Skip to main content

Psychotropic and neurotropic activity

  • Chapter
Drug Discovery and Evaluation

Abstract

The effects of drugs on the central and peripheral nervous systems can be easily recognized in normal animals. This does not necessarily mean that these effects can be used in therapy. Observing the global effects of drugs during LD50-determinations pharmacologists can detect psychotropic activity. Only, if these effects occur also in doses considerably below the LD50, are further evaluations justified. This basic experience resulted in the development of a variety of observational tests and activity measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Haggerty GC (1991) Strategy for and experience with neurotoxicity testing of new pharmaceuticals. J Am Coll Toxicol 10: 677–688

    Article  Google Scholar 

  • Irwin S (1964) Drug screening and evaluation of new compounds in animals. In: Nodin JH, Siegler PE (eds.) Animal and clinical techniques in drug evaluation. Year Book Medical Publishers, Chicago, 36–54

    Google Scholar 

  • Irwin S (1968) Comprehensive observational assessment: I a. A systematic, quantitative procedure for assessing the behavioural and physiologic state of the mouse. Psychopharmacologia (Berl.) 13: 222–257

    Article  CAS  Google Scholar 

  • Murray AM, Waddington JL (1990) The interaction of clozapine with dopamine D, versus dopamine DZ receptor-mediated function: behavioural indices. Eur J Pharmacol 186: 79–86

    Article  CAS  PubMed  Google Scholar 

  • Silverman P (1978) Drug screening and brain pharmacology. In: Animal behaviour in the laboratory. Chapman and Hall, London, pp 58–78

    Google Scholar 

  • Barnett SH (1963) “The Rat, A Study in Behavior.” Chicago: Aldine Publishing Co., pp 31–32

    Google Scholar 

  • Geyer MA (1990) Approaches to the characterisation of drug effects on locomotor activity in rodents. Modern Methods in Pharmacology, Vol. 6, Testing and Evaluation of Drugs of Abuse. pp. 81–99, Wiley-Liss, Inc

    Google Scholar 

  • Silverman P (1978) Motor activity. In: Animal behaviour in the laboratory. Chapman and Hall, London, pp 79–92

    Google Scholar 

  • Turner RA (1965) Depressants of the central nervous system. In: Turner RA (ed) Screening Methods in Pharmacology, Vol. 1, Academic Press, New York and London, pp 69–86

    Google Scholar 

  • Koek W, Woods JH, Ornstein P (1987) A simple and rapid method for assessing similarities among directly observable behavioural effects of drugs: PCP-like effects of 2-amino5-phosphonovalerate in rats. Psychopharmacology 91: 297–304

    Article  CAS  PubMed  Google Scholar 

  • Meyer HJ (1962) Pharmakologie der wirksamen Prinzipien des Kawa-Rhizoms (Piper methysticum Frost) Arch Int Pharmacodyn 138: 505–536

    CAS  Google Scholar 

  • Schaumann W, Stoepel K (1961) Zur quantitativen Beurteilung von zentraler Erregung und Dämpfung im Tierversuch. Naunyn-Schmiedeberg’s Arch exp Path Pharmakol 241: 383–392

    CAS  Google Scholar 

  • Ther L (1953) Über eine einfache Methode zur Bestimmung von Weck-und Beruhigungsmitteln im Tierversuch. Dtsch Apoth Ztg 93: 292–294

    Google Scholar 

  • Vogel G, Ther L (1963) Zur Wirkung der optischen Isomeren von Aethyltryptamin-acetat auf die Lagekatalepsie des Huhnes und auf die Motilität der Maus. Arzneim Forsch/ Drug Res 13: 779–783

    CAS  Google Scholar 

  • Barros HMT, Tannhauser MAL, Tannhauser SL, Tannhauser M (1991) Enhanced detection of hyperactivity after drug withdrawal with a simple modification of the open-field apparatus. J Pharmacol Meth 26: 269–275

    Article  CAS  Google Scholar 

  • Becker H, Randall CL (1989) Effects of prenatal ethanol exposure in C57BL mice on locomotor activity and passive avoidance behavior. Psychopharmacol 97: 40–44

    Article  CAS  Google Scholar 

  • Carlezon WA, Cornfeldt ML, Szewczak MR, Fielding S, Dunn RW (1991) Reversal of both QNX-induced locomotion and habituation decrement is indicative of M, agonist properties. Drug Dev Res 23: 333–339

    Article  CAS  Google Scholar 

  • Choi OH, Shamin MT, Padgett WL, Daly JW (1988) Caffeine and theophylline analogues: correlation of behavioral effects with activity as adenosine receptor antagonists and as phosphodiesterase inhibitors. Life Sci 43: 387–398

    Article  CAS  PubMed  Google Scholar 

  • Crabbe JC, Deutsch CM, Tam BR, Young ER (1988) Environmental variables differentially affect ethanol-stimulated activity in selectively bred mouse lines. Psychopharmacology 95: 103–108

    Article  CAS  PubMed  Google Scholar 

  • Crabbe JC, Young ER, Deutsch CM, Tam BR, Kosobud A (1987) Mice genetically selected for differences in openfield activity after ethanol. Pharmacol Biochem Behav 27: 577–581

    Article  CAS  PubMed  Google Scholar 

  • Crunelli V, Bernasconi S (1979) A new device to measure different size movements: Studies on d-amphetamine-induced locomotion and stereotypy. J Pharmacol Meth 2: 43–50

    Google Scholar 

  • Dews PB (1953) The measurement of the influence of drugs on voluntary activity in mice. Br J Pharmacol 8: 46–48

    CAS  Google Scholar 

  • Ericson E, Samuelsson J, Ahlenius S (1991) Photocell measurements of rat motor activity. J Pharmacol Meth 25: 111–122

    Article  CAS  Google Scholar 

  • Fontenay M, Le Cornec J, Zaczinska M, Debarele M, Simon P, Boissier J (1970) De trois tests de comportement du rat pour l’etude des medicaments psychotropes. J Pharmacol (Paris) 1: 243–254

    Google Scholar 

  • Georgiev V, Getova D, Opitz M (1991) Mechanism of the an-giotensin II effects on exploratory behavior of rats in open field. III. Modulatory role of GABA. Meth Find Exp Clin Pharmacol 13: 5–9

    Google Scholar 

  • Honma S, Honma KI, Hiroshige T (1991) Methamphetamine effects on rat circadian clock depend on actograph. Physiol Behav 49: 787–795

    Article  CAS  PubMed  Google Scholar 

  • Ivens I (1990) Neurotoxicity testing during long-term studies. Neurotoxicol Teratol 12: 637–641

    Article  CAS  PubMed  Google Scholar 

  • Kádár T, Telegdy G, Schally AV (1992) Behavioral effect of centrally administered LH-RH agonist in rats. Physiol Behan 51: 601–605

    Article  Google Scholar 

  • Kauppila T, Tanila H, Carlson S, Taira T (1991) Effects of atipamezole, a novel aZ-adrenoreceptor antagonist, in openfield, plus-maze, two compartment exploratory, and forced swimming tests in rats. Eur J Pharmacol 205: 177–182

    Article  CAS  PubMed  Google Scholar 

  • Kulig BM (1989) A neurofunctional test battery for evaluating the effects of long-term exposure to chemicals. J Am Coll Toxicol 8: 71–83

    Article  CAS  Google Scholar 

  • Laviola G, Alleva E (1990) Ontogeny of muscimol effects on locomotor activity, habituation, and pain reactivity in mice. Psychopharmacol 102: 41–48

    Article  CAS  Google Scholar 

  • Nakatsu K, Owen JA (1980) A microprocessor-based animal monitoring system. J Pharmacol Meth 3: 71–82

    Article  CAS  Google Scholar 

  • Nieminen SA, Lecklin A, Heikkinen O, Ylitalo P (1990) Acute behavioral effects of the organophosphates Sarin and So-man in rats. Pharmacol Toxicol 67: 36–40

    Article  CAS  PubMed  Google Scholar 

  • Okada K, Oishi R, Saeki K (1990) Inhibition by antimanic drugs of hyperactivity induced by methamphetaminechlordiazepoxide mixture in mice. Pharmacol Biochem Behav 35: 897–901

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal MJ, Morley JE (1989) Corticotropin releasing factor ( CRF) and age-related differences in behavior of mice. Neurobiol Aging 10: 167–171

    Google Scholar 

  • Saelens JK, Kovacsics GB, Allen MP (1986) The influence of the adrenergic system on the 24-hour locomotor activity pattern in mice. Arch Int Pharmacodyn 173: 411–416

    Google Scholar 

  • Silverman P (1978) Exploration. In: Animal behaviour in the laboratory. Chapman and Hall, London, pp 230–253

    Google Scholar 

  • Strömberg C (1988) Interactions of antidepressants and ethanol on spontaneous locomotor activity and rotarod performance in NMRI and C57BL/6 mice. J Psychopharmacol 2: 61–66

    Article  PubMed  Google Scholar 

  • Sugita R, Sawa Y, Nomura S, Zorn SH, Yamauchi T (1989) Effects of reserpine on dopamine metabolite in the nucleus accumbens and locomotor activity in freely moving rats. Neurochem Res 14: 267–270

    Article  CAS  PubMed  Google Scholar 

  • Tanger HJ, Vanwersch RAP, Wolthuis OL (1978) Automated TV-based system for open field studies: Effects of meth-amphetamine. Pharmacol Biochem Behav 9: 557–557

    Google Scholar 

  • VanHaaren F, Meyer ME (1991) Sex differences in locomotor activity after acute and chronic cocaine administration. Pharmacol Biochem Behav 39: 923–927

    Article  CAS  Google Scholar 

  • Wolffgramm J, Lechner J, Coper H (1988) Interaction or two barbiturates and an antihistamine on body temperature and motor performance in mice. Arzneim Forsch/Drug Res 38: 885–891

    CAS  Google Scholar 

  • Boissier JR, Simon P (1964) Dissociation de deux composantes dans le comportement d’investigation de la souris. Arch Int Pharmacodyn 147: 372–388

    CAS  Google Scholar 

  • Boissier JR, Simon P, Wolff J-ML (1964) L’utilisation d’une reaction particuliere de la souris ( Methode de la planche a trous) pour l’etude des medicaments psychotropes. Therapie 19: 571–586

    Google Scholar 

  • Clark G, Koester AG, Pearson DW (1971) Exploratory behavior in chronic disulfoton poisoning in mice. Psychopharmacologie (Berl.) 20: 169–171

    Article  CAS  Google Scholar 

  • Adams LM, Geyer MA (1982) LSD-induced alterations of locomotor patterns and exploration in rats. Psychopharmacology 77: 179–185

    Article  CAS  PubMed  Google Scholar 

  • Barbier P, Breteaudeau J, Autret E, Bertrand P, FoussardBlampin O, Breteau M (1991) Effects of prenatal exposure to diazepam on exploration behavior and learning retention in mice. Dev Pharmacol Ther 17: 35–43

    CAS  PubMed  Google Scholar 

  • Geyer MA (1982) Variational and probabilistic aspects of exploratory behavior in space: Four stimulant styles. Psycho-pharmacology Bulletin 18: 48–51

    CAS  Google Scholar 

  • Geyer MA, Rosso PV, Masten VL (1986) Multivariate assessment of locomotor behavior: Pharmacological and behavioral analyses. Pharmacol. Biochem. Behay. 25: 277–288

    Google Scholar 

  • Ljungberg T, Ungerstedt U (1977) Different behavioural patters induced by apomorphine: evidence that the method of administration determines the behavioural response to the drug. Eur J Pharmacol 46: 41–50

    Article  CAS  PubMed  Google Scholar 

  • Weischer ML (1976) Eine einfache Versuchsanordnung zur quantitativen Beurteilung von Motilitaet and Neugierverhalten bei Maeusen. Psychopharmacology 50: 275–279

    Article  CAS  PubMed  Google Scholar 

  • Wolffgramm J, Lechner J, Coper H (1988) Interaction of two barbiturates and an antihistamine on body temperature and motor performance of mice. Arzneim Forsch/Drug Res, 38: 885–891

    CAS  Google Scholar 

  • de Simoni MG, de Luigi A, Imeri L, Algerin S (1990) Miniaturized optoelectronic system for telemetry of in vivo voltammetric signals. J Neurosci Meth 33: 233–240

    Article  Google Scholar 

  • Dimpfel W, Spüler M, Bonke (1990) Influence of repeated vitamin B administration on the frequency pattern analysed from rat brain electrical activity ( Tele-Stereo-EEG ). Klin Wschr 68: 136–141

    Google Scholar 

  • Dimpfel W, Spüler M, Nichols DE (1989) Hallucinogenic and stimulatory amphetamine derivatives: fingerprinting DOM, DOI, DOB, MDMA, and MBDB by spectral analysis of brain field potentials in the freely moving rat ( Tele-StereoEEG ). Psychopharmacol 98: 297–303

    Google Scholar 

  • Dimpfel W, Spüler M, Nickel B (1986) Radioelectroencephalography ( Tele-Stereo-EEG) in the rat as a pharmacological model to differentiate the central action of flupirtine from that of opiates, diazepam and phenobarbital. Neuropsychobiol 16: 163–168

    Google Scholar 

  • Dimpfel W, Wedekind W, Spüler M (1992) Field potential analysis in the freely moving rat during the action of cyclandelate or flunarizine. Pharmacol Res 25: 287–297

    Article  CAS  PubMed  Google Scholar 

  • Kropf W, Kuschinsky K, Krieglstein J (1991) Conditioning of apomorphine effects: simultaneous analysis of the alterations in cortical electroencephalogram and behaviour. Naunyn-Schmiedeberg’s Arch Pharmacol 343: 559–567

    CAS  PubMed  Google Scholar 

  • Allmark MG, Bachinski WM (1949) A method of assay for curare using rats. J. Am. Pharm. Ass 38: 43–45

    Google Scholar 

  • Randall LO, Heise GA, Schallek W, Bagdon, RE, Banzinger R, Boris A, Moe RA, Abrams WB (1961) Pharmacological and clinical studies on Valium(TM.). A new psychotherapeutic agent of the benzodiazepine class. Curr Ther Res 3: 405–425

    Google Scholar 

  • Rivlin A, Tator C (1977) Objective clinical assessment of motor function after experimental spinal cord injury in the rat. J Neurosurg 47: 577–581

    Article  CAS  PubMed  Google Scholar 

  • Ther L, Vogel G, Werner Ph (1959) Zur pharmakologischen Differenzierung und Bewertung von Neuroleptica. Arzneim Forsch/Drug Res 9: 351–354

    CAS  Google Scholar 

  • Boissier JR, Tardy J, Diverres JC (1960) Une novelle méthode simple pour explorer l’action “tranquillisante”: le test de la cheminée. Med. exp 3: 81–84

    CAS  Google Scholar 

  • Simiand J, Keane PE. Biziere K, Soubrie P (1989) Comparative study in mice of Tetrazepam and other centrally active skeletal muscle relaxants. Arch Int Pharmacodyn 297:272–285

    Google Scholar 

  • Turner RA (1965) Ataractic (tranquillizing, neuroleptic) agents. In: Screening Methods in Pharmacology. Chapter 7, pp 87–100, Academic Press, New York and London.

