositol phosphate formation and arachidonic acid release by des-arge-bradykinin and bradykinin. J Pharmacol Exp Ther 264:930–937

    Google Scholar 

  • Wiemer G, Wirth K (1992) Production of cyclic GMP via activation of B, and B2 kinin receptors in cultured bovine aortic endothelial cells. J Pharm Exp Ther 262:729–733

    CAS  Google Scholar 

  • Wirth K, Breipohl G, Stechl J, Knolle J, Henke S, Schölkens B (1991) DesArge-D-Arg[Hyp3,Thi5,D-Tic7,Oic“]bradykinin (desArg10-[Hoel40]) is a potent bradykinin B, receptor antagonist. Eur J Pharmacol 205:217–218

    PubMed  CAS  Google Scholar 

  • Wirth KJ, Schölkens BA, Wiemer G (1994) The bradykinin B2 receptor antagonist WIN 64338 inhibits the effect of desarge-bradykinin in endothelial cells. Eur J Pharmacol 288: RI-R2

    Google Scholar 

  • Wirth KJ, Wiemer G, Schölkens BA (1992) Des-Arg1°[HOE 140] is a potent B, bradykinin antagonist. Recent Progress on Kinins. Birkhäuser, Basel, pp 406–413

    Google Scholar 

  • Yang CM, Luo SF, Hsia HC (1995) Pharmacological characterization of bradykinin receptors in canine cultured tracheal smooth muscle cells. Br J Pharmacol 144:67–72

    Google Scholar 

  • Iversen LL, Jesse]] T, Kanazawa I (1976) Release and metabolism of substance Pin rat hypothalamus. Nature 264:81–83

    CAS  Google Scholar 

  • Lee CM, Javitch JA, Snyder SH (1983) 3H-Substance P binding to salivary gland membranes. Mol Pharmacol 23:563–569

    Google Scholar 

  • Liu YF, Quirion R (1991) Presence of various carbohydrate moieties including 0-galactose and N-acetylglucosamine residues on solubilized porcine brain neurokinin1/substance P receptors. J Neurochem 57:1944–1950

    PubMed  CAS  Google Scholar 

  • McLean S, Ganong AH, Seeger TF, Bryce DK, Pratt KG, Reynolds LS, Siok CJ, Lowe Ill JA, Heym J (1991) Activity of binding sites in brain of a nonpeptide substance P (NK,) receptor antagonist. Science 251:437–439

    PubMed  CAS  Google Scholar 

  • McPherson GA (1985) Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Meth 14:213–228

    CAS  Google Scholar 

  • Mizrahi J, D’Orléans-Juste P, Drapeau G, Escher E, Regoli D (1983) Partial agonists and antagonists for substance P. Eur J Pharmacol 91:139–140

    PubMed  CAS  Google Scholar 

  • Perrone MH Diehl RE, Haubrich DR (1983) Binding of [3Hlsubstance P to putative substance P receptors in rat brain membranes. Eur J Pharmacol 95:131–133

    PubMed  CAS  Google Scholar 

  • Atkins PC, Norman ME, Zweiman B (1978) Antigen-induced neutrophil chemotactic activity in man. J Allergy Clin Immunol 62:149–155

    PubMed  CAS  Google Scholar 

  • Boyden S (1962) The chemotactic effects of mixtures of antibody and antigen on polymorpho-nuclear leukocytes. J Exp Med 115:453–466

    PubMed  CAS  Google Scholar 

  • Bray MA, Ford-Hutchinson AW, Shipley ME, Smith MJH (1980) Calcium ionophore A23187 induces release of chemokinetic and aggregating factors from polymorphonuclear leucocytes. Br J Pharmacol 71:507–512

    PubMed  CAS  Google Scholar 

  • Camussi G, Tetta C, Bussolino F, Baglioni C (1990) Antiinflammatory peptides (antiflammins) inhibit synthesis of platelet-activating factor, neutrophil aggregation and chemotaxis, and intradermal inflammatory reactions. J Exp Med 171:913–927

    PubMed  CAS  Google Scholar 

  • Ferrante A, Thong YH (1980) Optimal conditions for simultaneous purification of mononuclear and polymorphonuclear leukocytes from human blood by the Hypaque-Ficoll method. J Immunol Meth 36:109–117

    CAS  Google Scholar 

  • Figari IS, Mori NA, Palladino MA (1987) Regulation of neutrophil migration and superoxide production by recombinant tumor necrosis factors-a and -13: Comparison to recombinant interferon-y and interleukin-la. Blood 70:979–984

    PubMed  CAS  Google Scholar 

  • Harvath L, Falk W, Leonard El (1980) Rapid quantitation of neutrophil chemotaxis: Use of a polyvinylpyrrolidone-free polycarbonate membrane in a multiwell assembly. J Immunol Meth 37:39–45

    CAS  Google Scholar 

  • Issekutz AC, Issekutz TB (1989) Quantitation of blood cell accumulation and vascular responses in inflammatory reactions. In. Pharmacological Methods in the Control of Inflammnation. Alan R. Liss, Inc., pp 129–150

    Google Scholar 

  • Matzner Y, Drexler R, Levy M (1984) Effect of dipyrone, acetylsalicylic acid and acetaminophen on human neutrophil chemotaxis. Eur J Clin Invest 14:440–443

    PubMed  CAS  Google Scholar 

  • Nelson RD, Quie PG, Simmons RL (1975) Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. J Immunol 115:1650–1656

    PubMed  CAS  Google Scholar 

  • Roch-Arveiller M, Roblin G, Allain M, Giroud JP (1985) A visual technique of chemotactic assessment for pharmacological studies. J Pharmacol Meth 14:313–321

    CAS  Google Scholar 

  • Shalaby MR, Palladino MA, Hirabayashi SE, Eessalu TE, Lewis GT, Shepard HM, Aggarwal BB (1987) Receptor binding and activation of polymorphonuclear neutrophils by tumor necrosis factor-alpha. J Leukoc Biol 41:196–204

    PubMed  CAS  Google Scholar 

  • Watanabe K, Kinoshita S, Nakagawa H (1989) Very rapid assay of polymorphonuclear leukocyte chemotaxis in vitro. J Pharmacol Meth 22:13–18

    CAS  Google Scholar 

  • Bradford PG, Rubin RP (1986) The differential effects of nedocromil sodium and sodium cromoglycate on the secretory response of rabbit peritoneal neutrophils. Eur J Respir Dis 69 (Suppl 147):238–240

    Google Scholar 

  • Bray MA, Ford-Hutchinson AW, Shipley ME, Smith MJH (1980) Calcium ionophore A23187 induces release of chemokinetic and aggregating factors from polymorphonuclear leucocytes. Br J Pharmacol 71:507–512

    PubMed  CAS  Google Scholar 

  • Bourgoin S, Borgeat P, Poubelle PE (1991) Granulocyte-macrophage colony-stimulating factor (GM-CSF) primes human neutrophils for enhanced phosphatidylcholine breakdown b;. phopsholipase D. Agents Actions 34:32–34

    PubMed  CAS  Google Scholar 

  • Moqbel R, Wa’ GM, Kay AB (1986) Inhibition of human granulocyte activation by nedocromil sodium. Eur J Respir Dis 69 (Suppl 147):227–229

    Google Scholar 

  • Boopathy R, Balasubramanian AS (1986) Purification and characterization of sheep platelet cyclo-oxygenase. Biochem J 239:371–377

    PubMed  CAS  Google Scholar 

  • Boopathy R, Balasubramanian AS (1988) Purification and characterization of sheep platelet cyclooxygenase. Biochem J 239:371–377

    Google Scholar 

  • Borgeat P, Samuelsson B (1979), Arachidonic acid metabolism in polymorphonuclear leukocytes: Effect of ionophore A 23187. Proc Natl Acad Sci USA 76:2148–2152

    PubMed  CAS  Google Scholar 

  • Boyum A (1976) Isolation of lymphocytes, granulocytes and macrophages. Scand J Immunol 5 (Suppl 5) 9–15

    PubMed  Google Scholar 

  • Bruns RF, Thomsen WJ, Pugsley TA (1983) Binding of leukotrienes C4 and D4 to membranes from guinea pig lung: regulation by ions and guanine nucleotides. Life Sci 33: 645–653

    PubMed  CAS  Google Scholar 

  • Cheng JB, Cheng EIP, Kohi F, Townley RG (1986) [3H]Leukotriene B4 binding to the guinea-pig spleen membrane preparation: a rich tissue source for a high-affinity leukotriene B4 receptor site. J Pharmacol Exp Ther 236: 126–132

    Google Scholar 

  • Coleman RA, Smith WL, Narumiya S (1994) VIII. International union of pharmacology classification of prostanoid receptors: Properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 46:205–229

    PubMed  CAS  Google Scholar 

  • Evans AT, Formukong EA, Evans FJ (1987) Actions of cannabis constituents on enzymes of arachidonate metabolism: anti-inflammatory potential. Biochem Pharmacol 36:2035–2037

    PubMed  CAS  Google Scholar 

  • Funk CD, Funk LB, Kennedy ME, Pong AS, Fitzgerald GA (1991) Human platelet/erythroleukemia cell prostaglandin G/H synthase: eDNA cloning, expression, and gene chromosomal assignment, FASEB J 5:2304–2312

    Google Scholar 

  • Harvey J, Osborne DJ (1983) A rapid method for detecting inhibitors of both cyclo-oxygenase and lipoxygenase metabolites of arachidonic acid. J Pharmacol Meth 9:147–155

    CAS  Google Scholar 

  • Hedberg A, Hall SE, Ogletree ML, Harris DN, Liu ECK (1988) Characterization of [5,6–3H]SQ 29,548 as a high affinity radioligand, binding to thromboxane A2/prostaglandin H2-receptors in human platelets. J Pharmacol Exp Ther 245:786–792

    PubMed  CAS  Google Scholar 

  • Herrmann F, Lindemann A, Gauss J, Mertelsmann R (1990) Cytokine-stimulation of prostaglandin synthesis from endogenous and exogenous arachidonic acids in polymorphonuclear leukocytes involving activation and new synthesis of cyclooxygenase. Eur J Immunol 20: 2513–2516

    PubMed  CAS  Google Scholar 

  • Hock Fi, Wirth K, Albus U, Linz W, Gerhards Hi, Wiemer G, Henke S, Breipohl G, König W, Knolle J, Schölkens BA (1991) Hoe 140 a new potent and long acting bradykinin antagonist: in vitro studies. Br J Pharmacol 102:769–773

    Google Scholar 

  • Hock FJ, Wirth K, Albus U, Linz W, Gerhards HI, Wiemer G, Henke S, Breipohl G, König W, Knolle J, Schölkens BA (1991) Hoe 140 a new potent and long acting bradykinin antagonist: in vitro studies. Br J Pharmacol 102:769–773

    PubMed  CAS  Google Scholar 

  • Irvine RF (1982) Review article: How is the level of free arachidonic acid controlled in mammalian cells? Biochem J 204:3–16

    PubMed  CAS  Google Scholar 

  • Izumi T, Shimizu T, Seyama Y, Ohishi N, Takaku F (1986) Tissue distribution of leukotriene A4hydrolase activity in guinea pig. Biochem Biophys Res Commun 135:139–145

    PubMed  CAS  Google Scholar 

  • Katsumata M, Gupta C, Goldman AS (1986) A rapid assay for activity of phospholipase A2 using radioactive substrate. Anal Biochem 154:676–681

    PubMed  CAS  Google Scholar 

  • Kemal C, Louis-Flamberg P. Krupinski-Olsen R, Shorter AL (1987) Reductive inactivation of soybean lipoxygenase I by catechols: a possible mechanism for regulation of lipoxygenase activity. Biochemistry 26:7064–7072

    PubMed  CAS  Google Scholar 

  • Klein T, Nüsing RM, Pfeilschifter J, Ullrich V (1994) Selective inhibition of cyclooxygenase 2. Biochem Pharmacol 48:1605–1610

    PubMed  CAS  Google Scholar 

  • Kuhl P, Borbe HO, Fischer H, Römer A, Safayhi H (1986) Ebselen reduces the formation of LTB,in human and porcine leukocytes by isomerisation to its 5S,12R-6-trans-isomer. Prostaglandins 31:1029–1048

    PubMed  CAS  Google Scholar 

  • Lee SH, Soyoola E, Chanmugam P, Hart S, Sun W, Zhong H, Liou S, Simmons D, Hwang D, (1992) Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. J Biol Chem 267: 25934–25938

    PubMed  CAS  Google Scholar 

  • Mitchell JA, Akarasereenont P, Thiemermann C, Flower RI, Vane JR (1994) Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc Natl Acad Sci 90:11693–11697

    Google Scholar 

  • Mong S, Wu HL, Hogaboom GK, Clark MA, Crooke ST (1984) Characterization of the leukotriene D4 receptor in guinea-pig lung. Eur J Pharmacol 102:1–1 l

    Google Scholar 

  • Noushargh S, Hoult JRS (1986) Inhibition of human neutrophil degranulation by forskolin in the presence of phosphodiesterase inhibitors. Eur J Pharmacol 122:205–212

    Google Scholar 

  • O’Sullivan MG, Huggins EM Jr, Meade EA, DeWitt DL, McCall CE (1992) Lipopolysaccharide induces prostaglandin H synthase-2 in alveolar macrophages. Biochem Biophys Res Commun 187:1123–1127

    PubMed  Google Scholar 

  • Powell WS (1985) Reversed-phase high-pressure liquid chromatography of arachidonic acid metabolites formed by cyclooxygenase and lipoxygenases. Analyt Bioch 148:59–69

    CAS  Google Scholar 

  • Pugsley TA, Spencer C, Boctor AM, Gluckman MI (1985) Selective inhibition of the cyclooxygenase pathway of the arachidonic acid cascade by the nonsteroidal antiinflammatory drug isoxicam. Drug Dev Res 5:171–178

    CAS  Google Scholar 

  • RAdmark O. Shimizu T, Jörnvall H, Samuelsson B (1984) Leukotriene A4 hydrolase in human leukocytes. J Biol Chem 259:12339–12345

    Google Scholar 

  • Safayhi H, Mack T, Sabieraj J, Anazodo Ml, Subramanian LR, Ammon HPT (1992) Boswellic acids: Novel, specific, nonredox inhibitors of 5-lipoxygenase. J Pharmacol Exp Ther 261:1143–1146

    PubMed  CAS  Google Scholar 

  • Salari H, Braquet P, Borgeat P (1984) Comparative effects of indomethacin, acetylenic acids, 15-HETE, nordihydroguajaretic acid and BW 755c on the metabolism of arachidonic acid in human leukocytes and platelets. Prostagl Leukotr Med 13:53–60

    CAS  Google Scholar 

  • Samuelsson B (1986) Leukotrienes and other lipoxygenase products. Prog Lipid Res 25:13–18

    PubMed  CAS  Google Scholar 

  • Saussy DL Jr, Mais DE, Burch RM, Halushka PV (1986) Identification of a putative thromboxane A2/prostaglandin H2 receptor in human platelet membranes. J Biol Chem 261:3025–3029