    Google Scholar 

  • Barclay LL, Gibson GE, Blass JP (1981) The string test: an early behavioral change in thiamine deficiency. Pharmacol Biochem Behav 14: 153–157

    Article  CAS  PubMed  Google Scholar 

  • Boissier JR, Simon P (1960) L’utilisation du test de la traction, ( Test de JULOU-COURVOISIER) pour l’etude des psycholeptiques. Therapie 15: 1170–1174

    Google Scholar 

  • Deacon RMJ, Gardner CR (1984) The pull-up test in rats: a simple method for testing muscle relaxation. J Pharmacol Meth 11: 119–124

    Article  CAS  Google Scholar 

  • Fleury C (1957) Nouvelle technique pour mesurer l’effort musculaire de la souris, dite test de l’agrippement. Arch. Sci. 10: 107–112

    Google Scholar 

  • Kondziella W (1964) Eine neue Methode zur Messung der muskulaeren Relaxation bei weissen Maeussen. Arch Int Pharmacodyn 152: 277–284

    CAS  PubMed  Google Scholar 

  • Kulig BM (1989) A neurofunctional test battery for evaluating the effects of long-term exposure to chemicals. J Am Coll Toxicol 8: 71–83

    Article  CAS  Google Scholar 

  • Meyer OA, Tilson HA, Bird WC, Riley MT (1979) A method for the routine assessment of fore-and hind limb grip strength of rats and mice. Neurobehav Toxicol 1: 233–236

    CAS  PubMed  Google Scholar 

  • Miguel J, Blasco M (1978) A simple technique for evaluation of vitality loss in aging mice, by testing their muscular coordination and vigor. Exp Geront 13: 389–396

    Article  Google Scholar 

  • Novack GD, Zwolshen JM (1983) Predictive value of muscle relaxant models in rats and cats. J Pharmacol Meth 10: 175–183

    Article  CAS  Google Scholar 

  • Simiand J, Keane, PA, Biziere K, Soubrie P (1989) Comparative study in mice of Tetrazepam and other centrally active skeletal muscle relaxants. Arch Int Pharmacodyn 297: 272–285

    CAS  PubMed  Google Scholar 

  • Tilson HA (1990) Behavioral indices of neurotoxicity. Toxicol Pathol 18: 96–104

    CAS  PubMed  Google Scholar 

  • Cartmell SM, Gelgor L, Mitchell D (1991) A revised rotarod procedure for measuring the effect of antinociceptive drugs on motor function in the rat. J Pharmacol Meth 26: 149–159

    Article  CAS  Google Scholar 

  • Dunham NW, Miya TS (1957) A note on a simple apparatus for detecting neurological deficit in rats and mice. J Am Pharmaceut Assoc 46: 208–210

    Article  CAS  Google Scholar 

  • Novack GD, Zwolshen JM (1983) Predictive value of muscle relaxant models in rats and cats. J Pharmacol Meth 10: 175–183

    Article  CAS  Google Scholar 

  • Saeed Dar M, Wooles WR (1986) Effect of chronically administered methylxanthines on ethanol-induced motor incoordination in mice. Life Sci 39: 1429–1437

    Article  Google Scholar 

  • Boissier JR, Simon P (1969) Evaluation of experimental techniques in the psycho-pharmacology of emotion. Ann NY Acad Sci 159: 898–914

    Article  CAS  PubMed  Google Scholar 

  • Costa E, Corda MG, Epstein B, Forchetti C, Guidotti A (1983) GABA-benzodiazepine interactions. In: Costa E (ed) The Benzodiazepines. From Molecular Biology to Clinical Practice. Raven Press, New York, pp 117–136

    Google Scholar 

  • Costall B, Naylor RJ, Tyers MB (1988) Recent advances in the neuropharmacology of 5HT3 agonists and antagonists. Rev Neuroscience 2: 41–65

    CAS  Google Scholar 

  • Cotman CW, Iversen LL (1987) Excitatory amino acids in the brain-focus on NMDA receptors. Trends in Neurosci 10: 263–265

    Google Scholar 

  • Fonnum F (1987) Biochemistry, anatomy, and pharmacology of GABA neurons. In: Meltzer HY (ed) Psychopharmacology: The Third Generation of Progress., Raven Press, New York, pp 173–182

    Google Scholar 

  • Lippa AS, Priscilla A, Nash BA, Greenblatt EN (1979) Pre-clinical neuropharmacological testing procedures for anxiolytic drugs. In: Fielding St, Lal H (eds) Anxiolytics, Futura Publ. Comp. New York, pp 41–81

    Google Scholar 

  • Lloyd KG, Morselli PL (1987) Psychopharmacology of Gabaergic drugs. In: Meltzer HY (ed) Psycho-pharmacology: The Third Generation of Progress., Raven Press, New York pp 183–195

    Google Scholar 

  • Peroutka SJ (1988) 5-Hydroxytryptamine receptor subtypes: Molecular, biochemical and physiological characterization. Trends Neuroscience 11: 496–500

    Google Scholar 

  • Watkins JC, Olverman HJ (1987) Agonists and antagonists for excitatory amino acid receptors. Trends in Neurosci 10: 265–272

    Article  CAS  Google Scholar 

  • Zukin SR, Young AB, Snyder SH (1974) Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system. Proc Natl Acad Sci, USA, 71: 4801–4807

    Google Scholar 

  • Enna SJ, Collins JF, Snyder SH (1977) Stereo specificity and structure-activity requirements of GABA receptor binding in rat brain. Brain Res. 124: 185–190

    Article  CAS  PubMed  Google Scholar 

  • Enna SJ, Möller H (1987) y-aminobutyric acid (GABA) receptors and their association with benzodiazepine recognition sites. In: Meltzer HY (ed) Psychopharmacology: The Third Generation of Progress, Raven Press, New York, pp 265–272

    Google Scholar 

  • Enna SJ, Snyder SH (1975) Properties of y-aminobutyric acid ( GABA) receptor binding in rat brain synaptic membrane fractions. Brain Res. 100: 81–97

    Google Scholar 

  • Enna SJ, Snyder SH (1977) Influence of ions, enzymes, and detergents on y-aminobutyric acid-receptor binding in synaptic membranes of rat brain. Mol Pharmacol 13: 442–453

    CAS  PubMed  Google Scholar 

  • Knott C, Bowery NG (1991) Pharmacological characterization of GABAA and GABAB receptors in mammalian CNS by receptor binding assays. In: Greenstein B (ed) Neuroendocrine Research Methods. Vol 2, Harwood Academic Publ., Chur, pp 699–722

    Google Scholar 

  • Lüddens H, Korpi ER (1995) Biological function of GABAA/benzodiazepine receptor heterogeneity. J Psychiat Res 29: 77–94

    Article  PubMed  Google Scholar 

  • Matsumoto RR (1989) GABA receptors: are cellular differences reflected in function? Brain Res Rev 14: 203–225

    Article  CAS  PubMed  Google Scholar 

  • Möhler H (1992) Gabaergic synaptic transmission. Arzneim Forsch/Drug Res 42: 211–214

    Google Scholar 

  • Zukin SR, Young AB, Snyder SH (1974) Gamma-aminobutyric acid binding to receptor sites in the rat central nervous system. Proc Nat Acad Sci, USA 71: 4802–4807

    Google Scholar 

  • Beaumont K, Chilton WS, Yamamura HI, Enna, SJ (1978) Muscimol binding in rat brain: Association with synaptic GABA receptors. Brain Res. 148: 153–162

    Google Scholar 

  • Chambon JP, Feltz P, Heaulme M, Restle S, Schlichter R, Biziere K, Wermuth CG (1985) An arylaminopyridazine derivative of y-aminobutyric acid (GABA) is a selective and competitive antagonist of the GABAA receptor site. Proc. Natl. Acad. Sci. USA 82: 1832–1836

    Google Scholar 

  • Cheng YC, Prusoff WH (1973) Relationship between the in hibition constant (K ; ) and the concentration of inhibitor which causes 50 per cent inhibition (1 50 ) of an enzymatic reaction. Biochem. Pharmacol. 22: 3099–3108

    Google Scholar 

  • Enna SJ, Möller H (1987) y-aminobutyric acid (GABA) receptors and their association with benzodiazepine recognition sites. In: Meltzer HY (ed) Psychopharmacology: The Third Generation Schwartz RD, Mindlin MC (1988) Inhibition of the GABA receptor-gated chloride ion channel in brain by noncompetitive inhibitors of the nicotinic receptor-gated cation channel. J Pharmacol Exp Ther 244: 963–970

    Google Scholar 

  • Enna SJ, Snyder SH (1976) Influence of ions, enzymes, and detergents on y-aminobutyric acid-receptor binding in synaptic membranes of rat brain. Mol Pharmacol 13: 442–453

    Google Scholar 

  • Gusti P, Ducic I, Puia G, Arban R, Walser A, Guidotti A, Costa E (1993) Imidazenil: A new partial positive allosteric modulator of y-aminobutyric acid (GABA) action at GABAA receptors. J Pharmacol Exp Ther 266: 1018–1028

    Google Scholar 

  • Heaulme M, Chambon JP, Leyris R, Molimard JC, Wermuth CG, Biziere K (1986) Biochemical characterization of the interaction of three pyridazinyl-GABA derivatives with the GABAA receptor site. Brain Res 384: 224–231

    Article  CAS  PubMed  Google Scholar 

  • Heaulme M, Chambon JP, Leyris R, Wermuth CG, Biziere K (1987) Characterisation of the binding of [3H]SR 95531, a GABAA antagonist, to rat brain membranes. J. Neurochem. 48: 1677–1686

    Article  CAS  PubMed  Google Scholar 

  • Kleingoor C, Ewert M, von Blankenfeld G, Seeburg PH, Kettenmann H (1991) Inverse but not full benzodiazepine agonists modulate recombinant a613,y2GABAA receptors in transfected human embryonic kidney cells. Neurosci Lett 130: 169–172

    Article  CAS  PubMed  Google Scholar 

  • Krogsgaard-Larsen P, Frolund B, Jorgensen FS, Schousboe A (1994) GABAA receptor agonists, partial agonists, and antagonists. Design and therapeutic prospects. J Med Chem 37: 2489–2505

    Google Scholar 

  • Lewin AH, de Costa BR, Rice KC, Solnick P (1989) meta-and para-Isothiocyanato-t-butylbicycloorthobenzoate: irreversible ligand of the γ-aminobutyric acid-regulated chloride ionophore. Mol Pharmacol 35: 189–194

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J. Biol Chem. 193: 265–275

    CAS  PubMed  Google Scholar 

  • Martini C, Rigacci T, Lucacchini A (1983) [3H]muscimol binding site on purified benzodiazepine receptor. J Neurochem 41: 1183–1185

    Google Scholar 

  • Mohler H, Malherbe P, Draguhn A, Richards JG (1990) GABAA-receptors: structural requirements and sites of gene expression in mammalian brain. Neurochem Res 15: 199–207

    Article  CAS  PubMed  Google Scholar 

  • Snodgrass SR (1978) Use of 3H-muscimol for GABA receptor studies. Nature 273: 392–394

    Article  CAS  PubMed  Google Scholar 

  • Turner DM, Sapp DW, Olsen RW (1991) The benzodiazepin/alcohol antagonist Ro 15–4513: binding to a GABAA receptor subtype that is insensitive to diazepam. J Pharmacol Exp Ther 257: 1236–1242

    CAS  PubMed  Google Scholar 

  • Vicini S (1991) Pharmacologic significance of the structural heterogeneity of the GABAA receptor-chloride ion channel complex. Neuropsychopharmacol 4: 9–15

    CAS  Google Scholar 

  • Williams M, Risley EA (1978) Characterization of the binding of [3H]muscimol, a potent γ-aminobutyric acid antagonist, to rat synaptosomal membranes using a filtration assay. J Neurochem 32: 713–718

    Article  Google Scholar 

  • Bittiger H, Bernasconi R, Froestl W, Hall R, Jaekel J, Klebs K, Krueger L, Mickel SJ, Mondadori C, Olpe HR, Pfannkuch F, Pozza M, Probst A, van Riezen H, Schmutz M, Schuetz H, Steinmann MW, Vassout A, Waldmeyer P, Bieck P, Farger G, Gleiter C, Schmidt EK, Marescuax C (1992) GABAB antagonists: potential new drugs. Pharmacol Commun 2: 70–74

    CAS  Google Scholar 

  • Bonanno G, Raiteri M (1992) Functional evidence for multiple y-aminobutyric acide receptor subtypes in the rat cerebral cortex. J Pharmacol Exp Ther 262: 114–118

    CAS  PubMed  Google Scholar 

  • Bonanno G, Raiteri M (1993 a) Multiple GABAB receptors. Trends Pharmacol Sci 14: 259–261

    Google Scholar 

  • Bonanno G, Raiteri M (1993 b) y-Aminobutyric acid (GABA) autoreceptors in rat cerebral cortex and spinal cord represent pharmacologically distinct subtypes of the GABAB receptor. J Pharmacol Exp Ther 265: 765–770

    Google Scholar 

  • Bowery G, Hill DR, Hudson AL (1983) Characterization of GABAB receptor binding sites on rat whole brain synaptic membranes. Br J Pharmacol 78: 191–206

    Article  CAS  PubMed  Google Scholar 

  • Bowery NG (1993) GABAB receptor pharmacology. Annu Rev Pharmacol Toxicol 33: 109–147

    Article  CAS  PubMed  Google Scholar 

  • Bowery NG, Hill DR, Hudson AL (1985) (3H)(—)baclofen: An improved ligand for GABAB sites. Neuropharmacol 24: 207–210

    Google Scholar 

  • Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (IC50) of an enzymatic reaction. Biochem. Pharmacol. 22: 3099–3108

    Google Scholar 

  • Drew CA, Johnston GAR, Weatherby RP (1984) Bicucculineinsensitive GABA receptors: Studies on the binding of (—)baclafen to rat cerebellar membranes. Neurosci Lett 52: 317–321

    Google Scholar 

  • Enna SJ, Möller H (1987) γ-aminobutyric acid (GABA) receptors and their association with benzodiazepine recognition sites. In: Psychopharmacology: The Third Generation of Progress. ed. by HY Meltzer, Raven Press, New York, pp 265–272

    Google Scholar 

  • Hill DR, Bowery NG (1981) 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature 290: 149–152

    Google Scholar 

  • Kato K, Goto M, Fukuda H (1983) Regulation by divalent cations of 3H-baclofen binding to GABAB sites in rat cerebellar membranes. Life Sci 32: 879–887

    Article  CAS  PubMed  Google Scholar 

  • Kerr DIB, Ong J, Johnston GAR, Abbenante J, Prager RH (1988) 2-Hydroxy-saclofen: am improved antagonist at central and peripheral GABAB receptors. Neurosci Lett 92: 92–96

    Google Scholar 

  • Kerr DIB, Ong J, Johnston GAR, Abbenante J, Prager RH (1989) Antagonism of GABAB receptors by saclofen and related sulphonic analogues of baclofen and GABA. Neurosci Lett 107: 239–244

    Article  CAS  PubMed  Google Scholar 

  • Kerr DIB, Ong J, Prager RH. Gynther BD, Curtis DR (1987) Phaclofen: a peripheral and central baclofen antagonist. Brain Res 405: 150–154

    Article  CAS  PubMed  Google Scholar 

  • Lanza M, Fassio A, Gemignani A, Bonanno G, Raiteri M (1993) CGP 52432: a novel potent and selective GABAB autoreceptor antagonist in rat cerebral cortex. Eur J Pharmacol 237: 191–195

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J. Biol Chem. 193: 265–275

    CAS  PubMed  Google Scholar 

  • Olpe HR, Karlsson G, Pozza MF, Brugger F, Steinman M, van Riezen H, Fagg G, Hall RG, Froestl W, Bittiger H (1990) CGP 35348: a centrally active blocker of GABAB receptors. Eur J Pharmacol 187: 27–38

    Article  CAS  PubMed  Google Scholar 

  • Paredes RG, Agmo A (1992) GABA and behavior: The role of receptor subtypes. Neurosci Behav Rev 16: 145–170

    Google Scholar 

  • Robinson TM, Cross AJ, Green AR, Toczek JM, Boar BR (1989) Effects of the putative antagonists phaclofen and 6aminovaleric acid on GABAB receptor biochemistry. Br J Pharmacol 98: 833–840

    Article  CAS  PubMed  Google Scholar 

  • Scherer RA, Ferkany JW, Enna SJ (1988) Evidence for pharmacologically distinct subsets of GABAB receptors. Brain Res Bull 21: 439–443

    Article  CAS  PubMed  Google Scholar 

  • Shank RP, Baldy WJ, Mattucci LC, Vilani FJ Jr (1990) Ion and temperature effects on the biding of y-aminobutyrate to its receptors and the high-affinity transport system. J Neurochem 54: 2007–2015

    Article  CAS  PubMed  Google Scholar 

  • Shoulson I, Odoroff Ch, Oakes D, Behr J, Goldblatt D, Caine E, Kennedy J, Miller Ch, Bamford K, Rubin A, Plumb S, Kurlan R (1989) A controlled clinical trial of baclofen as protective therapy in early Huntington’s disease. Ann Neurol 25: 252–259

    Article  CAS  PubMed  Google Scholar 

  • Wilkin GP, Hudson AL, Hill DR, Bowery NG (1981) Autoradiographic localisation of GABAB receptors in rat cerebellum. Nature 294: 584–587

    Article  CAS  PubMed  Google Scholar 

  • Chang RSL, Snyder SH (1978) Benzodiazepine receptors: labelling in intact animals with [3H]-flunitrazepam. Eur J Pharmacol 48: 213–218

    Article  CAS  PubMed  Google Scholar 

  • Damm HW, Müller WE, Schläfer U, Wollert U (1978) [3H]Flunitrazepam: its advantages as a ligand for the identification of benzodiazepine receptors in rat brain membranes. Res Commun Chem Pathol Pharmacol 22: 597–600

    Google Scholar 

  • Davies MF, Onaivi ES, Chen SW, Maguire PA, Tsai NF, Loew GH (1994) Evidence for central benzodiazepine receptor heterogeneity from behavior tests. Pharmacol Biochem Behav 49: 47–56

    Article  CAS  PubMed  Google Scholar 

  • Hafely WE, Martin JR, Richard JG, Schoch P (1993) The multiplicity of actions of benzodiazepine receptor ligands. Can J Psychiatry 38, Suppl 4: S102 — S108

    Google Scholar 

  • Iversen LL (1983) Biochemical characterisation of benzodiazepine receptors. In: Trimble MR (ed.) Benzodiazepines Divided. John Wiley & Sons Ltd. pp 79–85

    Google Scholar 

  • Jacqmin P, Wibo M, Lesne M (1986) Classification of benzodiazepine receptor agonists, inverse agonists and antagonists using bicuculline in an in vitro test. J Pharmacol (Paris) 17: 139–145

    CAS  Google Scholar 

  • Klepner CA, Lippa AS, Benson DI, Sano MC, Beer B (1979) Resolution in two biochemically and pharmacologically distinct benzodiazepine receptors. Pharmacol Biochem Behav 11: 457–462

    Article  CAS  PubMed  Google Scholar 

  • Mennini T, Garattini A (1982) Benzodiazepine receptors: Correlation with pharmacological responses in living animals, Life Sci 31: 2025–2035

    Google Scholar 

  • Möhler H, Okada T (1977) Benzodiazepine receptor: Demonstration in the central nervous system. Science 198: 849–851

    Google Scholar 

  • Möhler H, Okada T (1977) Properties of ‘H-diazepam binding to benzodiazepine receptors in rat cerebral cortex. Life Sci 20: 2101–2110

    Article  PubMed  Google Scholar 

  • Möhler H, Richards JG (1983) Benzodiazepine receptors in the central nervous system. In: Costa E (ed) The Benzodiazepines: From Molecular Biology to Clinical Practice. Raven Press, New York, pp. 93–116

    Google Scholar 

  • Olsen RW (1981) GABA-benzodiazepine-barbiturate receptor interactions. J Neurochem 37: 1–13

    Article  CAS  PubMed  Google Scholar 

  • Schacht U, Baecker G (1982) Effects of clobazam in benzodiazepine-receptor binding assays Drug Dev. Res. Suppl. 1, 83–93

    Google Scholar 

  • Speth RC, Wastek GJ, Johnson PC, Yamamura HI (1978) Benzodiazepine binding in human brain: characterization using [3H]flunitrazepam. Life Sci 22: 859–866

    Article  CAS  PubMed  Google Scholar 

  • Speth RC, Wastek GJ, Yamamura HI (1979) Benzodiazepine receptors: Temperature dependence of 3H-diazepam binding. Life Sci 24: 351–358

    Article  CAS  PubMed  Google Scholar 

  • Squires RF, Braestrup C (1977) Benzodiazepine receptors in rat brain. Nature 266: 732–734

    Article  CAS  PubMed  Google Scholar 

  • Supavilai P, Karobath M (1980) Heterogeneity of benzodiazepine receptors in rat cerebellum and hippocampus. Eur J Pharmacol 64: 91–93

    Article  CAS  PubMed  Google Scholar 

  • Sweetnam PM, Tallman JF (1985) Regional difference in brain benzodiazepine receptor carbohydrates. Mol Pharmacol 29: 299–306

    Google Scholar 

  • Takeuchi T, Tanaka S, Rechnitz GA (1992) Biotinylated 1012-S conjugate as a probe ligand for benzodiazepine receptors: characterization of receptor binding sites and receptor assay for benzodiazepine drugs. Anal Biochem 203: 158–162

    Article  CAS  PubMed  Google Scholar 

  • Tallman JF (1980) Interaction between GABA and benzodiazepines. Brain Res Bull 5: 829–832

    Article  CAS  Google Scholar 

  • Cowen PJ (1991) Serotonin receptor subtypes: Implications for psychopharmacology. Br J Psychiatry 159 (Suppl 12): 7–14

    Google Scholar 

  • Dourish CT, Hutson PH, Curzon G (1986) Putative anxiolytics 8-OH-DPAT, buspirone and TVX Q 7821 are agonists at 5HT,A autoreceptors in the raphe nucleus. TIPS 7: 212–214

    CAS  Google Scholar 

  • Fozard JR (1984) MDL 72222: a potent and highly selective antagonist at neuronal 5-hydroxytryptamine receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 326: 36–44

    Article  CAS  PubMed  Google Scholar 

  • Frazer A, Maayani S, Wolfe BB (1990) Subtypes of receptors for serotonin. Annu Rev Pharmacol Toxicol 30: 307–348

    Article  CAS  PubMed  Google Scholar 

  • Fuller RW (1990) Serotonin receptors and neuroendocrine responses. Neuropsychopharmacol 3: 495–502

    CAS  Google Scholar 

  • Glennon RA (1991) Serotonin receptors and site-selective agents. J Physiol Pharmacol 42: 49–60

    CAS  PubMed  Google Scholar 

  • Göthert M (1990) Presynaptic serotonin receptors in the central nervous system. Ann NY Acad Sci 604: 102–112

    Article  PubMed  Google Scholar 

  • Gozlan H, El Mestikawy S, Pichat L, Glowinsky J, Hamon M (1983) Identification of presynaptic serotonin autoreceptors using a new ligand:’H-PAT. Nature 305: 140–142

    Article  CAS  PubMed  Google Scholar 

  • Grossman CJ, Kilpatrick GJ, Bunce KT (1993) Development of a radioligand binding assay for 5-HT4receptors in guinea-pig and rat brain. Br J Pharmacol 109: 618–624

    Article  CAS  PubMed  Google Scholar 

  • Hall MD, El Mestikawy S, Emerit MB, Pichat L, Hamon M, Gozlan H (1985) [41]-8-Hydroxy-2-(di-n-propylamino)tetralin binding to pre-and postsynaptic 5-hydroxytryptamine sites in various regions of rat brain. J Neurochem 44: 1685–1696

    Google Scholar 

  • Heuring RE, Peroutka SJ (1987) Characterization of a novel 3H-5-hydroxytryptamine binding site subtype in bovine brain membranes. J Neurosci 7: 894–903

    CAS  PubMed  Google Scholar 

  • Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP (1994) VII. International Union of Pharmacology Classification of Receptors for 5-Hydroxytryptamine ( Serotonin ). Pharmacol Rev 46: 157–203

    Google Scholar 

  • Humphrey PPA, Hartig P, Hoyer D (1993) A proposed new nomenclature for 5-HT receptors. Trends Pharmacol Sci 14: 233–236

    Article  CAS  PubMed  Google Scholar 

  • Iversen SD (1984) 5-HT and anxiety. Neuropharmacol 23: 1553–1560

    Google Scholar 

  • Jenck F, Moreau JL, Mutel V, Martin JR (1994) Brain 5-HT,c receptors and antidepressants. Progr Neuropsychopharmacol Biol Psychiat 18: 563–574

    Article  CAS  Google Scholar 

  • Jenck F, Moreau JL, Mutel V, Martin JR, Haefely WE (1993) Evidence for a role of 5-HT,c receptors in the antiserotoninergic properties of some antidepressant drugs. Eur J Pharmacol 231: 223–229

    Article  CAS  PubMed  Google Scholar 

  • Kung HF, Kung MP, Clarke W, Maayani S, Zhuang ZP (1994) A potential 5-HT,A receptor antagonist: p-MPPI. Life RI 55: 1459–1462

    Article  CAS  Google Scholar 

  • Kung MP, Frederick D, Mu M, Zhuang ZP, Kung HF (1995) 4-(2’-Methoxyphenyl)-1-[2’-(n-2“-pyridinyl)-p-iodobenzamido]-ethyl-piperazine ([125I]p-MPPI) as a new selective radioligand on serotonin-1A sites in rat brain: In vitro binding and autoradiographic studies. J Pharmacol Exp Ther 272:429–437

    Google Scholar 

  • Lovenberg TW, Baron BM, de Lecea L, Miller JD, Prosser RA, Rea MA, Foye PE, Racke M, Slone AL, Siegel BW, Danielson PE, Sutcliffe JG, Erlander MG (1994) A novel adenyl cyclase-activating serotonin receptor (5-HT7) implicated in the regulation of mammalian circadian rhythms. Neuron 11: 449–458

    Article  Google Scholar 

  • Martin GR, Humphrey PPA (1994) Classification review. Receptors for 5-hydroxytryptamine: Current perspectives on classification and nomenclature. Neuropharmacol 33: 261–273

    Google Scholar 

  • Middlemiss DN, Fozard JR (1983) 8-Hydroxy-2-(di-n-propylamino)-tetralin discriminates between subtypes of the 5HT1 recognition site. Eur J Pharmacol 90: 151–153

    Google Scholar 

  • New JS (1990) The discovery and development of buspirone: a new approach to the treatment of anxiety. Med Res Rev 10: 283–326

    Article  CAS  PubMed  Google Scholar 

  • Newman ME, Lerer B, Shapira B (1992) 5-HT-1A receptor-mediated effects of antidepressants. Progr Neuropsychopharmacol Biol Psychiat 17: 1–19

    Google Scholar 

  • Pazos A, Hoyer D, Palacios JM (1984) The binding of serotonergic ligands to the porcine choroid plexus: characterization of a new type of serotonin recognition site. Eur J Pharmacol 106: 539–546

    Article  CAS  PubMed  Google Scholar 

  • Pedigo NW, Yammamura HI, Nelson DL (1981) Discrimination of multiple [3H15-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain. J Neurochem 36: 220–226

    Article  CAS  PubMed  Google Scholar 

  • Peroutka SJ (1985) Selective interaction of novel anxiolytics with 5-hydroxytryptamine,A receptors. Biol Psychiatry 20: 971–979

    Article  CAS  PubMed  Google Scholar 

  • Peroutka SJ (1986) Pharmacological differentiation and characterization of 5-HT1A 5-HT,B and 5-HT,c binding sites in rat frontal cortex. J Neûrochem 47: 29–540

    Google Scholar 

  • Peroutka SJ (1988) 5-Hydroxytryptamine receptor subtypes: molecular, biochemical and physiological characterization Trends Neurosci 11:496–500

    Google Scholar 

  • Raymond JR, El Mestikawy S, Fargin A (1992) The 5-HTIA receptor: from molecular characteristics to clinical conelates. In: Brann MR (ed) Molecular Biology of G-Proteincoupled receptors. Birkhäuser Boston Basel Berlin pp 113–141

    Google Scholar 

  • Saxena PR (1994) Modern 5-HT receptor classification and 5-HT based drugs. Exp Opin Invest Drugs 3: 513–523

    Article  CAS  Google Scholar 

  • Saxena PR, Lawang A (1985) A comparison of cardiovascular and smooth muscle effects of 5-hydroxytryptamine and 5carboxamidotryptamine, a selective agonist of 5HT, receptors. Arch Int Pharmacodyn 277: 235–252

    CAS  PubMed  Google Scholar 

  • Schlegel JR, Peroutka SJ (1986) Nucleotide interactions with 5-HTIA binding sites directly labeled by [41]-8-hydroxy-2(di-n-propylamino)tetralin ([’H] -8-OH-DPAT). Biochem Pharmacol 35: 1943–1949

    Article  CAS  PubMed  Google Scholar 

  • Sleight Ai, Boess FG, Bourson A, Sibley DR, Monsma FJ (1995) 5-HT6 and 5-HT, serotonin receptors: Molecular biology and pharmacology. Neurotransmiss 11,(3):1–5

    Google Scholar 

  • Traber J, Glaser T (1987) 5-HT,A receptor-related anxiolytics. TIPS 8: 432–437

    Google Scholar 

  • Verge D, Daval G, Marcinkiewicz M, Patey A, El Mestikawy H, Gozlan Hamon M (1986) Quantitative autoradiography of multiple 5-HT, receptor subtypes in the brain of control of 5,7-dihydroxytryptamine-treated rats. J Neurosci 6: 3474–3482

    CAS  PubMed  Google Scholar 

  • Yocca FD, Hyslop DK, Smith DW, Maayani S (1987) BMY 7378, a buspirone analog with high affinity, selectivity and low intrinsic activity at the 5-HT,A receptor in rat and guinea pig hippocampal membranes. Eur J Pharmacol 137: 293–294

    Article  CAS  PubMed  Google Scholar 

  • Boulenguez P, Chauveau J, Segu L, Morel A, Lanoir J, Delaage M (1992) Biochemical and pharmacological characterization of serotonin-O-carboxymethylglycyl[125I]iodotyrosinamide, a new radioligand probe for 5-HT,B and 5HT,D binding sites. J Neurochem 58: 951–959

    Article  CAS  PubMed  Google Scholar 

  • Hartig PR, Branchek TA, Weinshank RL (1992) A subfamily of 5-HT,D receptor genes. Trends Pharmacol Sci 13: 152–159

    Article  CAS  PubMed  Google Scholar 

  • Hoyer D, Engel G, Kalkman HO (1985) Molecular pharmacology of 5-HT, and 5-HT2recognition sites in rat and pig brain membranes: radioligand binding studies with [3H]5-HT, [3H]8OH-DPAT, (—)I[125I]iodocyanopindolol, [’H]mesulergine and [3H]ketanserin. Eur J Pharmacol 118: 13–23