    PubMed  CAS  Google Scholar 

  • Seibert K, Masferrer J, Zhang Y, Gregory S, Olson G, Hauser S, Leahy K, Perkins W, Isakson P (1995) Mediation of inflammation by cyclooxygenase-2. Agents Actions 46: 41–50

    CAS  Google Scholar 

  • Shimizu T, Râdmark O, Samuelsson B (1984) Enzyme with dual lipoxygenase activities catalyzes leukotriene A4 synthesis from arachidonic acid. Proc Natl Acad Sci USA 81:689–693

    PubMed  CAS  Google Scholar 

  • Smith WL, Meade EA, DeWitt DL (1994) Pharmacology of prostaglandin endoperoxide synthase isoenzymes- I and-2. Ann New York Acad Sci 71:136–142

    Google Scholar 

  • Vane J (1987) The evolution of non-steroidal anti-inflammatory drugs and their mechanisms of action. Drugs 33 (Suppl 1) 18–27

    PubMed  CAS  Google Scholar 

  • Vane J, Botting R (1987) Inflammation and the mechanism of action of anti-inflammatory drugs. FASEB J 1:89–96

    Google Scholar 

  • Veenstra J, van de Pol H, van der Tone H, Schaafsma G, Ockhuizen T (1988) Rapid and simple methods for the investigation of lipoxygenase pathways in human granulocytes. J Chromatogr 431:413–417

    Google Scholar 

  • Weithmann KU, Jeske S, Schlotte V (1994) Effect of leflunomide on constitutive and inducible pathways of cellular eicosanoid generation. Agents Actions 41:164–170

    PubMed  CAS  Google Scholar 

  • Weithmann KU, Schlotte V, Seiffge D, Jeske S (1993) Concerted action of pentoxifylline in conjunction with acetylsalicylic acid on platelet cyclic AMP and aggregation. Thromb Haemorrh Dis 8:1–8

    Google Scholar 

  • Xie W, Robertson DL, Simmons DL (1992) Mitogen-inducible prostaglandin G/H synthase: A new target for nonsteroidal antiinflammatory drugs. Drug Dev Res 25:249–265

    CAS  Google Scholar 

  • Bird TA, Saklatvala J (1986) Identification of a common class of high-affinity receptors for both types of porcine interleukin-1 on connective tissue cells. Nature 324:263–266

    Google Scholar 

  • Boyum A (1976) Isolation of lymphocytes, granulocytes and macrophages. Scand J Immunol 5 (Suppl 5) 9–15

    PubMed  Google Scholar 

  • Chin J, et al (1987) Identification of a high affinity receptor for native interleukin-la and interleukin-113 on normal human lung fibroblasts. J Exp Med 165:70–86

    PubMed  CAS  Google Scholar 

  • Eugui EM, Delustro B, Rouhafza S, Wilhelm R, Allison AC (1993) Coordinate inhibition by some antioxidants of TNFa, IL-113 and IL-6 production by human peripheral blood mononuclear cells. Ann NY Acad Sci 696:171–184

    PubMed  CAS  Google Scholar 

  • Grob PM, David E, Warren TC, DeLeon RP, Farina PR, Homon CA (1990) Characterization of a receptor for human monocyte-derived neutrophil chemotactic factor intereukin-8. J Biol Chem 265:8311–8316

    PubMed  CAS  Google Scholar 

  • Ibelgaufts H (ed) (1992) Lexikon Zytokine, München

    Google Scholar 

  • Killian PL (1986) Interleukin-la and interleukin-13 bind to the same receptor on T cells. J Immunol 136:4509–4514

    Google Scholar 

  • Lewis GP, Barrett ML (1986) Immunosuppressive actions of prostaglandins and the possible increase in chronic inflammation after cyclo-oxygenase inhibitors. Agents Actions 19:59–65

    PubMed  CAS  Google Scholar 

  • Maloff BL, Shaw JE, Di Meo TM, Fox D, Bruin EM (1989) Development of a RIA-based primary screen for IL-1 antagonists. Clin Chim Acta 180:73–78

    PubMed  CAS  Google Scholar 

  • Moser B, Schumacher C, von Tscharner V, Clark-Lewis I, Baggiolini M (1990) Neutrophil-activating peptide 2 and gro/melanoma growth-stimulatory activity interact with neutrophil-activating peptide- I /interleukin-8 receptors on human neutrophils. J Biol Chem 266:10666–10671

    Google Scholar 

  • Tiku K, Tiku ML, Skosey JL (1986) Interleukin-1 production by human polymorphonuclear neutrophils. J Immunol 136: 3677–3685

    PubMed  CAS  Google Scholar 

  • Warren JS (1993) Inflammation. DNandP (Drugs, News and Perspectives) 6:450–459

    Google Scholar 

  • Whicher JT, Thompson D, Billingham MEJ, Kitchen EA (1989) Acute phase proteins. In: Pharmacological Methods in the Control of Inflammation. Alan R. Liss, Inc., pp 101–128

    Google Scholar 

  • Flick DA, Gifford GE (1984) Comparison of in vitro cell cytotoxic assays for tumor necrosis factor. J Immunol Meth 68:167–175

    CAS  Google Scholar 

  • Maloff BL, Delmendo RE (1991) Development of high throughput for interleukin-la (IL-1a) and tumor necrosis factor (TNF-a) in isolated membrane preparations. Agents Actions 34:32–34

    Google Scholar 

  • Gloxhuber Ch (1976) A new inflammation model. Arzneim Forsch/Drug Res 26:43–45

    CAS  Google Scholar 

  • Selve N (1991) EM 405: a new substance with an uncommon profile of anti-inflammatory activity. Agents Actions 32: 59–61

    PubMed  CAS  Google Scholar 

  • Wilhelmi G (1949) Ueber die pharmakologischen Eigenschaften von Irgapyrin, einem neuen Präparat aus der Pyrazolreihe. Schweiz Med Wschr 79:577–582

    PubMed  CAS  Google Scholar 

  • Wilhelmi G, Domenjoz H (1951) Vergleichende Untersuchungen über die Wirkung von Pyrazolen und Antihistaminen bei verschiedenen Arten der experimentellen Entzündung. Arch Int Pharmacodyn 85:129–143

    PubMed  CAS  Google Scholar 

  • Winder CV, Wax J, Burr V, Been M. Rosiere CE (1958) A study of pharmacological influences on ultraviolet erythema in guinea pigs. Arch Int Pharmacodyn 116:261–292

    PubMed  CAS  Google Scholar 

  • Woodward DF, Owen DAA (1979) Quantitative measurement of the vascular changes produced by UV radiation and carrageenin using the guinea-pig ear as the site of inflammation. J Pharmacol Meth 2:5–42

    Google Scholar 

  • Bennett AJ, West GB (1978) Measurement of the changes in vascular permeability in rat skin. J Pharmacol Meth 1: 105–108

    CAS  Google Scholar 

  • Blackham A, Woods FAM (1986) Immune complex mediated inflammation in the mouse peritoneal cavity. J Pharmacol Meth 15:77–85

    CAS  Google Scholar 

  • Collins PD, Connolly DT, Williams TJ (1993) Characterization of the increase in vascular permeability induced by vascular permeability factor in vivo. Br J Pharmacol 109: 195–199

    PubMed  CAS  Google Scholar 

  • Feldberg W, Miles A (1953) Regional variations of increased permeability of skin capillaries induced by a histamine liberator and their relation to the histamine content in skin. J Physiol 120:205–213

    PubMed  CAS  Google Scholar 

  • Lembeck F, Holzer P (1979) Substance P as neurogenic mediator of antidromic vasodilation and neurogenic plasma extravasation. Naunyn Schmiedeberg’s Arch Pharmacol 310: 175–183