    Article  CAS  PubMed  Google Scholar 

  • Hoyer D, Schoeffter P, Waeber C, Palacios JM (1990) Sero- tonin 5-HT,D receptors. Ann NY Acad Sci 600: 168–181

    Article  CAS  PubMed  Google Scholar 

  • Humphrey PPA, Feniuk W, Marriott AS, Tanner RJN, Jackson MR, Tucker ML (1991) Preclinical studies on the anti-migraine drug, Sumatriptan. Eur Neurol 31: 282–290

    Google Scholar 

  • Middlemiss DN (1984) Stereoselective blockade at [3H]5-HT binding sites and at the 5-HT autoreceptor by propranonol. Eur J Pharmacol 101: 289–293

    Article  CAS  PubMed  Google Scholar 

  • Middlemiss DN, Fozard JR (1983) 8-Hydroxy-2-(di-n-propylamino)-tetralin discriminates between subtypes of the 5HT1 recognition site. Eur J Pharmacol 90: 151–153

    Google Scholar 

  • Palacios JM, Waeber C, Bruinvels AT, Hoyer D (1992) Direct visualisation of serotonin,D receptors in the human brain using a new iodinated ligand. Mol Brain Res 346: 175–179

    Article  Google Scholar 

  • Pedigo NW, Yammamura HI, Nelson DL (1981) Discrimination of multiple [3H]5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain. J Neurochem 36: 220–226

    Article  CAS  PubMed  Google Scholar 

  • Peroutka S, Snyder SH (1979) Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. Mol Pharmacol 16: 687–699

    CAS  PubMed  Google Scholar 

  • Peroutka SJ (1986) Pharmacological differentiation and characterization of 5-HT,A, 5-HT,B and 5-HT,c binding sites in rat frontal cortex. J Neurochem 47: 529–540

    Article  CAS  PubMed  Google Scholar 

  • Peroutka SJ (1988) 5-Hydroxytryptamine receptor subtypes: molecular, biochemical and physiological characterization. TINS 11:496–500

    Google Scholar 

  • Schlicker E, Werner U, Hamon M, Gozlan H, Nickel B, Szelenyi I, Göthert M (1992) Anpirtoline, a novel highly potent 5-HT,B receptor agonist with antinociceptive/antidepressant-like actions in rodents. Br J Pharmacol 105: 732–738

    Article  CAS  PubMed  Google Scholar 

  • Segu L, Chauveau J, Boulenguez P, Morel A, Lanoir J, Delaage M (1991) Synthesis and pharmacological study of radioiodinated serotonin derivative specific for 5-HTIB and 5-HT,D binding sites in the central nervous system. CR Acad Sci (Paris) 312: 655–661

    CAS  Google Scholar 

  • Barnes NM, Costall B, Naylor RJ (1988) [3H]Zacopride: Ligand for the identification of 5-HT3 recognition sites. J Pharm Pharmacol 40: 548–551

    Google Scholar 

  • Butler A, Hill JM, Ireland SJ, Jordan CD, Tyres MB (1988) Pharmacological properties of GR38032F, a novel antagonist at 5-HT3 receptors. Br J Pharmacol 94: 397–412

    Article  CAS  PubMed  Google Scholar 

  • Costall B, Naylor RJ, Tyers MB (1988) Recent advances in the neuropharmacology of 5-HT3 agonists and antagonists. Rev Neuroscience 2: 41–65

    CAS  Google Scholar 

  • Costall B, Naylor RT, Tyers MB (1990) The psychopharmacology of 5-HT,receptors. Pharmac Ther 47: 181–202

    Article  CAS  Google Scholar 

  • Hoyer D (1990) Serotonin 5HT3, 5HT, and 5-HT-M receptors. Neuropsychopharmacol 3: 371–383

    CAS  Google Scholar 

  • Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP (1994) VII. International Union of Pharmacology Classification of Receptors for 5-Hydroxytryptamine ( Serotonin ). Pharmacol Rev 46: 157–203

    Google Scholar 

  • Hoyer D, Neijt HC (1988) Identification of serotonin 5-HT3 recognition sites in membranes of N1E-115 neuroblastoma cells by radioligand binding. Mol Pharmacol 33: 303–309

    CAS  PubMed  Google Scholar 

  • Kilpatrick GJ, Bunce KT, Tyer MB (1990) 5-HT, Receptors. Med Res Rev 10: 441–475

    Google Scholar 

  • Kilpatrick GJ, Jones BJ, Tyers MB (1987) Identification and distribution of 5HT3 receptors in rat brain using radioligand binding. Nature 330: 746–748

    Article  CAS  PubMed  Google Scholar 

  • Kilpatrick GJ, Jones BJ, Tyers MB (1989) Binding of the 5HT3 ligand, [3H]-GR 65630, to rat area postrema, vagus nerve and the brains of several species. Eur J Pharmacol 159: 157–164

    Article  CAS  PubMed  Google Scholar 

  • Martin GR, Humphrey PPA (1994) Classification review. Receptors for 5-hydroxytryptamine: Current perspectives on classification and nomenclature. Neuropharmacol 33: 261–273

    Google Scholar 

  • Peroutka SJ (1988) 5-Hydroxytryptamine receptor subtypes: Molecular, biochemical and physiological characterization. Trends Neuroscience 11: 496–500

    Google Scholar 

  • Peroutka SJ (1991) Serotonin receptor subtypes and neuropsychiatric diseases: Focus on 5HT,D and 5HT3 receptor agents. Pharmacol Rev 43: 579–586

    CAS  PubMed  Google Scholar 

  • Pinkus LM, Sarbin NS, Barefoot DS, Gordon JC (1989) Association of [3H]zacopride with 5-HT3 binding sites. Eur J Pharmacol 168: 355–362

    Article  CAS  PubMed  Google Scholar 

  • Saxena PR (1994) Modern 5-HT receptor classification and 5-HT based drugs. Exp Opin Invest Drugs 3: 513–523

    Article  CAS  Google Scholar 

  • Watling KJ (1989) 5HT3 Receptor agonists and antagonists. Neurotransmission 3:1–4

    Google Scholar 

  • Watling KJ, Aspley S, Swain CJ, Saunders J (1988) [3H]Quaternised ICS 205–930 labels 5-HT3 receptor binding sites in rat brain. Eur. J. Pharmacol. 149: 397–398

    Google Scholar 

  • Arrang JM, Garbarg M, Lancelot JC, Lecomte JM, Pollard H, Robba M, Schunack W, Schwartz JC (1987) Highly potent and selective ligands for histamine H3-receptors. Nature 327: 117–123

    Article  CAS  PubMed  Google Scholar 

  • Arrang JM, Garbarg M, Schwartz JC (1985) Autoregulation of histamine release in brain by presynaptic H3-receptors. Neurosci 15: 533–562

    Article  Google Scholar 

  • Arrang JM, Roy J, Morgat JL, Schunack W, Schwartz JC (1990) Histamine H3-receptor binding sites in rat brain membranes: modulation by guanine nucleotides and divalent cations. Eur J Pharmacol 188: 219–227

    Article  CAS  PubMed  Google Scholar 

  • Haaksma EEJ, Leurs R, Timmerman H (1990) Histamine receptors: subclasses and specific ligands. Pharmac Ther 47: 73–104

    Article  CAS  Google Scholar 

  • Hew KWS, Hodgkinson CR, Hill SJ (1990) Characterization of histamine H3-receptors in guinea-pig ileum with H3-selective ligands. Br J Pharmacol 101: 621–624

    Article  CAS  PubMed  Google Scholar 

  • Hill SJ (1990) Distribution, properties, and functional characteristics of three classes of histamine receptor. Pharmacol Rev 42: 45–83

    CAS  PubMed  Google Scholar 

  • Hill SJ (1992) Histamine receptor agonists and antagonists. Neurotransmiss 8 (1): 1–5

    Google Scholar 

  • Jansen FP, Rademaker B, Bast A, Timmerman H (1992) The first radiolabeled histamine H3 receptor antagonist, [’23I]iodophenpropit: saturable and reversible binding to rat cortex membranes. Eur J Pharmacol 217: 203–205

    Article  CAS  PubMed  Google Scholar 

  • Korte A, Myers J, Shih NY, Egan RW, Clark MA (1990) Characterization and tissue distribution of H3 histamine receptors in guinea pigs by Na-methylhistamine. Biochem Biophys Res Commun 168: 979–986

    Article  CAS  PubMed  Google Scholar 

  • Leurs R, van der Goot H, Timmerman H (1991) Histaminergic agonists and antagonists. Recent developments. Adv Drug Res 20: 217–304

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Fan AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275

    CAS  PubMed  Google Scholar 

  • Schlicker E, Betz R, Göthert M (1988) Histamine H3-receptormediated inhibition of serotonin release in the rat brain cortex. Naunyn Schmiedebergs Arch Pharmacol 337: 588–590

    Article  CAS  PubMed  Google Scholar 

  • Timmerman H (1990) Histamine H3 ligands: just pharmacological tools or potential therapeutic agents? J Med Chem 33: 4–11

    Article  CAS  PubMed  Google Scholar 

  • Van der Goot H, Schepers MJP, Sterk GJ, Timmerman H (1992) Isothiourea analogues of histamine as potent agonists or antagonists of the histamine H3-receptor. Eur J Med Chem 27: 511–517

    Article  Google Scholar 

  • Van der Werf JF, Timmerman H (1989) The histamine H3 receptor: a general presynaptic regulatory system? Trends Pharmacol Sci 10: 159–162

    Article  PubMed  Google Scholar 

  • West RE Jr, Zweig A, Shih NY, Siegel MI, Egan RW, Clark MA (1990) Identification of two H3-histamine receptor subtypes. Mol Pharmacol 38: 610–613

    CAS  PubMed  Google Scholar 

  • Bastian JW, Krause WE, Ridlon SA, Ercoli N (1959) CNS drug specificity as determined by the mouse intravenous pentylenetetrazol technique. J Pharmacol Exp Ther 127: 75–80

    CAS  PubMed  Google Scholar 

  • Domino EF (1964) Centrally acting skeletal muscle relaxants. In: Laurence DR, Bacharach AL (eds.) Evaluation of Drug Activities: Pharmacometrics. Academic Press, London and New York. pp 313–324

    Google Scholar 

  • Lippa AS, Priscilla A, Nash, BA, Greenblatt EN (1979) Pre-clinical neuro-psychopharmacological testing procedures for anxiolytic drugs. In: Fielding St, Lal H (eds) Anxiolytics, Futura Publishing Comp. Inc., New York, pp. 41–81

    Google Scholar 

  • Starzl TE, Niemer WT, Dell M, Forgrave PR (1953) Cortical and subcortical electrical activity in experimental seizures induced by Metrazol. J Neuropath Exp Neurol 12: 262–276

    Article  CAS  PubMed  Google Scholar 

  • Bigler ED (1977) Comparison of effects of bicuculline, strychnine, and picrotoxin with those of pentylenetetrazol on photically evoked afterdischarges. Epilepsia 18: 465–470

    Article  CAS  PubMed  Google Scholar 

  • Costa E, Guidotti A, Mao CC (1975) New concepts in the mechanism of action of benzodiazepines. Life Sci. 17: 167–186

    Article  CAS  PubMed  Google Scholar 

  • Lambert DM, Poupaert JH, Maloteaux JM, Dumont P (1994) Anticonvulsant activities of N-benzyloxycarbonylglycine after parenteral administration. Neuro Report 5: 777–780.

    CAS  Google Scholar 

  • McAllister KH (1992) N-Methyl-D-aspartate receptor antagonists and channel blockers have different effects upon a spinal seizure model in mice. Eur J Pharmacol 211: 105–108

    Article  CAS  PubMed  Google Scholar 

  • Buckett WR (1981) Intravenous bicuculline test in mice: Characterisation with Gabaergic drugs. J Pharmacol Meth 5: 35–41

    Article  CAS  Google Scholar 

  • Costa E, Guidotti A, Mao CC, Suria A (1975) New concepts in the mechanism of action of benzodiazepines. Life Sci 17: 167–186

    Article  CAS  PubMed  Google Scholar 

  • Enna SJ, Möhler H (1987) y-Aminobutyric acid (GABA) receptors and their association with benzodiazepine recognition sites. In: Meltzer HY (ed) Psychopharmacology: The Third Generation of Progress. Raven Press New York, pp. 265–272

    Google Scholar 

  • Usunoff G, Atsev E, Tchavdarov D (1969) On the mechanisms of picrotoxin epileptic seizure (macro-and micro-electrode investigations). Electroencephalogr Clin Neurophysiol 27: 444

    Article  CAS  PubMed  Google Scholar 

  • Costa E, Guidotti A, Mao CC (1975) Evidence for involvement of GABA in the action of benzodiazepines: Studies on rat cerebellum. In: Costa E, Greengard P (eds) Mechanisms of Action of Benzodiazepines. Advances in Biochemical Psychopharmacology, Vol 14. Raven Press, New York, pp 113–151

    Google Scholar 

  • Litchfiled J, Wilcoxon F (1949) A simplified method of evaluating dose effect experiments. J Pharmacol Exp Ther 96: 99–113

    Google Scholar 

  • Dunn R, Fielding S (1987) Yohimbine-induced seizures in mice: A model predictive of potential anxiolytic and GABA-mimetic agents. Drug Dev Res 10: 177–188

    Google Scholar 

  • Dunn RW, Corbett R, Martin LL, Payack JF, Laws-Ricker L, Wilmot CA, Rush DK, Cornfeldt ML, Fielding S (1990) Preclinical anxiolytic profiles of 7189 and 8319, novel noncompetitive NMDA antagonists. Current and Future Trends in Anticonvulsant, Anxiety, and Stroke Therapy, Wiley-Liss, Inc., pp 495–512

    Google Scholar 

  • Dunn RW, Corbett R (1992) Yohimbine-induced convulsions involve Nmda and Gabaergic transmission. Neuropharmacology 31: 389–395

    Article  CAS  PubMed  Google Scholar 

  • Brady JV, Nauta WJH (1953) Subcortical mechanisms in emotional behavior: Affective changes following septal forebrain lesions in the albino rat. J Comp Physiol Psycho! 46: 339–346

    Google Scholar 

  • Chen G, Bohner B, Bratten AC (1963) The influence of certain central depressants on fighting behavior of mice. Arch Int Pharmacodyn 142: 30–34

    CAS  PubMed  Google Scholar 

  • Heise GA, Boff E (1961) Taming action of chlordiazepoxide. Fed Proc 20: 393–397

    Google Scholar 

  • Irwin S, Kinohi R, Van Sloten M, Workman MP (1971) Drug effects on distress-evoked behavior in mice: Methodology and drug class comparisons. Psychopharmacologia (Berl.) 20:172–185

    Google Scholar 

  • Randall LO, Heise GA, Schalleck W, Bagdon R.E, Banziger R, Boris A, Moe A, Abrams WB (1961) Pharmacological and clinical studies on Valium(T.M.). A new psychotherapeutic agent of the benzodiazepine class. Current Ther Res 9: 405–425

    Google Scholar 

  • Rudzik AD, Hester JB, Tang AH, Straw RN, Friis W (1973) Triazolobenzazepines, a new class of central nervous system-depressant compounds. In: Garattini S, Mussini E, Randall LO (eds.) The Benzodiazepines, Raven Press New York, pp 285–297

    Google Scholar 

  • Tedeschi DH, Fowler PJ, Miller RB, Macko E (1969) Pharmacological analysis of footshock-induced fighting behaviour. In: Garattini S, Sigg EB (eds.) Aggressive behaviour. Excerpta Medica Foundation Amsterdam, pp 245–252

    Google Scholar 

  • Tedeschi RE, Tedeschi DH, Mucha A, Cook L, Mattis PA, Fellows EJ (1959) Effects of various centrally acting drugs on fighting behavior of mice. J Pharmacol Exp Ther 125: 28–34

    CAS  PubMed  Google Scholar 

  • Ulrich R, Symannek B (1969) Pain as a stimulus for aggression In: Garattini S, Sigg EB (eds.) Aggressive behaviour. Excerpta Medica Foundation Amsterdam, pp 59–69

    Google Scholar 

  • Caharperntier J (1969) Analysis and measurement of aggressive behaviour in mice. In: Garattini S, Sigg EB (eds) Aggressive Behaviour. Excerpta Medica Foundation, Amsterdam, pp 86–100

    Google Scholar 

  • Davbanzo JP (1969) Observations related to drug-induced alterations in aggressive behaviour. In: Garattini S, Sigg EB (eds) Aggressive Behaviour. Excerpta Medica Foundation, Amsterdam, pp 263–272

    Google Scholar 

  • Hoffmeister F, Wuttke W (1969) On the actions of psychotropic drugs on the attack-and aggressive-defensive behaviour of mice and cats. In: Garattini S, Sigg EB (eds) Aggressive Behaviour. Excerpta Medica Foundation, Amsterdam, pp 273–280

    Google Scholar 

  • Krsiak M, Janku I (1969) The development of aggressive behaviour in mice by isolation. In: Garattini S, Sigg EB (eds.) Aggressive behaviour. Excerpta Medica Foundation, Amsterdam pp 101–105

    Google Scholar 

  • Lagerspetz KMJ (1969) Aggression and aggressiveness in laboratory mice. In: Garattini S, Sigg EB (eds) Aggressive Behaviour. Excerpta Medica Foundation, Amsterdam, pp 77–85

    Google Scholar 

  • Le Douarec JC, Broussy L (1969) Dissociation of the aggressive behaviour in mice produced by certain drugs. In: Garattini S, Sigg EB (eds) Aggressive Behaviour. Excerpta Medica Foundation, Amsterdam, pp 281–295

    Google Scholar 

  • McMillen BA, Wooten MH, King SW, Scott SM, Williams HI. (1992) Interaction between subchronic administration of alprazolam and aryl-piperazine anxiolytic drugs in aggressive mice. Biogenic Amines 9: 131–140

    CAS  Google Scholar 

  • Mos J, Oliver B, van Oorschot R, van Aken H, Zethof T (1989) Experimental and ethological aspect of maternal aggression in rats: five years of observations. In: Blanchard RJ, Brain PF, Blanchard DC, Parmigiani s (eds) Ethoexperimental Approaches to the Study of Behavior. Kluver Acad Publ, Dordrecht, Boston, London, pp 385–398

    Google Scholar 

  • Oliver B Mos J ( 1992 Rodent models of aggressive behavior and serotonergic drugs. Progr Neuro-Psychopharm Biol Psychiat 16: 847–870

    Article  Google Scholar 

  • Oliver B, Mos J (1986) A female aggression paradigm for use in psychopharmacology: maternal agonistic behavior in rats. In: Brain PF, Ramirez JM (eds) Corss-Disciplinary Studies on Aggression. University of Seville Press, Seville, pp 73–111

    Google Scholar 

  • Oliver B, Mos J. van Oorschot R (1985) Maternal aggression in rats: effects of chlordiazepoxide and fluprazine. Psycho-pharmacology 86: 68–76

    Article  Google Scholar 

  • Scriabine A, Blake M (1962) Evaluation of centrally acting drugs in mice with fighting behavior induced by isolation. Psychopharmacologia 3: 224–226

    Article  CAS  PubMed  Google Scholar 

  • Valzelli L (1967) Drugs and aggressiveness. In: Garratini S, Shore PA (eds.) Advances in Pharmacology, Vol. 5, pp 79108, Academic Press, New York

    Google Scholar 

  • Valzelli L (1969) Aggressive behaviour induced by isolation. In: Garattini S, Sigg EB (eds) Aggressive Behaviour. Excerpta Medica Foundation, Amsterdam, pp 70–76

    Google Scholar 

  • Yen CY, Stanger RL, Millman N (1959) Ataractic suppression of isolation-induced aggressive behavior. Arch Im Pharmacodyn 123: 179–185

    CAS  Google Scholar 

  • Costall B, Hendrie CA, Kelly ME, Naylor RJ (1987) Actions of sulpiride and tiapride in a simple model of anxiety in mice. Neuropharmacol 26: 195–200

    Article  CAS  Google Scholar 

  • Crawley J, Goodwin KK (1980) Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 13: 167–170

    Article  CAS  PubMed  Google Scholar 

  • Crawley JN (1981) Neuropharmacologic specificity of a simple animal model for the behavioral actions of benzodiazepines. Pharmacol Biochem Behav 15: 695–699

    Article  CAS  PubMed  Google Scholar 

  • Kilfoil T, Michel A, Montgomery D, Whithing RL (1989) Effects of anxiolytic and anxiogenic drugs on exploratory activity in a simple model of anxiety in mice. Neuropharmacol 28: 901–905

    Article  CAS  Google Scholar 

  • Borsini F, Lecci A, Volterra G, Meli A (1989) A model to measure anticipatory anxiety in mice? Psychopharmacology 98: 207–211

    Article  CAS  PubMed  Google Scholar 

  • Lecci A, Borsini F, Mancinelli A, D’Aranno V, Stasi MA, Volterra G, Meli A (1990) Effects of serotoninergic drugs on stress-induced hyperthermia in mice. J Neur Transmiss 82: 219–230

    Article  CAS  Google Scholar 

  • Lecci A, Borsini F, Volterra G, Meli A (1990) Pharmacological validation of a novel animal model of anticipatory anxiety in mice. Psychopharmacology 101: 255–261

    Article  CAS  PubMed  Google Scholar 

  • Tulp M, Olivier B, Schipper J, van der Pel G, Mos J, van der Heyden J (1991) Serotonin reuptake blockers: Is there preclinical evidence for their efficacy in obsessive-compulsive disorder? Human Psychopharmacol 6: S63 - S71

    Article  CAS  Google Scholar 

  • Zelthof TJJ, van der Heyden JAM, Olivier B (1991) A new animal model for anticipatory anxiety? In: Olivier B, Mos J, Slangen JL (eds) Animal Models in Psychopharmacology. Birkhäuser Verlag, Basel, pp 65–68

    Google Scholar 

  • Angelis L, File SE (1979) Acute and chronic effects of three benzodiazepines in the social interaction test in mice. Psychopharmacology (Berlin) 64: 127–129

    Article  Google Scholar 

  • Barnes NM, Costall B, Domeney AM, Gerrard PA, Kelly ME, Krähling H, Naylor RJ, Tomkins DM, Williams TJ (1991) The effects of umespirone as a potential anxiolytic and antipsychotic agent. Pharmacol Biochem Behav 40: 89–96

    Article  CAS  PubMed  Google Scholar 

  • Corbett R, Dunn RW (1991) Effects of HA-966 on conflict, social interaction, and plus maze behaviors. Drug Dev Res 24: 201–205

    Article  CAS  Google Scholar 

  • Corbett R, Fielding S, Cornfeldt M, Dunn RW (1991) GABAmimetic agents display anxiolytic-like effects in the social interaction and elevated plus maze procedures. Psychopharmacology 104: 312–316

    Article  CAS  PubMed  Google Scholar 

  • Corbett R, Hartman H, Kerman LL, Woods AT, Strupczewski JT, Helsley GC, Conway PC, Dunn RW (1993) Effects of atypical antipsychotic agents on social behavior in rodents. Pharmacol Biochem Behav 45: 9–17

    Article  CAS  PubMed  Google Scholar 

  • Dunn RW, Corbett R, Martin LL, Payack JF, Laws-Ricker L, Wilmot CA, Rush DK, Cornfeldt ML, Fielding S (1990) Preclinical anxiolytic profiles of 7189 and 8319, novel noncompetitive NMDA antagonists. Current and Future Trends in Anticonvulsant, Anxiety, and Stroke Therapy, Wiley-Liss, Inc., pp 495–512

    Google Scholar 

  • File SE (1980) The use of social interactions as a method for detecting anxiolytic activity of chlordiazepoxide-like drugs. J Neurosci Meth 1: 219–238

    Article  Google Scholar 

  • File SE, Hyde RJ (1979) A test of anxiety that distinguishes between the actions of benzodiazepines and those of other minor tranquilizers and stimulants. Pharmacol Biochem Behav 11: 65–69

    Article  CAS  PubMed  Google Scholar 

  • Gardner C, Guy A (1984) A social interaction model of anxiety sensitive to acutely administered benzodiazepines. Drug Dev Res 4: 207–216

    Article  Google Scholar 

  • Szewczak MR, Cornfeldt, ML, Dunn RW, Wilker JC, Geyer HM, Glamkowski EJ, Chiang Y, Fielding S (1987) Pharmacological evaluation of HP 370, a potential atypical antipsychotic agent. 1. In vivo profile. Drug Dev Res 11: 157–168

    Google Scholar 

  • Treit D (1985) Animal models for the study of anti-anxiety agents: A review. Neurosci Biobehav Reviews 9: 203–222

    Article  CAS  Google Scholar 

  • Brett RR, Pratt JA (1990) Chronic handling modifies the anxiolytic effect of diazepam in the elevated plus-maze. Eur J Pharmacol 178: 135–138

    Article  CAS  PubMed  Google Scholar 

  • Corbett R, Fielding St, Cornfeldt M, Dunn RW (1991) Gabamimetic agents display anxiolytic-like effects in the social interaction and elevated plus maze procedures. Psychopharmacology 104: 312–316

    Article  CAS  PubMed  Google Scholar 

  • Danks AM, Oestreicher AB, Spruijt Gispen WH, Isaakson RL (1991) Behavioral and anatomical consequences of unilateral fornix lesions and the administration of nimodipine. Brain Res 557: 308–312

    Article  CAS  PubMed  Google Scholar 

  • Di Cicco D, Antal S, Ammassari-Teule M (1991) Prenatal exposure to gamma/neutron irradiation: sensorimotor alterations and paradoxical effects on learning. Teratology 43: 61–70

    Article  PubMed  Google Scholar 

  • Dunn RW, Carlezon WA, Corbett R (1991) Preclinical anxiolytic versus antipsychotic profiles of the 5-HT, antagonists ondansetron, zacopride, 3a-tropanyl-1 H-indole-3carboxylic acid ester, and laH, 3a, 5aH-Tropan-3-y1–3,5dichlorobenzoate. Drug Dev Res 23: 289–300

    Article  CAS  Google Scholar 

  • File SE, Mabbutt PS, Hitchcott, PH (1990) Characterisation of the phenomenon of “one-trial tolerance” to the anxiolytic effect of chlordiazepoxide in the elevated plus-maze. Psychopharmacology 102: 98–101

    Article  CAS  PubMed  Google Scholar 

  • Harro J, Pöld M, Vasar E (1990) Anxiogenic-like action of caerulein, a CCK-8 receptor agonist, in the mouse: influence of acute and subchronic diazepam treatment. Naunynschmiedeberg’s Arch Pharmacol 341: 62–67

    CAS  Google Scholar 

  • Kauppila T, Tanila H, Carlson S, Taira T (1991) Effects of atipamezole, a novel a2-adrenoreceptor antagonist, in openfield, plus-maze, two compartment exploratory, and forced swimming tests in rats. Eur J Pharmacol 205: 177–182

    Article  CAS  PubMed  Google Scholar 

  • Montgomery KC (1958) The relation between fear induced by novel stimulation and exploratory behaviour. J Comp Physiol Psychol 48: 254–260

    Article  Google Scholar 

  • Munn NL (1950) The role of sensory processes in maze behavior. In: Handbook of Psychological Research in the Rat. Houghton Mifflin Comp., Boston, pp 181–225

    Google Scholar 

  • Pellow S (1986) Anxiolytic and anxiogenic drug effects in a novel test of anxiety: Are exploratory models of anxiety in rodents valid? Meth and Find Exptl Clin Pharmacol 8: 557–565

    CAS  Google Scholar 

  • Pellow S, Chopin Ph, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Meth 14: 149–167

    Article  CAS  Google Scholar 

  • Pellow S, File SE (1986) Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol Biochem Behav 25: 525–529

    Article  Google Scholar 

  • Silverman P (1978) Approach to a conditioned stimulus: mazes. In: Animal behaviour in the laboratory. Chapman and Hall, London, pp 110–119

    Google Scholar 

  • Toubas PL, Abla KA, Cao W, Logan LG, Seale TW (1990) Latency to enter a mirrored chamber: a novel behavioral assay for anxiolytic agents. Pharmacol Biochem Behav 35: 121–126

    Article  CAS  PubMed  Google Scholar 

  • Connor DJ, Langlais PJ, Thal LJ (1991) Behavioral impairments after lesions in the nucleus basalis by ibotenic acid and quisqualic acid. Brain Res 555: 84–90

    Article  CAS  PubMed  Google Scholar 

  • McNaughton N, Morris RGM (1987) Chlordiazepoxide, an anxiolytic benzodiazepine, impairs place navigation in rats. Behav Brain Res 24: 39–46

    Article  CAS  PubMed  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Meth I1: 47–60

    Article  Google Scholar 

  • Morris RGM (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12: 239–260

    Article  Google Scholar 

  • Morris RGM, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature: 319: 774–776

    Article  CAS  PubMed  Google Scholar 

  • Rowan MJ, Culle WK, Moulton B (1990) Buspirone impairment of performance of passive avoidance and spatial learning tasks in the rat. Psychopharmacology 100: 393–398

    Article  CAS  PubMed  Google Scholar 

  • Emmanouil D, Quock RM (1990) Effects of benzodiazepine antagonist, inverse agonist and antagonist drugs in mouse staircase test. Psychopharmacology 102: 95–97

    Article  CAS  PubMed  Google Scholar 

  • Houri D (1985) Staircase test of central nervous system drugs. Pharmacometrics 30: 467–479

    CAS  Google Scholar 

  • Keane PE, Simiand J, Morre M, Biziere K (1988) Tetrazepam: A benzodiazepine which dissociates sedation from other benzodiazepine activities. I. Psychopharmacological profile in rodents. J Pharmacol Exper Ther 245: 692–698

    Google Scholar 

  • Porsolt RD, Lenègre A, Avril I, Doumont G (1988) Antagonism by exifone, a new cognitive enhancing agent, of the amnesias induced by four benzodiazepines in mice. Psychopharmacology 95: 291–297

    Article  CAS  PubMed  Google Scholar 

  • Simiand J, Keane PE, Morre M (1984) The staircase test in mice: A simple and efficient procedure for primary screening of anxiolytic agents. Psychopharmacology 84: 48–53

    Google Scholar 

  • Stem L, Thierry B, Chermat R, Millet B, Simon P, Porsolt RD (1987) Comparing benzodiazepines using the staircase test in mice. Psychopharmacology 92: 106–109

    Article  Google Scholar 

  • Thiébot MH, Soubrié P, Simon P, Boissier JR (1973) Dissociation de deux composantes du comportement chez le Rat sous l’effet de psychotropes. Application à l’etude des anxiolytiques. Psychopharmacologia 31: 77–90