    CAS  Google Scholar 

  • Nagahisa A, Kanai Y, Suga O, Taniguchi K, Tsuchiya M, Lowe III JA, Hess HJ (1992) Antiinflammatory and analgesic activity of a non-peptide substance P receptor antagonist. Eur J Pharmacol 217:191–195

    PubMed  CAS  Google Scholar 

  • Saria A, Lundberg JM, Skofitsch G, Lembeck F (1983) Vascular protein leakage in various tissues induced by substance P, capsaicin, bradykinin, serotonin, histamine and by antigen challenge. Naunyn-Schmiedeberg’s Arch Pharmacol 324:212–218

    CAS  Google Scholar 

  • Sensch KH, Zeiller P, Raake W (1979) Zur antiexsudativen und antioedematoesen Wirkung von Sympathikomimetika. Arzneim Forsch/Drug Res 29:116–121

    CAS  Google Scholar 

  • Shionoya H, Ohtake S (1975) A new simple method for extraction of extravasated dye in the skin. Japan J Pharmacol 103, Suppl 25:103

    Google Scholar 

  • Watanabe K, Nakagawa H, Tsurufuji S (1984) A new sensitive fluorometric method for measurement of vascular permeability. J Pharmacol Meth 11:167–176

    CAS  Google Scholar 

  • Whittle BA (1964) The use of changes in capillary permeability in mice to distinguish between narcotic and non narcotic analgesics. Br J Pharmacol 22:246–253

    CAS  Google Scholar 

  • Burch RM, Connor JR, Bator JM, Weitzberg M, Laemont K, Noronha-Blob L, Sullivan JP, Steranka LR (1992) NPC 15669 inhibits the reverse passive Arthus reaction in rats by blocking neutrophil recruitment. J Pharm Exp Ther 263:933–937

    CAS  Google Scholar 

  • Lawrence MB, Springer TA (1991) Leukocytes roll on a selectin at physiologic flow rates: Distinction from and prerequisite for adhesion through integrins. Cell 65:859–873

    PubMed  CAS  Google Scholar 

  • MacGregor RR, Spagnuolo PJ, Lentnek AL (1974) Inhibition of granulocyte adherence by ethanol, prednisone, and aspirin, measured with an assay system. New Engl J Med 291: 642–646

    PubMed  CAS  Google Scholar 

  • Stecher VJ, Chinea GL (1978) The neutrophil adherence assay as a method for detecting unique anti-inflammatory agents. Agents Actions 8:258–262

    PubMed  CAS  Google Scholar 

  • Zielinski T, Müller HJ, Schleyerbach R, Bartlett RR (1994) Differential effects of leflunomide on leukocytes: Inhibition of rat in vivo adhesion and human in vitro oxidative burst without affecting surface marker modulation. Agents Actions 41 Spec Conf Issue: C276–278

    Google Scholar 

  • Evans PD, Hossack M, Thomson DS (1971) Inhibition of contact sensitivity in the mouse by topical application of corticosteroids. Br J Pharmacol 43:403

    PubMed  CAS  Google Scholar 

  • Griswold DE, DiLorenzo JA, Calabresi P (1974) Quantification and pharmacological dissection of oxazolone-induced contact sensitivity in the mouse. Cell Immunol 11:198–204

    PubMed  CAS  Google Scholar 

  • Alpermann HG, Sandow J, Vogel HG (1982) Tierexperimentelle Untersuchungen zur topischen und systemischen Wirksamkeit von Prednisolon-17-ethylcarbonat-21-propionat. Arzneim Forsch/Drug Res 32:633–638

    CAS  Google Scholar 

  • Young JM, Young LM (1989) Cutaneous models of inflammation for the evaluation of topical and systemic pharmacological agents. In: Pharmacological Models in the Control of Inflammation. Alan R. Liss, Inc., pp 215–231

    Google Scholar 

  • Alpermann HG, Sandow J, Vogel HG (1982) Tierexperimentelle Untersuchungen zur topischen and systemischen Wirksamkeit von Prednisolon-17-ethylcarbonat-21-propionat. Arzneim Forsch/Drug Res 32:633–638

    CAS  Google Scholar 

  • Chang J, Blazek E, Skowronek M, Marinari L, Carlson RP (1987) The antiinflammatory action of guanabenz is mediated through 5-lipoxygenase and cyclooxygenase inhibition. Eur J Pharm 142:197–205

    CAS  Google Scholar 

  • Colorado A, Slama JT, Stavinoha WB (1991) A new method for measuring auricular inflammation in the mouse. J Pharmacol Meth 26:73–77

    CAS  Google Scholar 

  • Crummey A, Harper GP, Boyle EA, Mangan FR (1987) Inhibition of arachidonic acid-induced ear oedema as a model for assessing topical anti-inflammatory compounds. Agents Actions 20:69–72

    PubMed  CAS  Google Scholar 

  • Griswold DE, Chabot-Fletcher M, Webb EF, Martin L, Hillegass L (1995) Antiinflammatory activity of topical auranofin in arachidonic acid-and phorbol ester-induced inflammation in mice. Drug Dev Res 34:369–375

    CAS  Google Scholar 

  • Maloff BL, Shaw JE, DiMeo TM (1989) IL-1 dependent model of inflammation mediated by neutrophils. J Pharmacol Meth 22:133–140

    CAS  Google Scholar 

  • Opas EE, Bonney RJ, Humes JL (1985) Prostaglandin and leukotriene synthesis in mouse ears inflammed by arachidonic acid. J Invest Dermatol 84:253–256

    PubMed  CAS  Google Scholar 

  • Tarayre JP, Aliaga M, Barbara M, Villanova G, Caillol V, Lauressergues H (1984) Pharmacological study of cantharidin-induced ear inflammation in mice. J Pharmacol Meth 11:271–277

    CAS  Google Scholar 

  • Tomchek LA, Hartman DA, Lewin AC, Calhoun W, Chau TT, Carlson RP (1991) Role of corticosterone in modulation of eicosanoid biosynthesis and antiinflammatory activity by 5lipoxygenase (5-LO) and cyclooxygenase (CO) inhibitors. Agents Actions 34:20–24

    PubMed  CAS  Google Scholar 

  • Tonelli G, Thibault L, Ringler I (1965) A bio-assay for the concomitant assessment of the antiphlogistic and thymolytic activities of topically applied steroids. Endocrinology 77:625–630

    PubMed  CAS  Google Scholar 

  • Ueno H, Maruyama A, Miyake M, Nakao E, Nakao K, Umezu K, Nitta I (1991) Synthesis and evaluation of antiinflammatory activities of a series of corticosteroid 17a-esters containing a functional group. J Med Chem 34:2468–2473

    PubMed  CAS  Google Scholar 

  • Weirich EG, Longauer JK, Kirkwood AH (1977) New experimental model for the primary evaluation of topical contra-inflammatory agents. Arch Derm Res 259:141–149

    CAS  Google Scholar 

  • Wilhelmi G, Domenjoz H (1951) Vergleichende Untersuchungen über die Wirkung von Pyrazolen and Antihistaminen bei verschiedenen Arten der experimentellen Entzündung. Arch Int Pharmacodyn 85:129–143

    CAS  Google Scholar 

  • Young JJ, Spires DA, Bedord CJ, Wagner B, Ballaron SJ, DeYoung LM (1984) The mouse ear inflammatory response to topical arachidonic acid. J Invest Dermatol 82:367–371

    PubMed  CAS  Google Scholar 

  • Young JM, Wagner M, Spires DA (1983) Tachyphylaxis in 12-O-tetradecanoylphorbol acetate-and arachidonic acid-induced ear edema. J Invest Dermatol 80:48–52