    Google Scholar 

  • Pollard GT, Howard JL (1991) Cork gnawing in the rat as a screening method for buspirone-like anxiolytics. Drug Dev Res 22: 179–187

    Article  CAS  Google Scholar 

  • Pollard GT, Nanry KP, Howard JL (1992) Effects of tandospirone in three behavioral tests for anxiolytics. Eur J Pharmacol221: 297–305

    Google Scholar 

  • Gardner CR (1985) Distress vocalisation in rat pups: A simple screening method for anxiolytic drugs. J Pharmacol Meth 14: 181–187

    Article  CAS  Google Scholar 

  • Schipper J, Tulp MThM, Berkelmans B, Mos J, Van der Heijden JAM, Olivier B (1991) Preclinical pharmacology of Flesinoxan: A potential anxiolytic and antidepressant drug. Human Psychopharmacol 6: 53–61

    Google Scholar 

  • Tulp M, Olivier B, Schipper J, van der Poel G, Mos J, van der Heyden J (1991) Serotonin reuptake blockers: Is there preclinical evidence for their efficacy in obsessive-compulsive disorder? Hum Psychopharmacol 6: S63 - S71

    Article  CAS  Google Scholar 

  • Barnes NM, Cheng CHK, Costall B, Ge J, Kelly ME, Naylor RJ (1992) Profiles of R(+)/S(—)-Zacopride and anxiolytic agents in a mouse model. Eur J Pharmacol 218: 91–100

    Article  CAS  PubMed  Google Scholar 

  • Barnes NM, Costalj B, Domeney AM, Gerrard PA, Kelly ME, Krähling H, Naylor RJ, Tomkins DM, Williams TJ (1991) The effects of umespirone as a potential anxiolytic and antipsychotic agent. Pharmacol Biochem Behav 40: 89–96

    Article  CAS  PubMed  Google Scholar 

  • Blumstein LK, Crawley JN (1983) Further characterisation of a simple, automated exploratory model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 18: 37–40

    Article  CAS  PubMed  Google Scholar 

  • Crawley JN (1981) Neuropharmacologic specificity of a simple animal model for the behavioral actions of benzodiazepines. Pharmacol Biochem Behav 15: 695–699

    Article  CAS  PubMed  Google Scholar 

  • Crawley JN, Goodwin FK (1980) Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 13: 167–170

    Article  CAS  PubMed  Google Scholar 

  • Kauppila T, Tanila H, Carlson S, Taira T (1991) Effects of atipamezole, a novel a2-adrenoreceptor antagonist, in openfield, plus-maze, two compartment exploratory, and forced swimming tests in rats. Eur J Pharmacol 205: 177–182

    Article  CAS  PubMed  Google Scholar 

  • Schipper J, Tulp MThM, Berkelmans B, Mos J, Van der Heijden JAM, Olivier B (1991) Preclinical pharmacology of Flesinoxan: A potential anxiolytic and antidepressant drug. Human Psychopharmacol 6: 53–61

    Google Scholar 

  • Treit D (1985) Animal models for the study of anti-anxiety agents: A review. Neurosci Biobehav Reviews 9: 203–222

    Article  CAS  Google Scholar 

  • Falk JL (1971) The nature and determinants of adjunctive behavior. Physiol Behav 6: 577–588

    Article  CAS  PubMed  Google Scholar 

  • Pellon R, Blackman DE (1992) Effects of drugs on the temporal distribution of schedule-induced polydipsia in rats. Pharmacol Biochem Behav 43: 689–695

    Article  CAS  PubMed  Google Scholar 

  • Pitman RK (1989) Animal models of compulsive behavior. Biol Psychiatry 26: 189–198

    Article  CAS  PubMed  Google Scholar 

  • Woods A, Smith C, Szewczak M, Dunn RW, Cornfeldt M, Corbett R (1993) Selective re-uptake inhibitors decrease schedule-induced polydipsia in rats: a potential model for obsessive compulsive disorder. Psychopharmacology 112: 195–198

    Article  CAS  PubMed  Google Scholar 

  • Aron C, Simon P, Larousse C, Boissier JR (1971) Evaluation of a rapid technique for detecting minor tranquillizers. Neuropharmacol 10: 459–469

    Article  CAS  Google Scholar 

  • Boissier JR, Simon P, Aron C (1968) A new method for rapid screening of minor tranquilizers in mice. Eur J Pharmacol 4: 145–151

    Article  CAS  PubMed  Google Scholar 

  • Lenègre A, Chermat R, Avril I, Stéru L, Porsolt RD (1988) Specificity of Piracetam’s anti-amnesic activity in three models of amnesia in the mouse. Pharmacol Biochem Behav 29: 625–629

    Article  PubMed  Google Scholar 

  • Simon P (1970) Les Anxiolytiques. Possibilités d’étude chez l’animal. Actualités pharmacol. 23: 47–78

    CAS  PubMed  Google Scholar 

  • Stephens DN, Schneider HH, Kehr W, Andrews JS, Rettig K-J, Turski L, Schmiechen R, Turner JD, Jensen LH, Petersen EN, Honore T, Bondo Jansen J (1990) Abecarnil, a metabolically stable, anxioselective ß-carboline acting at benzodiazepine receptors. J Pharmacol Exper Ther 253: 334–343

    CAS  Google Scholar 

  • Conti LH, Maciver CR, Ferkany JW, Abreu ME (1990) Footshock-induced freezing behavior in rats as a model for assessing anxiolytics. Psychopharmacology 102: 492–497

    Article  CAS  PubMed  Google Scholar 

  • Acri JB, Grunberg NE, Morse DA (1991) Effects of nicotine on the acoustic startle reflex amplitude in rats. Psycho-pharmacology 104: 244–248

    Article  CAS  Google Scholar 

  • Astrachan DI, Davis M (1981) Spinal modulation of the acoustic startle response: the role of norepinephrine, serotonin and dopamine. Brain Res 206: 223–228

    Article  CAS  PubMed  Google Scholar 

  • Cadet JL, Kuyatt B, Fahn S, De Souza EB (1987) Differential changes in 125I-LSD-labeled 5-HT-2 serotonin receptors in discrete regions of brain in the rat model of persistent dyskinesias induced by iminodipropionitrile (IDPN): evidence from autoradiographic studies. Brain Res 437: 383–386

    Article  CAS  PubMed  Google Scholar 

  • Davis M (1980) Neurochemical modulation of sensory-motor reactivity: Acoustic and tactile startle reflexes. Neurosci Biobehav Rev 4: 241–263

    Article  CAS  PubMed  Google Scholar 

  • Davis M (1982) Agonist-induced changes in behavior as a measure of functional changes in receptor sensitivity following chronic antidepressant treatment. Science 18: 137–147

    CAS  Google Scholar 

  • Davis M (1986) Pharmacological and anatomical analysis of fear conditioning using the fear-potentiated startle paradigm. Behav Neurosci 100: 814–824

    Article  CAS  PubMed  Google Scholar 

  • Davis M (1992) The role of the amygdala in fear-potentiated startle: implications for animal models of anxiety. Trends Pharmacol Sci 13: 35–41

    Article  CAS  PubMed  Google Scholar 

  • Davis M, Astrachan DI, Kass E (1980) Excitatory and inhibitory effects of serotonin on sensomotoric reactivity measured with acoustic startle. Science 209: 521–523

    Article  CAS  PubMed  Google Scholar 

  • Hijzen TH, Woudenberg F, Slangen JL (1990) The long-term effects of diazepam and pentylenetetrazol on the potentiated startle response. Pharmacol Biochem Behav 36: 35–38

    Article  CAS  PubMed  Google Scholar 

  • Keith VA, Mansbach RS, Geyer MA (1991) Failure of haloperidol to block the effects of phencyclidine and dizocilpine on prepulse inhibition of startle. Biol Psychiatry 30: 557–566

    Article  CAS  PubMed  Google Scholar 

  • Mansbach RS, Markou A, Patrick GA (1994) Lack of altered startle response in rats following termination of self-administered or noncontingently infused cocaine. Pharmacol Biochem Behav 48: 453–458

    Article  CAS  PubMed  Google Scholar 

  • Rigdon GC, Viik K (1991) Prepulse inhibition as a screening test for potential antipsychotics. Drug Dev Res 23: 91–99

    Article  CAS  Google Scholar 

  • Taylor MK, Ison JR, Schwarzkopf SB (1995) Effects of single and repeated exposure to apomorphine on the acoustic startle reflex and its inhibition by a visual prepulse. Psychopharmacology 120: 117–127

    Article  CAS  PubMed  Google Scholar 

  • Varty GB, Higgins GA (1994) Differences between three rat strains in sensitivity to prepulse inhibition of an acoustic startle response: influence of apomorphine and phencyclidine pretreatment. J Psychopharmacol 8: 148–156

    Article  CAS  PubMed  Google Scholar 

  • Vivian JA, Farrell WJ, Sapperstein SB, Miczek KA (1994) Diazepam withdrawal: effects of diazepam and gespirone on acoustic startle-induced 22 kHz ultrasonic vocalizations. Psychopharmacology 114: 101–108

    Article  CAS  PubMed  Google Scholar 

  • Weiss GT, Davis M (1976) Automated system for acquisition and reduction of startle response data. Pharmacol Biochem Behav 4: 713–720

    Article  CAS  PubMed  Google Scholar 

  • Young BJ, Helmstetter FJ, Rabchenuk SA, Leaton RN (1991) Effects of systemic and intra-amygdaloid diazepam on long-term habituation of acoustic startle in rats. Pharmacol Biochem Behav 39: 903–909

    Article  CAS  PubMed  Google Scholar 

  • Zajaczkowski W, Gbrka Z (1993) The effects of single and repeated administration of MAO inhibitors on acoustic startle response in rats. Pol J Pharmacol 45: 157–166

    Article  CAS  PubMed  Google Scholar 

  • Miklya I, Knoll J (1988) A new sensitive method which unlike the VOGEL test detects the anxiolytic effect of tofisopam. Pol J Pharmacol Pharm 40: 561–572

    CAS  PubMed  Google Scholar 

  • Przegalinski E, Chojnacka-Wojcik E, Filip M (1992) Stimulation of 5-HTIA receptors is responsible for the anticonflict effect of ipsapirone in rats. J Pharm Pharmacol 44: 780–782

    Article  CAS  PubMed  Google Scholar 

  • Uyeno ET, Davies MF, Pryor GT, Loew GH (1990) Selective effect on punished versus unpunished responding in a conflict test as the criterion for anxiogenic activity. Life Sci 47: 1375–1382

    Article  CAS  PubMed  Google Scholar 

  • Vogel JR, Beer B, Clody DE (1971) A simple and reliable conflict procedure for testing anti-anxiety agents. Psychopharmacologia (Berl.) 21: 1–7

    Article  CAS  Google Scholar 

  • Balfour DJK (1990) A comparison of the effects of nicotine and (+)-amphetamine on rat behavior in an unsignalled Sidman avoidance schedule. J Pharm Pharmacol 42: 257–260

    Article  CAS  PubMed  Google Scholar 

  • Duffield PH, Jamieson DD, Duffield AM (1989) Effect of aqueous and lipid-soluble extracts of Kava on the conditioned avoidance in rats. Arch Int Pharmacodyn 301: 81–90

    CAS  PubMed  Google Scholar 

  • Galizio M, Journey JW, Royal SA, Welker JA (1990) Variable-interval schedules of time-out from avoidance: Effects of anxiolytic and antipsychotic drugs in rats. Pharmacol Biochem Behav 37: 235–238

    Google Scholar 

  • Heise GA, Boff E (1962) Continuous avoidance as a base-line for measuring behavioral effects of drugs. Psychopharmacologia 3: 264–282

    Article  CAS  PubMed  Google Scholar 

  • Shekar A, Hingtgen JN, DiMicco JA (1987) Selective enhancement of shock avoidance responding elicited by GABA blockade in the posterior hypothalamus of rats. Brain Res 420: 118–128

    Article  Google Scholar 

  • Sidman M (1953) Avoidance conditioning with brief shock and no enteroceptive warning signal. Science 118: 157–158

    Article  CAS  PubMed  Google Scholar 

  • Sidman M (1953) Two temporal parameters of the maintenance of avoidance behavior by the white rat. J Comp Physiol Psychol 46: 253–261

    Article  CAS  PubMed  Google Scholar 

  • Barrett JE, Gleeson S, Nader MA, Hoffmann SM (1989) Anti-conflict effects of the 5-HTIA compound flesinoxan. J Psychopharmacol 3: 64–69

    Article  CAS  PubMed  Google Scholar 

  • Bignami G (1988) Pharmacology and anxiety: Inadequacies of current experimental approaches and working models. Pharmacol Biochem Behav 29: 771–774

    Article  CAS  PubMed  Google Scholar 

  • Chipkin RE, Iorio LC, Coffin VL, McQuade RD, Berger JG, Barnett A (1988) Pharmacological profile of SCH39166: A dopamine Dl selective benzonaphthazepine with potential antipsychotic activity. J Pharmacol Exper. Ther 247: 1093–1102

    Google Scholar 

  • Cook L, Davidson AB (1973) Effects of behaviorally active drugs in a conflict-punishment procedure in rats. In: Garattini S, Mussini E, Randall LO (eds.) The Benzodiazepines, Raven Press, New York, pp 327–345

    Google Scholar 

  • Cook L, Sepinwall J (1975) Behavioral analysis of the effects and mechanisms of action of benzodiazepines. In: Costa E, Greengard P (eds.) Mechanisms of Action of Benzodiazepines. Raven Press, New York, pp 1–28

    Google Scholar 

  • Davidson AB, Cook L (1969) Effects of combined treatment with trifluoperazine-HCI and amobarbital on punished behavior in rats. Psychopharmacologia (Berl.) 15: 159–168

    CAS  Google Scholar 

  • Ervin GN, Cooper BR (1988) Use of conditioned taste aversion as a conflict model: Effects of anxiolytic drugs. J Pharmacol Exp Ther 245: 137–146

    Google Scholar 

  • Geller I, Kulak JT, Seifter J (1962) The effects of chlordiazepoxide and chlorpromazine on a punishment discrimination. Psychopharmacologia 3: 374–385

    Article  CAS  PubMed  Google Scholar 

  • Geller I, Seifter J (1960) The effects of meprobamate, barbiturates, d-amphetamine and promazine on experimentally induced conflict in the rat. Psychopharmacologia 1: 482–492

    Article  CAS  Google Scholar 

  • Hanson HM, Stone CA (1964) Animal techniques for evaluating antianxiety drugs. In: Nodine JN, Siegler PE (eds.) Animal and Clinical Pharmacologic Techniques in Drug Evaluation. Year Book Medical Publ., Chicago, pp 317–324

    Google Scholar 

  • Howard JL, Pollard GT (1990) Effects of buspirone in the Geller-Seifter conflict test with incremental shock. Drug Dev Res 19: 37–49

    Article  CAS  Google Scholar 

  • Iorio LC, Barnett A, Billard W, Gold EH (1986) Benzodiazepines: Structure-activity relationships between D, receptor blockade and selected pharmacological effects. In: Breese GR, Creese I (eds.) Neurobiology of central D,- dopamine receptors. pp 1–14, Plenum Press, New York

    Chapter  Google Scholar 

  • Iversen S (1983) Animal models of anxiety. In: Trimble RM (ed.) Benzodiazepines Divided. John Wiley & Sons Ltd., pp 87–99

    Google Scholar 

  • Keane PE, Siminand J, Morre M, Biziere K (1988) Tetrazepam: A benzodiazepine which dissociates sedation from other benzodiazepine activities. I. Psychopharmacological profile in rodents. J Pharmacol Exper Ther 245: 692–698