    PubMed  CAS  Google Scholar 

  • Alpermann HG. Magerkurth KO (1972) Messanordnung zur Bestimmung der Wirkung von Antiphlogistika. Arzneim Forsch/Drug Res 22:1078–1088

    Google Scholar 

  • Alpermann HG, Sandow J, Vogel HG (1982) Tierexperimentelle Untersuchungen zur topischen und systemischen Wirksamkeit von Prednisolon-17-ethylcarbonat-21-propionat. Arzneim Forsch/Drug Res 32:633–638

    CAS  Google Scholar 

  • Arrigoni-Martelli E, Schatti P, Selva D (1971) The influence of anti-inflammatory and immunosuppressant drugs on nystatin induced oedema. Pharmacology 5:215–224

    PubMed  CAS  Google Scholar 

  • Braga da Motta JI, Cinha FQ, Vargaftig BB, Ferreira SH (1994) Drug modulation of antigen-induced paw oedema in guinea-pigs: effects of lipopolysaccharide, tumor necrosis factor and leucocyte depletion. Br J Pharmacol 112: 111–116

    Google Scholar 

  • Branceni D, Azadian-Boulanger A, Jequier R (1964) L’inflammation expérimentale par un analogue de l’héparine. Un test d’activité antiinflammatoire. Arch Int Pharmacodyn 152:15–24

    PubMed  CAS  Google Scholar 

  • Brooks RR, Carpenter JF, Jones SM, Ziegler TC, Pong SF (1991) Canine carrageenin-induced acute paw inflammation model and its response to nonsteroidal antiinflammatory drugs. J Pharmacol Meth 25:275–283

    CAS  Google Scholar 

  • Burch RM, DeHaas Ch (1990) A bradykinin antagonist inhibits carrageenan edema in rats. Naunyn-Schmiedeberg’s Arch Pharmacol 342:189–193

    CAS  Google Scholar 

  • Chino G, Peers SH, Wallace JL, Flower RJ (1989) A study of phospholipase A2-induced oedema in rat paw. Eur J Pharmacol 166:505–510

    Google Scholar 

  • Damas J, Remacle-Volon G (1992) Influence of a long-acting bradykinin antagonist, Hoe 140, on some acute inflammatory reactions in the rat. Eur J Pharmacol 211:81–86

    PubMed  CAS  Google Scholar 

  • Dewes R (1955) Auswerung antiphlogistischer Substanzen mit Hilfe des Hyaluronidase-Odems. Arch Int Pharmacodyn 104:19–28

    PubMed  CAS  Google Scholar 

  • Gemmel DK, Cottney J, Lewis AJ (1979) Comparative effects of drugs on four paw oedeme models. Agents and Actions 9:107–116

    Google Scholar 

  • Griesbacher T, Sutliff RL, Lembeck F (1994) Anti-inflammatory and analgesic activity of the bradykinin antagonist, icatibant (Hoe 140), against an extract from Porphyromonas gingivalis. Br J Pharmacol 12:1004–1006

    Google Scholar 

  • Hofrichter G, Liehn HD, Hampel H (1969) Eine plethysmometrische Messanordnung zur Bestimmung des Rattenpfotenvolumens. Arzneim Forsch/Drug Res 19:2016–2017

    CAS  Google Scholar 

  • Kalbhen DA, Smalla HD (1977) Pharmakologische Studien zur antiphlogistischen Wirkung von Pentosanpolysulfat in Kombination mit Metamizol. Arzneim Forsch/Drug Res 27: 1050–1057

    CAS  Google Scholar 

  • Legat FJ, Griesbacher T, Lembeck F (1994) Mediation by bradykinin of rat paw oedema induced by collagenase from Clostridium histolyticum. Br J Pharmacol 112:433–460

    Google Scholar 

  • Lewis AJ, Cottney J, Nelson DJ (1976) Mechanisms of phytohaemagglutinin-P, concanavalin-A and kaolin-induced oedemas in the rat. Eur J Pharmacol 40:1–8

    PubMed  CAS  Google Scholar 

  • Leyck S, Parnham MJ (1990) Acute antiinflammatory and gastric effects of the seleno-organic compound ebselen. Agents Actions 30:426–431

    PubMed  CAS  Google Scholar 

  • Lorenz D (1961) Die Wirkung von Phenylbutazon auf das Pfotenoedem der Ratte nach oraler Applikation. NaunynSchmiedeberg’ s Arch exp Path Pharm 241:516–517

    Google Scholar 

  • Marek J (1980) Bentonite-induced paw edema as a tool for simultaneous testing of prophylactic and therapeutic effects of anti-inflammatory and other drugs. Pharmazie 36:46–49

    Google Scholar 

  • Moore E, Trottier RW (1974) Comparison of various types of carrageenin in promoting pedal edema in the rat. Res Commun Chem Pathol Pharmacol 7:625–628

    PubMed  CAS  Google Scholar 

  • Nikolov R, Nikolova M, Peneva M (1978) Study of dipyrone (Analgin) antagonism toward certain pharmacological effects of prostaglandins E2 and F2a. In: Ovtcharov R, Pola W (eds) Proceedings Dipyrone. Moscow Symposium, Schattauer-Verlag, Stuttgart New York, pp 81–89

    Google Scholar 

  • Oyanagui Y, Sato S (1991) Inhibition by nilvadipine of ischemic and carrageenan paw edema as well as of superoxide radical production from neutrophils and xanthine oxidase. Arzneim Forsch/Drug Res 41:469–474

    CAS  Google Scholar 

  • Peterfalvi M, Branceni D, Azadian-Boulanger G, Chiflot L, Jequier R (1966) Etude pharmacologique d’un nouveau composé analgésique antiiflammatoire, la Glaphénine. Med Pharmacol Exp 15:254–266

    CAS  Google Scholar 

  • Randall LO, Baruth H (1976) Analgesic and anti-inflammatory activity of 6-chloro-alpha-methyl-carbazole-2-acetic acid (C-5720. Arch Int Pharmacodyn 220:94–114

    PubMed  CAS  Google Scholar 

  • Schiatti P, Selva D, Arrigoni-Martelli E (1970) L’edema localizzato da nystatin come modello di inflammazione sperimetale. Boll Chim Farm 109:33–38

    PubMed  CAS  Google Scholar 

  • Schönhöfer P (1967) Eine kritische Bemerkung zur Vergleichbarkeit der Wirkung entzündungshemmender Pharmaka auf die Glucosamin-6-phosphat-Synthese in vitro und am Rattenpfotenödem in vivo. Med Pharmacol Exp 16:66–74

    Google Scholar 

  • Shirota H, Kobayashi S, Shiojiri H, Igarashi T (1984) Determination of inflamed paw surface temperature in rats. J Pharmacol Meth 12:35–43

    CAS  Google Scholar 

  • Siegel DM, Giri SN, Scheinholtz RM, Schwartz LW (1980) Characteristics and effect of antiinflammatory drugs on adriamycin-induced inflammation in the mouse paw. Inflammation 4:233–248

    PubMed  CAS  Google Scholar 

  • Souza Pinto JC, Remacle-Volon G, Sampaio CAM, Damas J (1995) Collagenase-induced oedeme in the rat paw and the kinin system. Eur J Pharmacol 274:101–107

    Google Scholar 

  • Tsumuri K, Kyuki K, Niwa M, Kokuba S, Fujimura H (1986) Pharmacological investigations of the new antiinflammatory agent 2-(10,11-dihydro-l0-oxodibenzo(b,f)thiepin-2yl)propionic acid. Arzneim Forsch/Drug Res 36:1796–1800