    Google Scholar 

  • Mc Milian DE (1973) Drugs and punished responding. I: Rate-dependent effects under multiple schedules. J Exp Anal Behav 19: 133–145

    Article  Google Scholar 

  • Morse WH (1964) Effect of amobarbital and chlorpromazine on punished behavior in the pigeon. Psychopharmacologica 6: 286–294

    Article  CAS  Google Scholar 

  • Prado de Carvalho L, Venault P, Potier MC, Dodd RH, Brown CL, Chapoutier G, Rossier RH (1986) 3-(Methoxycarbony1)-amino-13-carboline, a selective antagonist of the sedative effects of benzodiazepines. Eur J Pharmacol 129: 232–233

    Google Scholar 

  • Schipper J, Tulp MThM, Berkelmans B, Mos J, Van der Heijden JAM, Olivier B (1991) Preclinical pharmacology of Flesinoxan: A potential anxiolytic and antidepressant drug. Human Psychopharmacol 6: 53–61

    Google Scholar 

  • Silverman P (1978) Operant conditioning. In: Animal behaviour in the laboratory. Chapman and Hall, London, pp 141–178

    Google Scholar 

  • Thiébot MH, Dangoumau L, Richard G, Puech AJ (1991) Safety signal withdrawal: a behavioral paradigm sensitive to both “anxiolytic” and “anxiogenic” drugs under identical experimental conditions. Psychopharmacology 103: 415–424

    Article  PubMed  Google Scholar 

  • Wuttke W, Kelleher RT (1970) Effects of some benzodiazepines on punished and unpunished behavior in the pigeon. J Pharmacol Exper Ther 172: 397–405

    CAS  Google Scholar 

  • Craft RM, Howard JL, Pollard GT (1988) Conditioned defensive burying as a model for identifying anxiolytics. Pharmacol Biochem Behav 30: 775–780

    Article  CAS  PubMed  Google Scholar 

  • deBoer SF, Slangen JL, van der Gugten J (1990) Plasma catecholamine and corticosterone levels during active and passive shock-prod avoidance behavior in rats: effects of chlordiazepoxide. Physiol Behav 47: 1089–1098

    Article  CAS  Google Scholar 

  • Diamant M, Croiset G, de Zwart N, de Wied D (1991) Shock-prod burying test in rats: autonomic and behavioral responses. Physiol Behav 50: 23–31

    Article  CAS  PubMed  Google Scholar 

  • Pinel JPJ, Treit D (1978) Burying as a defensive response in rats. J Compar Physiol Psycho] 92: 708–712

    Article  Google Scholar 

  • Pinel JPJ, Treit D (1983) The conditioned defensive burying paradigm and behavioral neuroscience. In: Robinson T (ed.) Pinel JPJ, Treit D. pp 212–234. Oxford Press

    Google Scholar 

  • Treit D, Pinel JPJ, Fibiger HC (1981) Conditioned defensive burying: A new paradigm for the study of anxiolytic agents. Pharmacol Biochem Behav 15: 619–626

    Google Scholar 

  • Broqua P, Baudrie V, Laude D, Chaouloff F (1992) Influence of the novel antidepressant tianeptine on neurochemical, neuroendocrinological, and behavioral effects of stress in rats. Biol Psychiatry 31: 391–400

    Article  CAS  PubMed  Google Scholar 

  • deBoer SF, deBeun R, Slangen JL, van der Gugten J (1990) Dynamics of plasma catecholamine and corticosterone concentrations during reinforced and extinguished operant behavior in rats. Physiol Behav 47: 691–698

    Article  CAS  Google Scholar 

  • deBoer SF, Slangen JL, van der Gugten J (1990) Plasma catecholamine and corticosterone levels during active and passive shock-prod avoidance behavior in rats: effects of chlordiazepoxide. Physiol Behav 47: 1089–1098

    Article  CAS  Google Scholar 

  • Krieman MJ, Hershock DM, Greenberg IJ, Vogel WH (1992) Effects of adinazolam on plasma catecholamine, heart rate and blood pressure responses in stressed and non-stressed rats. Neurophannacol 31: 33–38

    Article  CAS  Google Scholar 

  • Livesey GT, Miller JM, Vogel WH (1985) Plasma norepinephrine, epinephrine and corticosterone stress responses to restraint in individual male and female rats. Neurosci Lett 62: 51–56

    Article  Google Scholar 

  • Natelson BH, Creighton D, McCarty R, Tapp WN, Pittman D, Ottenweller JE (1987) Adrenal hormonal indices of stress in laboratory rats. Physiol Behav 39: 117–125

    Article  CAS  PubMed  Google Scholar 

  • Rittenhouse PA, Bakkum EA, O’Connor PA, Carnes M, Bethea CL, van de Kar LD (1992) Comparison of neuroendocrine and behavioral effects of ipsapirone, a 5-HT1A agonist, in three stress paradigms: immobilization, forced swim and conditioned fear. Brain Res 580: 205–214

    Article  CAS  PubMed  Google Scholar 

  • Taylor J, Harris N, Krieman M, Vogel WH (1989) Effects of buspirone on plasma catecholamines, heart rate and blood pressure in stressed and non-stressed rats. Pharmacol Biochem Behav 34: 349–353

    Article  CAS  PubMed  Google Scholar 

  • Vogel WH, Miller J, DeTurck KH, Routzahn BK (1984) Effects of psychoactive drugs on plasma catecholamines during stress in rats. Neuropharmacology 23: 1105–1109

    Article  CAS  PubMed  Google Scholar 

  • Cotman CW, Iversen LL (1987) Excitatory amino acids in the brain-focus on NMDA receptors. Trends in Neurosci 10: 263–265

    Article  CAS  Google Scholar 

  • Fisher RS (1989) Animal models of the epilepsies. Brain Res Rev 14: 245–278

    Article  CAS  PubMed  Google Scholar 

  • Gale K (1992) GABA and epilepsy: Basic concepts from pre-clinical research. Epilepsia 33 (Suppl. 5): S3 - S12

    CAS  PubMed  Google Scholar 

  • Hout J, Raduoco-Thomas S, RaduocoThomas C (1973) Qualitative and quantitative evaluation of experimentally induced seizures. In: Anticonvulsant Drugs, Vol I, Pergamon Press, Oxford, New York, pp 123–185

    Google Scholar 

  • Koella WP (1985) Animal experimental methods in the study of antiepileptic drugs. In: Frey HH, Janz D (eds) Antiepileptic Drugs. Handbook of Experimental Pharmacology Vol 74, pp 283–339, Springer Verlag, Berlin, Heidelberg

    Chapter  Google Scholar 

  • Löscher W, Schmidt D (1988) Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations. Epilepsy Res 2: 145–181

    Article  PubMed  Google Scholar 

  • MacDonald RL, McLean MJ (1986) Anticonvulsant drugs: Mechanisms of action. Adv Neurol 44: 713–736

    Google Scholar 

  • Meldrum BS (1986) Pharmacological approaches to the treatment of epilepsy. In: Meldrum BS, Porter RJ (eds) New Anticonvulsant Drugs. John Libbey, London Paris, pp 17–30

    Google Scholar 

  • Meldrum BS (1989) Gabaergic mechanisms in the pathogenesis and treatment of epilepsy. Br J Pharmacol 27: 3S - 11S

    Article  CAS  Google Scholar 

  • Porter RJ, Rogawski MA (1992) New antiepileptic drugs: From serendipity to rational discovery. Epilepsia 33. (Suppl. 1): S1 — S6

    Article  CAS  PubMed  Google Scholar 

  • Rogawski MA, Porter RJ (1990) Antiepileptic drugs: Pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol Rev 42: 223–286

    Google Scholar 

  • Rump S, Kowalczyk M (1987) Effects of antiepileptic drugs in electrophysiological tests. Pol J Pharmacol Pharm 39: 557–566

    CAS  PubMed  Google Scholar 

  • Swinyard EA (1973) Assay of antiepileptic drug activity in experimental animals: standard tests. In: Anticonvulsant Drugs, Vol 1, Pergamon Press, Oxford, New York, pp 47–65

    Google Scholar 

  • Toman JEP, Everett GM (1964) Anticonvulsants. In: Laurence DR, Bacharach AL (eds.) Evaluation of Drug Activities: Pharmacometrics. pp 287–300. Academic Press, London and New Woodbury DM (1972) Applications to drug evaluations. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental Models of Epilepsy — A Manual for the Laboratory Worker. Raven Press, New York, pp 557–583

    Google Scholar 

  • Watkins JC, Olverman RI (1987) Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci 10: 265–272

    Article  CAS  Google Scholar 

  • Fonnum F (1987) Biochemistry, anatomy, and pharmacology of GABA neurons. In: Meltzer HY (ed.) Psychopharmacology: The Third Generation of Progress. Raven Press, New York, pp 173–182.

    Google Scholar 

  • Lloyd KG, Morselli PL (1987) Psychopharmacology of Gabaergic drugs. In: Meltzer HY (ed.) Psychopharmacology: The Third Generation of Progress. Raven Press, New York pp 183–195.

    Google Scholar 

  • Falch E, Larsson OM, Schousboe A. Krogsgard-Larsen P (1990) Gaba-A agonists and Gaba uptake inhibitors. Drug Dev Res 21: 169–188

    Article  CAS  Google Scholar 

  • Huger FP, Smith CP, Chiang Y, Glamkowski EJ, Ellis DB (1987) Pharmacological evaluation of HP 370, a potential atypical antipsychotic agent. 2. in vitro profile. Drug Dev Res 11: 169–175

    Article  CAS  Google Scholar 

  • Lajtha A, Sershen H (1975) Inhibition of amino acid uptake by the absence of Na’ in slices of brain. J Neurochem 24: 667–672

    CAS  PubMed  Google Scholar 

  • Lüddens H, Korpi ER (1995) Biological function of GABAA/benzodiazepine receptor heterogeneity. J Psychiat Res 29: 77–94

    Article  PubMed  Google Scholar 

  • Möhler H (1992) Gabaergic synaptic transmission. Arzneim Forsch/Drug Res 42: 211–214

    Google Scholar 

  • Nilsson M, Hansson E, Rönnbäck L (1990) Transport of valproate and its effects on GABA uptake in astroglial primary culture. Neurochem Res 15: 763–767

    Article  CAS  PubMed  Google Scholar 

  • Nilsson M, Hansson E, Rönnbäck L (1992) Interactions between valproate, glutamate, aspartate, and GABA with respect to uptake in astroglial primary cultures. Neurochem Res 17: 327–332

    Article  CAS  PubMed  Google Scholar 

  • Roskoski R (1978) Net uptake of L-glutamate and GABA by high affinity synaptosomal transport systems. J Neurochem 31: 493–498

    Article  CAS  PubMed  Google Scholar 

  • Suzdak PD, Jansen JA (1995) A review of the preclinical pharmacology of tiagabine: a potent and selective anticonvulsant GABA uptake inhibitor. Epilepsia 36: 612–626

    Article  CAS  PubMed  Google Scholar 

  • Taylor CP (1990) GABA receptors and GABAergic synapses as targets for drug development. Drug Dev Res 21: 151–160

    Article  CAS  Google Scholar 

  • Taylor CP, Vartanian MG, Schwarz RD, Rock DM, Callahan MJ, Davis MD (1990) Pharmacology of CI-966:a potent GABA uptake inhibitor, in vitro and in experimental animals. Drug Dev Res 21: 195–215

    Article  CAS  Google Scholar 

  • Walton NY, Gunnawan S, Treiman DM (1994) Treatment of experimental status epilepticus with the GABA uptake inhibitor, tiagabine. Epilepsy Res 19: 237–244

    Article  CAS  PubMed  Google Scholar 

  • Cotman CW, Iversen LL (1987) Excitatory amino acids in the brain-focus on NMDA receptors. Trends Neurosci 10: 263–265

    Article  CAS  Google Scholar 

  • Davies J, Evans RH, Herrling PL, Jones AW, Olverman HJ, Pook P, Watkins JC (1986) CPP, a new potent and selective NMDA antagonist. Depression of central neuron responses, affinity for [3H]D-AP5 binding sites on brain membranes and anticonvulsant activity. Brain Res 382: 169–173

    Article  CAS  PubMed  Google Scholar 

  • Dunn RW, Corbett R, Martin LL, Payack JF, Laws-Ricker L, Wilmot CA, Rush DK, Cornfeldt ML, Fielding S (1990) Preclinical anxiolytic profiles of 7189 and 8319, novel noncompetitive NMDA antagonists. Current and Future Trends in Anticonvulsant, Anxiety, and Stroke Therapy, pp 495512. Wiley-Liss, Inc

    Google Scholar 

  • Ferkany J, Coyle JT (1986) Heterogeneity of sodium-dependent excitatory amino acid uptake mechanisms in rat brain. J Neurosci Res 16: 491–503

    Article  CAS  PubMed  Google Scholar 

  • Foster AC, Fagg GE (1984) Acidic amino acid binding sites in mammalian neuronal membranes: Their characteristics and relationship to synaptic receptors. Brain Res Rev 7: 103–164

    Google Scholar 

  • Foster AC, Fagg GE (1987) Comparison of L-[3H]glutamate, D-[3H]aspartate, DL-[3H]AP5 and [3H]NMDA as ligands for NMDA receptors in crude postsynaptic densities from rat brain. Eur J Pharmacol 133: 291–300

    Article  CAS  PubMed  Google Scholar 

  • Harris EW, Ganong AH, Monaghan DT, Watkins JC, Cotman CW (1986) Action of 3-((±)-2-carboxypiperazin-4-yl)propyl-l-phosphonic acid (CPP): a new and highly potent antagonist of N-methyl-D-aspartate receptors in the hippocampus. Brain Res 382: 174–177

    Article  CAS  PubMed  Google Scholar 

  • Honoré T, Davies SN, Drejer J, Fletchner EJ, Jacobsen P, Lodge D, Nielsen FE (1988) Quinoxalidinediones: Potent competitive non-NMDA glutamate receptor antagonists. Science 241: 701–703

    Google Scholar 

  • Honoré T, Lauridsen J, Krogsgaard-Larsen P (1982) The binding of [3H]AMPA, a structural analogue of glutamic acid to rat brain membranes. J Neurochem 38: 173–178

    Article  PubMed  Google Scholar 

  • Jones SM, Snell LD, Johnson KM (1989) Characterization of the binding of radioligands to the N-methyl-D-aspartate, phenylcyclidine and glycine receptors in buffy coat membranes. J Pharmacol Meth 21: 161–168

    Article  CAS  Google Scholar 

  • Kemp JA, Foster AC, Wong EHF (1987) Non-competitive antagonists of excitatory amino acid receptors. Trends Neurosci 10: 294–298

    Article  CAS  Google Scholar 

  • Lehmann J, Hutchison AJ, McPherson SE, Mondadori C, Schmutz M, Sinton CM, Tsai C, Murphy DE, Steel DJ, Williams M, Cheney DL, Wood PL (1988) CGS 19755, a selective and competitive N-methyl-D-aspartate type excitatory amino acid receptor antagonist. J Pharmacol Exp Ther 246: 65–75

    CAS  PubMed  Google Scholar 

  • Lehmann J, Schneider J, McPherson S, Murphy DE, Bernard P, Tsai C, Bennett DA, Pastor G, Steel DJ, Boehm C, Cheney DL, Liebman JM, Williams M, Wood PL (1987) CPP, a selective N-methyl-D-aspartate (NMDA)-type receptor antagonist: characterization in vitro and in vivo. J Pharmacol Exp Ther 240: 737–746