    Google Scholar 

  • Wagner-Jauregg Th, Jahn U, Buech 0 (1962) Die antiphlogistische Prüfung bekannter Antirheumatika am RattenpfotenKaolinödem. Arzneim Forsch/Drug Res 12:1160–1162

    CAS  Google Scholar 

  • Webb EF, Griswold DE (1984) Microprocessor-assisted plethysmograph for the measurement of mouse paw volume. J Pharmacol Meth 12:149–153

    CAS  Google Scholar 

  • Willis AL, Cornelsen M (1973) Repeated injection of prostaglandin E2 in rat paws induces chronic swelling and a marked decrease in pain threshold. Prostaglandins 3: 353–357

    PubMed  CAS  Google Scholar 

  • Winter CA, Risley EA, Nuss GW (1962) Carrageenin-induced oedema in hind paw of the rat as an assay for antiinflammatory drugs. Proc Soc Exp Biol Med 111:544–547

    PubMed  CAS  Google Scholar 

  • Winter CA, Risley EA, Nuss GW (1963) Antiinflammatory and antipyretic activities of indomethacin, (1-(p-chlorobenzoyl)-5-methoxy-2-methyl-indole-3-acetic acid. J Pharmacol Exp Ther 141:369–376

    PubMed  CAS  Google Scholar 

  • Wirth KJ, Alpermann HG, Satoh R, Inazu M (1992) The bradykinin antagonist HOE 140 inhibits carrageenan-and thermically induced paw edema in rats. Recent Progress on Kinins, Birkhäuser, Basel, pp 428–431

    Google Scholar 

  • Ackerman N, Tomolonis A, Miram L, Kheifets J, Martinez S, Carter A (1980) Three day pleural inflammation: A new model to detect drug effects on macrophage accumulation. J Pharmacol Exp Ther 215:588–595

    PubMed  CAS  Google Scholar 

  • De Brito FB (1989) Pleurisy and pouch models of acute inflammation. In: Pharmacological Methods in the Control of Inflammation. Alan R. Liss, Inc. pp 173–194

    Google Scholar 

  • Dunn CJ, Doyle DV, Willoughby DA (1993) Investigation of the acute and chronic anti-inflammatory properties of diphosphonates using a broad spectrum of immune and non-immune inflammatory reactions. Drug Dev Res 28:47–55

    CAS  Google Scholar 

  • Mielens ZE, Connolly K, Stecher VJ (1985) Effects of disease modifying antirheumatic drugs and nonsteroidal antiinflammatory drugs upon cellular and fibronectin responses in a pleurisy model. J Rheumatol 12:1083–1087

    PubMed  CAS  Google Scholar 

  • Mikami T, Miyasaka K (1983) Effects of several anti-inflammatory drugs on the various parameters involved in the inflammation response in rat carrageenin-induced pleurisy. Eur J Pharmacol 95:1–12

    PubMed  CAS  Google Scholar 

  • Sancilio L (1969) Evans blue-carrageenan pleural effusion as a model for the assay of nonsteroidal antirheumatic drugs. J Pharmacol Exp Ther 168:199–204

    PubMed  CAS  Google Scholar 

  • Sancilio LF, Fishman A (1973) Application of sequential analysis to Evans blue-carrageenan-induced pleural effusion for screening of compounds for anti-inflammatory activity. Toxicol Appl Pharmacol 26:575–584

    PubMed  CAS  Google Scholar 

  • Tsurumi K, Mibu H, Okada K, Hasegawa J, Fujimura H (1986) Pharmacological investigations of the new antiinflammatory agent 2-(10,11-dihydro-l0-oxodibenzo[b,f1thiepin-2yl)propionic acid. Arzneim Forsch/Drug Res 36:1806–1809

    CAS  Google Scholar 

  • Ushida Y, Oh-Ishi S, Tanaka K, Harada Y, Ueno A, Katori M (1982) Activation of plasma kallikrein-kinin system and its significant role in the pleural fluid accumulation of rat carrageenin-induced pleurisy. In: Fritz H (ed.) Recent Progress on Kinins. Agents and Actions Suppl Vol 9:379–383

    Google Scholar 

  • Boris A, Stevenson RH (1965) The effects of some non-steroidal anti-inflammatory agents on carrageenin-induced exsudate formation. Arch Int Pharmacodyn 153:205–210

    CAS  Google Scholar 

  • De Brito FB (1989) Pleurisy and pouch models of acute inflammation. In: Pharmacological Methods in the Control of Inflammation. Alan R. Liss, Inc. pp 173–194

    Google Scholar 

  • Moreno JJ (1993) Time course of phopsholipase A2, eikosanoid release and cellular accumulation in rat immunological air pouch inflammation. Int J Immunpharmacol 15: 597–603

    CAS  Google Scholar 

  • Robert A, Nezamis JE (1957) The granuloma pouch as a routine assay for antiphlogistic compounds. Acta Endocr (Kbh) 25:105–112

    CAS  Google Scholar 

  • Selye H (1953) On the mechanism through which hydrocortisone affects the resistance of tissues to injury. An experimental study with the granuloma pouch technique. J Am Med Ass 152:1207–1213

    CAS  Google Scholar 

  • Ueno H, Maruyama A, Miyake M, Nakao E, Nakao K, Umezu K, Nitta I (1991) Synthesis and evaluation of antiinflammatory activities of a series of corticosteroid 17a-esters containing a functional group. J Med Chem 34:2468–2473

    PubMed  CAS  Google Scholar 

  • Vogel HG (1963) Intensität und Dauer der antiinflammatorischen und glykoneogenetischen Wirkung von Prednisolon und Prednisolonazetat nach oraler und subcutaner Applikation an der Ratte. Acta Endocr (Kbh) 42:85–96.

    CAS  Google Scholar 

  • Vogel HG. (1965) Intensität und Dauer der Wirkung von 6Methylprednisolon und seinen Estern an der Ratte. Acta Endocr. (Kbh.) 50:621–642

    CAS  Google Scholar 

  • Carlson RP, Datko LJ, Welch TM, Purvis WF, Shaw GW, Thompson JL, Brunner TR (1986) An automated microcomputer-based system for determining canine paw pressure quantitatively in the dog synovitis model. J Pharmacol Meth 15:95–104

    CAS  Google Scholar 

  • Chau TT (1989) Analgesic testing in animal models. In: Pharmacological models in the control of inflammation. Alan R. Liss, Inc., pp 195–212

    Google Scholar 

  • Daniel A Jouvin JL (1984) Experimentally induced inflammation of the guinea pig palatal mucosa by injection of a microcrystalline suspension of monosodium urate. J Pharmacol Meth 12:155–166

    CAS  Google Scholar 

  • Dubinsky B, Gebre-Mariam S, Capetola RJ, Rosenthale ME (1987) The antialgesic drugs: Human therapeutic correlates of their potency in laboratory animal models of hyperalgesia. Agents and Actions 20:50–60

    PubMed  CAS  Google Scholar 

  • Faires JS, McCarty DJ (1962) Acute arthritis in man and dog after intrasynovial injection of sodium urate crystals. Lancet 2:682–685

    Google Scholar 

  • Fujihira E, Mori T, Nakazawa M, Ozawa H (1971) A simple method for evaluating analgesic efficacy of non-steroidal anti-inflammatory drugs. Chem Pharm Bull 19:1506–1508

    CAS  Google Scholar 

  • McCarty DJ, Faires JS (1963) A comparison of the duration of local anti-inflammatory effects of several adrenocorticosteroid esters — a bioassay technique. Curr Ther Res 5: 284–290

    PubMed  Google Scholar 

  • McCarty DJ, Phelps P, Pyenson J (1966) Crystal-induced inflammation in canine joints. 1. An experimental model with quantification of the host response. J Exp Med 124:99–114

    PubMed  Google Scholar 

  • Perkins MN, Campell EA (1992) Capsazepine reversal of the antinociceptive action of capsaicin in vivo. Br J Pharmacol 107:329–333

    PubMed  CAS  Google Scholar 

  • Phelps P, McCarty DJ (1967) Animal techniques for evaluating anti-inflammatory drugs. In: Siegler PE. Moyer JH (eds) Animal and pharmacological techniques in drug evaluation. Vol 2. Year Book Medical Publishers, Inc., Chicago, pp 742–747

    Google Scholar 

  • Rosenthale ME, Dervinis A, Kassarich J, Singer S (1972) Prostaglandins and anti-inflammatory drugs in the dog knee joint. J Pharm Pharmacol 24:149–150

    PubMed  CAS  Google Scholar 

  • Rosenthale ME, Kassarich J, Schneider F (1966) Effect of anti-inflammatory agents on acute experimental synovitis in dogs. Proc Soc Exp Biol Med 122:693–696

    PubMed  CAS  Google Scholar 

  • Schaible HG, Schmidt RF (1985) Effects of an experimental arthritis on the sensory properties of fine articular afferent units. J Neurophysiol 54:1109–1122

    PubMed  CAS  Google Scholar 

  • Tanaka K, Shinvotori T, Makino S, Aikawa Y, Inaba T, Yoshida C, Takano S (1992) Pharmacological studies of the new antiinflammatory agent 3-formylamino-7-methylsulfonylamino-6-phenoxy-4H-1-benzopyran-4-one. 1st Communication: antiinflammatory, analgesic and other related properties. Arzneiur Forsch/Drug Res 42:935–944

    CAS  Google Scholar 

  • Alpermann HG, Sandow J, Vogel HG (1982) Tierexperimentelle Untersuchungen zur topischen und systemischen Wirksamkeit von Prednisolon-17-ethylcarbonat-21-propionat. Arzneim Forsch/Drug Res 32:633–638

    CAS  Google Scholar 

  • Bush IE, Alexander RW (1960) An improved method for the assay of antiinflammatory substances in rats. Acta Endocr (Kbh) 35:268–276

    CAS  Google Scholar 

  • Hicks R (1969) The evaluation of inflammation induced by material implanted subcutaneously in the rat. J Pharm Pharmacol 21:581–588

    PubMed  CAS  Google Scholar 

  • Meier R, Schuler W, Desaulles P (1950) Zur Frage des Mechanismus der Hemmung des Bindegewebswachstums durch Cortisone. Experientia 6:469–471

    PubMed  CAS  Google Scholar 

  • Penn GB, Ashford A (1963) The inflammatory response to implantation of cotton pellets in the rat. J Pharm Pharmacol 15:798–803

    PubMed  CAS  Google Scholar 

  • Roszkowski AP, Rooks WH, Tomolonis AJ, Miller LM (1971) Anti-inflammatory and analgesic properties of d-2-(6’methoxy-2’-naphthyl)-propionic acid (NAPROXEN). J Pharmacol Exper Ther 179:114–123

    CAS  Google Scholar 

  • Rudas B (1960) Zur quantitativen Bestimmung von Granulationsgewebe in experimentell erzeugten Wunden. Arzneim Forsch 10:226–229

    CAS  Google Scholar 

  • Tanaka A, Kobayashi F, Miyake T (1960) A new anti-inflammatory activity test for corticosteroids. The formalin-filterpaper pellet method. Endocrinol Japon 7:357–364

    CAS  Google Scholar 

  • Tsurumi K, Mibu H, Okada K, Hasegawa J, Fujimura H (1986) Pharmacological investigations of the new antiinflammatory agent 2-(10,11-dihydro-10-oxodibenzo[b,flthiepin-2yl)propionic acid. Arzneim Forsch/Drug Res 36:1806–1809

    CAS  Google Scholar 

  • Bonta IL, Adolfs MJP, Parnham MJ (1979) Cannulated sponge implants in rats for the study of time-dependent pharmacological influences on inflammatory granulomata. J Pharmacol Meth 2:1–11

    CAS  Google Scholar 

  • Boucek RJ, Noble NL (1955) Connective tissue. A technique for its isolation and study. AMA Arch Pathol 59:553–558

    PubMed  CAS  Google Scholar 

  • Bragt PC, Bonta IL, Adolfs MJP (1980) Cannulated Teflon chamber implant in the rat: A new model for continuous studies on granulomatous inflammation. J Pharmacol Meth. 3:51–61

    CAS  Google Scholar 

  • Damas J, Remacle-Volon G (1992) Influence of a long-acting bradykinin antagonist, Hoe 140, on some acute inflammatory reactions in the rat. Eur J Pharmacol 211:81–86

    PubMed  CAS  Google Scholar 

  • Ford-Hutchinson AW, Walker JR, Smith MJH (1978) Assessment of anti-inflammatory activity by sponge implantation techniques. J Pharmacol Meth 1:3–7

    CAS  Google Scholar 

  • Higgs GA (1989) Use of implanted sponges to study the acute inflammatory response. In: Pharmacological Methods in the Control of Inflammation. Alan R. Liss, Inc., pp 151–171

    Google Scholar 

  • Holm-Pedersen P, Zederfeldt B (1971) Granulation tissue formation in subcutaneously implanted cellulose sponges in young and adult rats. Scand J Plast Reconstr Surg 5:13–16

    PubMed  CAS  Google Scholar 

  • Paulini K, Körner B, Beneke G, Endres R (1974) A quantitative study of the growth of connective tissue: Investigation on implanted polyester-polyurethane sponges. Conn Tiss Res 2:257–264

    CAS  Google Scholar 

  • Paulini K, Körner B, Mohr W, Sonntag W (1976) The effect of complete Freund — adjuvant on chronic proliferating inflammation in an experimental granuloma model. Z Rheumatol 35:123–131

    PubMed  CAS  Google Scholar 

  • Saxena PN (1960) Effects of drugs on early inflammation reaction. Arch Int Pharmacodyn Ther 126:228–237

    PubMed  CAS  Google Scholar 

  • Vogel HG (1970) Das Glasstabgranulom, eine Methode zur Untersuchung der Wirkung von Corticosteroiden auf Gewicht, Festigkeit und chemische Zusammensetzung des Granulationsgewebes an Ratten. Arzneim Forsch/Drug Res. 20:1911–1918

    CAS  Google Scholar 

  • Vogel HG (1975) Collagen and mechanical strength in various organs of rats treated with d-penicillamine or aminoacetonitrile. Conn Tiss Res 3:237–244

    CAS  Google Scholar 

  • Vogel HG (1977) Mechanical and chemical properties of connective tissue organs in rats as influenced by non-steroidal antirheumatic drugs. Conn Tiss Res 5:91–95

    CAS  Google Scholar 

  • Vogel HG, De Souza NJ, D’s A (1990) Effect of terpenoids isolated from Centella asiatica on granuloma tissue. Acta therapeut 16:285–298

    CAS  Google Scholar 

  • Cashin CH, Dawson W, Kitchen EA (1977) The pharmacology of benoxaprofen (2-[4-chlorophenyl]-a-methyl-5-benzoxazole acetic acid), LRCL 3794, a new compound with anti-inflammatory activity apparently unrelated to prostaglandin synthesis. J Pharm Pharmacol 29:330–336

    PubMed  CAS  Google Scholar 

  • Goburdhun R, Gurlez K, Haruna H, West GB (1978) Testing for the gastro-intestinal irritancy of aspirin and indomethacin. J Pharmacol Meth 1:109–114