    CAS  PubMed  Google Scholar 

  • London ED, Coyle JT (1979) Specific binding of [3H]kainic acid to receptor sites in rat brain. Mol Pharmacol 15: 492–505

    CAS  PubMed  Google Scholar 

  • Mayer ML, Westbrook GL (1987) The physiology of excitatory amino acids in the vertebrate central nervous system. Progr Neurobiol 28: 197–276

    Article  CAS  Google Scholar 

  • Monaghan DT, Cotman CW (1982) The distribution of [3H]kainic acid binding sites in rat CNS as determined by autoradiography. Brain Res 252: 91–100

    Article  CAS  PubMed  Google Scholar 

  • Murphy D, Schneider J, Boehm C, Lehmann J, Williams M (1987) Binding of [3H]3-(2-carboxypiperazin-4-yl)propyl1-phosphonic acid to rat brain membranes: A selective, high-affinity ligand for N-methyl-D-aspartate receptors. J Pharmacol Exp Ther 240: 778–784

    Google Scholar 

  • Murphy DE, Hutchinson AJ, Hurt SD, Williams M, Sills MA (1988) Characterization of the binding of [3H]-CGS 19755, a novel N-methyl-D-aspartate antagonist with nanomolar affinity in rat brain. Br J Phannacol 95: 932–938

    Article  CAS  Google Scholar 

  • Murphy DE, Snowhill EW, Williams M (1987) Characterization of quisqualate recognition sites in rat brain tissue using DL-[3H]a-amino-3-hydroxy-5-methylisoxazole-4-propion is acid ( AMPA) and a filtration assay. Neurochem Res 12: 775–782

    Google Scholar 

  • Olney JW (1990) Excitotoxic amino acids and neuropsychiatric disorders. Annu Rev Pharmacol Toxicol 30: 47–71

    Article  CAS  PubMed  Google Scholar 

  • Olsen RW, Szamraj O, Houser CR (1987) [3H]AMPA binding to glutamate receptor subpopulations in rat brain. Brain Res 402: 243–254

    Google Scholar 

  • Olverman JH, Monaghan DT, Cotman CW, Watkins JC (1986) [3H]CPP, a new competitive ligand for NMDA receptors. Eur J Pharmacol 131: 161–162

    Google Scholar 

  • Piotrovsky LB, Garyaev AP, Poznyakova LN (1991) Dipeptide analogues of N-acetylaspartylglutamate inhibit convulsive effects of excitatory amino acids in mice. Neurosci Lett 125: 227–230

    Article  CAS  PubMed  Google Scholar 

  • Rogawski MA, Porter RJ (1990) Antiepileptic drugs: Pharmacological mechanisms and clinical efficacy with considerations of promising developmental stage compounds. Pharmacol Rev 42: 223–286

    Google Scholar 

  • Watkins JC, Olverman HJ (1987) Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci 10: 265–272

    Article  CAS  Google Scholar 

  • Worms P, Willigens MT, Lloyd KG (1981) The behavioral effects of systemically administered kainic acid: a pharmacological analysis. Life Sci 29: 2215–2225

    Article  CAS  PubMed  Google Scholar 

  • Zeman S, Lodge D (1992) Pharmacological characterization of non-NMDA subtypes of glutamate receptor in the neonatal rat hemidissected spinal cord in vitro. Br J Pharmacol 106: 367–372

    Article  CAS  PubMed  Google Scholar 

  • Abe T, Sugihara H, Nawa H, Shigemoto R, Mizuno N, Nakanishi S (1992) Molecular characterization of a novel metabotropic glutamate receptor mglurs coupled to inositol phosphate/Ca’ signal transduction. J Biol Chem 267: 13361–13368

    CAS  PubMed  Google Scholar 

  • Bashir ZI, Bortolotto ZA, Davies CH, Berretta M, Irving AJ, Seal AJ, Henley AM, Jane DE, Watkins JC, Collingridge GL (1993) Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 363: 347–350

    Article  CAS  PubMed  Google Scholar 

  • Cotman CW, Iversen LL (1987) Excitatory amino acids in the brain-focus on NMDA receptors. Trends Neurosci 10: 263–265

    Article  CAS  Google Scholar 

  • Dannhardt G, von Gruchalla M, Elben U (1994) Tools for NMDA-receptor elucidation: Synthesis of spacer-coupled MK-801 derivatives. Pharm Pharmacol Lett 4: 12–15

    CAS  Google Scholar 

  • Dunn RW, Corbett R, Martin LL, Payack JF, Laws-Ricker L, Wilmot CA, Rush DK, Cornfeldt ML, Fielding S (1990) Preclinical anxiolytic profiles of 7189 and 8319, novel noncompetitive NMDA antagonists. Current and Future Trends in Anticonvulsant, Anxiety, and Stroke Therapy, pp 495512. Wiley-Liss, Inc

    Google Scholar 

  • Ebert B, Madsen U, Lund TM, Lenz SM, Krogsgaard-Larsen P (1994) Molecular pharmacology of the AMPA agonist, (S)2-amino-3-(3-hydroxy-5-phenyl-4-isoxazolyl)propionic acid [(S)-APPA] and the AMPA antagonist, ( R)-APPA. Neurochem Int 24: 507–515

    Google Scholar 

  • Goldman ME, ME, Jacobson AE, Rice KC, Paul SM (1985) Differentiation of [’H]phencyclidine and (+)-[3H]SKF10,047 binding sites in rat cerebral cortex. FEBS Lett 190: 333–336

    Article  CAS  PubMed  Google Scholar 

  • Hansen JJ, Krogsgaard-Larsen P (1990) Structural, conformational, and stereochemical requirements of central excitatory amino acid receptors. Med Res Rev 10: 55–94

    Article  CAS  PubMed  Google Scholar 

  • Iversen LL (1994) MK-801 (Dizocilpine maleate) — NMDA receptor antagonist. Neurotransmiss 10, 1: 1–4

    Google Scholar 

  • Javitt DC, Zukin SR (1989) Biexponential kinetics of [’H]MK801 binding: Evidence for access to closed and open Nmethyl-D-aspartate receptor channels. Mol Pharmacol 35: 387–393

    CAS  PubMed  Google Scholar 

  • Johnson KM, Jones SM (1990) Neuropharmacology of phencyclidine: Basic mechanisms and therapeutic potential. Annu Rev Pharmacol Toxicol 30: 707–750

    Google Scholar 

  • Keinänen K, Wisden W, Sommer B, Werner P, Herb A, Ver-Doom TA, Sakmann B, Seeburg PH (1990) A family of AMPA-selective glutamate receptors. Science 249: 556–560

    Article  PubMed  Google Scholar 

  • Kemp JA, Foster AC Wong EHF (1987) Non-competitive antagonists of excitatory amino acid receptors. Trends Neurosci 10: 294–298

    Article  CAS  Google Scholar 

  • Loo P, Braunwalder A, Lehmann J, Williams M (1986) Radio-ligand binding to central phencyclidine recognition sites is dependent on excitatory amino acid receptor agonists. Eur J Pharmacol 123: 467–468

    Article  CAS  PubMed  Google Scholar 

  • Loo PS, Braunwalder AF, Lehmann J, Williams M, Sills MA (1987) Interaction of L-glutamate and magnesium with phencyclidine recognition sites in rats brain: evidence for multiple affinity states of the phencyclidine/N-methyl-Daspartate receptor complex. Mol Pharmacol 32: 820–830

    CAS  PubMed  Google Scholar 

  • Maragos WF, Chu DCM, Greenamyre T, Penney JB, Young AB (1986) High correlation between the localization of [3H]TCP binding and NMDA receptors. Eur J Pharmacol 123: 173–174

    Article  CAS  PubMed  Google Scholar 

  • Masu M, Tanabe Y, Tsuchida K, Shigemoto R, Nakanishi S (1991,) Sequence and expression of a metabotropic glutamate receptor. Nature 349: 760–765

    Google Scholar 

  • Meguro H, Mori H, Araki K, Kushiya E, Katsuwada T, Yamazaki M, Kumanishi T, Arakawa M, Sakimura K, Mishina M (1992) Functional characterization of a heteromeric Nmda receptor channel expressed from cloned cdnas. Nature 357: 70–74

    Article  CAS  PubMed  Google Scholar 

  • Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH (1992) Heteromeric NMDA receptors: Molecular and functional distinction of subtypes. Science 256: 1217–1221

    Google Scholar 

  • Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature 354: 31–37

    Article  CAS  PubMed  Google Scholar 

  • Nakajima Y, Iwakabe H, Akazawa C, Nawa H, Shigemoto R, Mizuno N, Nakanishi N (1993) Molecular characterization of a novel retina] metabotropic glutamate receptor mglur with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. J Biol Chem 268: 11868–11873

    CAS  PubMed  Google Scholar 

  • Nowak G, Remond A, McNamara M, Paul IA (1995) Swim stress increases the potency of glycine at the N-methyl-Daspartate receptor complex. J Neurochem 64: 925–927

    Article  CAS  PubMed  Google Scholar 

  • Reynolds IJ, Miller RJ (1988) Multiple sites for the regulation of the N-methyl-D-aspartate receptor. Mol Pharmacol 33: 581–584

    CAS  PubMed  Google Scholar 

  • Rogawski MA, Porter RJ (1990) Antiepileptic drugs: Pharmacological mechanisms and clinical efficacy with considerations of promising developmental stage compounds. Pharmacol Reviews 42: 223–286

    Google Scholar 

  • Sacaan AI, Johnson KM (1989) Spermine enhances binding to the glycine site associated with the N-methyl-D-aspartate receptor complex. Mol Pharmacol 36: 836–839

    CAS  PubMed  Google Scholar 

  • Schoepp D, Bockaert J, Sladeczek F (1990) Pharmacological and functional characteristics of metabotropic excitatory amino acid receptors. Trends Pharmacol Sci 11: 508–515

    Article  CAS  PubMed  Google Scholar 

  • Sills MA, Fagg G, Pozza M, Angst C, Brundish DE, Hurt SD, Wilusz EJ, Williams M (1991) [3H]CGP 39653: a new Nmethyl-D-aspartate antagonist radioligand with low nano-molar affinity in rat brain. Eur J Pharmacol 192: 19–24

    Google Scholar 

  • Simon RP, Swan JH, Griffiths T, Meldrum BS (1984) Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226: 850–852

    Article  CAS  PubMed  Google Scholar 

  • Snell LD, Morter RS, Johnson KD (1988) Structural requirements for activation of the glycine receptor that modulates the N-methyl-D-aspartate operated ion channel. Eur J Pharmacol 156: 105–110

    Article  CAS  PubMed  Google Scholar 

  • Snell LD, Morter RS, Johnson KM (1987) Glycine potentiates N-methyl-D-aspartate-induced [3H]TCP binding to rat cortical membranes. Neurosci Lett 83: 313–320

    Article  CAS  PubMed  Google Scholar 

  • Tanabe Y, Nomura A, Masu M, Shigemoto R, Mizuno N, Nakanishi S (1993) Signal tranduction, pharmacological properties, and expression patterns of two metabotropic glutamate receptors, mGluR3 and mGluR4. J Neurosci 13: 1372–1378

    CAS  PubMed  Google Scholar 

  • Thedinga KH, Benedict MS, Fagg GE (1989) The N-methylD-aspartate (NMDA) receptor complex: a stoichiometric analysis of radioligand binding domains. Neurosci Lett 104: 217–222

    Article  CAS  PubMed  Google Scholar 

  • Thomson AM (1989) Glycine modulation of the NMDA receptor/channel complex. Trends in Neurosci 12: 349–353

    Article  CAS  Google Scholar 

  • Vignon J, Chicheportiche R, Chicheportiche M, Kamenka JM, Geneste P, Lazdunski M (1983) [3H]TPC: a new tool with high affinity to the PCP receptor in rat brain. Brain Res 280: 194–197

    Google Scholar 

  • Watkins JC, Krogsgaard-Larsen P, Honoré T (1990) Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol Sci 11: 25–33

    Article  CAS  PubMed  Google Scholar 

  • Watkins JC, Olverman HJ (1987) Agonists and antagonists for excitatory amino acid receptors. Trends Neurosci 10: 265–272

    Article  CAS  Google Scholar 

  • Williams K, Romano C, Molinoff PB (1989) Effects of polyamines on the binding of [3H]MK-801 to the N-methylD-aspartate receptor: pharmacological evidence for the existence of a polyamine recognition site. Mol Pharmacol 36: 575–581

    CAS  PubMed  Google Scholar 

  • Wong EHF, Kemp JA (1991) Sites for antagonism on the Nmethyl-D-aspartate receptor channel complex. Ann Rev Pharmac Toxic 31: 401–425

    Article  CAS  Google Scholar 

  • Wong EHF, Knight AR, Woodruff GN (1988) [3H]MK-801 labels a site on the N-methyl-D-aspartate receptor channel complex in rat brain membranes. J Neurochem 50: 274–281

    Google Scholar 

  • Yoneda Y, Ogita K (1991) Neurochemical aspects of the Nmethyl-D-aspartate receptor complex. Neurosci Res 10: 1–33

    Article  CAS  PubMed  Google Scholar 

  • Casida JE, Palmer CJ, Cole LM (1985) Bicycloorthocarboxylate convulsants. Potent GABAA receptor antagonists. Mol Pharmacol 28: 246–253

    CAS  PubMed  Google Scholar 

  • Gee KW, Lawrence LJ, Yamamura HI (1986) Modulation of the chloride ionophore by benzodiazepine receptor ligands: influence of gamma-aminobutyric acid and ligand efficacy. Mol Pharmacol 30: 218–225

    CAS  PubMed  Google Scholar 

  • Macksay G, Ticku MK (1985) Dissociation of [35S]-tbutylbicyclophosphorothionate binding differentiates convulsant and depressant drugs that modulate GABAergic transmission. J Neurochem 44: 480–486

    Google Scholar 

  • Macksay G, Ticku MK (1985) GABA, depressants and chloride ions affect the rate of dissociation of [35S1-t-butylbicyclophosphorothionate binding. Life Sci 37: 2173–2180

    Article  Google Scholar 

  • Olsen RW, Yang J, King RG, Dilber A, Stauber GB, Ransom RW (1986) Barbiturate and benzodiazepine modulation of GABA receptor binding and function. Life Sci 39: 1969–1976

    Article  CAS  PubMed  Google Scholar 

  • Squires RF, Casida JE, Richardson M, Saederup E (1983) [35S]t-Butylbicyclophosphorothionate binds with high affinity to brain specific sites coupled to y-aminobutyric acid-A and ion recognition sites. Mol Pharmacol 23: 326–336

    Google Scholar 

  • Supavilai P, Karabath M (1984) [35S]-t-Butylbicyclophosphorothionate binding sites are constituents of the y-aminobutyric acid benzodiazepine receptor complex. J Neurosci 4: 1193–1200

    Google Scholar 

  • Trifiletti RR, Snowman AM, Snyder SH (1985) Barbiturate recognition site on the GABA/Benzodiazepine receptor complex is distinct from the picrotoxin/TBPS recognition site. Eur J Pharmacol 106: 441–447

    Article  Google Scholar 

  • Baron BM, Harrison BL, Miller FP, McDonald IA, Salituro FG, Schmidt CJ, Sorensen SM, White HS, Palfreyman MG (1990) Activity of 5,7-dichtorokynurenic acid, a potent antagonist at the N-methyl-D-aspartate receptor-associated glycine binding site. Mol