    Google Scholar 

  • Rainsford KD (1987) Gastric ulcerogenicity of non-steroidal anti-inflammatory drugs in mice sensitized by cholinomimetic treatment. J Pharm Pharmacol 39:669–672

    Google Scholar 

  • Rainsford KD (1989) Gastrointestinal side effects. In: Pharmacological Methods in the Control of Inflammation. Alan R. Liss, Inc., pp 343–362

    Google Scholar 

  • Szabo S, Trier JS, Brown A, Schnoor J, Howan HD, Bradford JC (1985) A quantitative method for assessing the extent of experimental gastric erosions and ulcers. J Pharmacol Methods 13:59–66

    PubMed  CAS  Google Scholar 

  • Ghanayem BI, Ahmed AE (1982) Quantitative determination of gastrointestinal bleeding in rats. J Pharmacol Meth 8: 311–318

    CAS  Google Scholar 

  • Brune K, Alpermann H (1983) Non-acidic pyrazoles: inhibition of prostaglandin production, carrageenan oedema and yeast fever. Agents Actions 13:360–363

    PubMed  CAS  Google Scholar 

  • Burn JH, Finney DJ, Goodwin LG (1950) Chapter XIV: Antipyretics and analgesics. In: Biological Standardisation, Oxford University Press, London, New York, pp 312–319.

    Google Scholar 

  • Clement JG, Mills P, Brockway B (1989) Use of telemetry to record body temperature and activity in mice. J Pharmacol Meth 21:129–140

    CAS  Google Scholar 

  • Gallaher EJ, Egner DA, Swen J (1985) Automated remote temperature measurement in small animals using a telemetry/microcomputer interface. Comput Biol Med 15:103–110

    Google Scholar 

  • Guillet MC, Molinié B, Laduron PM, Terlain B (1990) Effects of ketoprofen in adjuvant-induced arthritis measured in a new telemetric model test. Eur J Pharmacol 183:2266–2267

    Google Scholar 

  • Inoue K, Fujisawa H, Sasaki Y, Nishimura T, Nishimura I, Inoue Y, Yokota M, Masuda T, Ueda F, Shibata Y, Kimura K, Inoue K, Komiya Y, Nishioka J (1991) Pharmacological properties of the new non-steroidal anti-inflammatory agent Etodolac. Arzneinr Forsch/Drug Res 41:228–235

    CAS  Google Scholar 

  • Loux JJ, DePalma PD, Yankell SL (1972) Antipyretic testing of aspirin in rats. Toxicol Appl Pharmacol 22:672–675

    PubMed  CAS  Google Scholar 

  • Riley JL, Thursten JR, Egemo CL, Elliot HL (1978) A radio-telemetry transmitter for transmitting temperatures from small animals. J Appl Physiol 45:1016–1018

    PubMed  CAS  Google Scholar 

  • Roszkowski AP, Rooks WH, Tomolonis AJ, Miller LM (1971) Anti-inflammatory and analgesic properties of d-2-(6’methoxy-2’-naphthyl)-propionic acid (NAPROXEN). J Pharmacol Exper Ther 179:114–123

    CAS  Google Scholar 

  • Shimada SG, Ottemess IG, Stitt JT (1994) A study of the mechanism of action of the mild analgesic dipyrone. Agents Actions 41:188–192

    PubMed  CAS  Google Scholar 

  • Smith PK, Hambourger WE (1935) The ratio of the toxicity of acetanilide to its antipyretic activity in rats. J Pharmacol Exp Ther 54:346–351

    CAS  Google Scholar 

  • Stitt JT, Shimada SG (1991) Calcium channel blockers inhibit endogenous pyrogen fever in rats and rabbits. J Appl Physiol 71:951–955

    PubMed  CAS  Google Scholar 

  • Tanaka K, Shimotori T, Makino S, Aikawa Y, Inaba T, Yoshida C, Takano S (1992) Pharmacological studies of the new antiinflammatory agent 3-formylamino-7-methylsulfonylamino-6-phenoxy-4H-l-benzopyran-4-one. 1st Communication: antiinflammatory, analgesic and other related properties. Arzneim Forsch/Drug Res 42:935–944

    CAS  Google Scholar 

  • Cashin CH, Dawson W, Kitchen EA (1977) The pharmacology of benoxaprofen (2-[4-chlorophenyl]-a-methyl-5-benzoxazole acetic acid), LRCL 3794, a new compound with antiinflammatory activity apparently unrelated to prostaglandin synthesis. J Pharm Pharmacol 29:330–336

    PubMed  CAS  Google Scholar 

  • Cashin CH, Heading CE (1968) The assay for anti-pyretic drugs in mice, using intracerebral injection of pyretogenins. Br J Pharmacol 34:148–158

    PubMed  CAS  Google Scholar 

  • Davidson J, Flower RJ, Milton AS, Peers SH, Rotondo D (1991) Antipyretic actions of human recombinant lipocortin-1. Br J Pharmacol 102:7–9

    PubMed  CAS  Google Scholar 

  • Deeter LB, Martin LW, Lipton JM (1989) Antipyretic effect of central a-MSH summates with that of acetaminophen or ibuprofen. Brain Res Bull 23:573–575

    PubMed  CAS  Google Scholar 

  • Lee TF, Mora F, Myers RD (1985) Effect of intracerebroventricular vasopressin on body temperature and endotoxin fever of macaque monkey. Am J Physiol 248:R674–R678

    Google Scholar 

  • Matuszek M, Szreder Z, Korolkiewicz Z (1990) The antipyretic effect of some newer alpha-1 antagonists. Eur J Pharmacol 183:2279–2280

    Google Scholar 

  • Petrova L, Nikolova M, Nikolov R, Stefanova D (1978) Dipyrone and acetylsalicylic acid comparative pharmacological research. Antipyretic, anti-inflammatory and analgesic action. In: Ovtcharov R, Pola W (eds) Proceedings Dipyrone. Moscow Symposium, Schattauer-Verlag, Stuttgart New York, pp 99–107

    Google Scholar 

  • Shimada SG, Otterness IG, Stitt JT (1994) A study of the mechanism of action of the mild analgesic dipyrone. Agents Actions 41:188–192

    PubMed  CAS  Google Scholar 

  • Szeder Z (1990) Comparison of the effect of prazosin with that of dihydrobenzperidol and nifedipine on thermoregulatory responses produced by pyrogen in rabbits. Gen Pharmacol 21:833–838

    Google Scholar 

  • Szreder Z, Korolkiewicz Z (1991) Inhibition of pyrogen Escherichia coli fever with intracerebral administration of prazosin, dihydrobenzperidol and nifedipin in the rabbits. Gen Pharmacol 22:381–388

    PubMed  CAS  Google Scholar 

  • USP 23 (1995) Pyrogen test. The United States Pharmacopeia 23, p 1718

    Google Scholar 

  • van Miert AS, JPAM, van der Wal-Komproe, van Duin CTM (1977) Effects of antipyretic agents on fever and ruminai stasis induced by endotoxins in conscious goats. Arch Int Pharmacodyn 225:39–50

    PubMed  Google Scholar 

  • Zimecki M, Schnaper HW, Wieczorek Z, Webb DR, Pierce CW (1990) Inhibition of interleukin 1 (IL-1)-elicited leukocytosis and LPS-induced fever by soluble immune response suppressor (SIRS). Immunophartnacol 19:39–46

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vogel, H.G., Vogel, W.H. (1997). Analgesic, anti-inflammatory, and antipyretic activity. In: Vogel, H.G., Vogel, W.H. (eds) Drug Discovery and Evaluation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03333-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03333-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03335-7

  • Online ISBN: 978-3-662-03333-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics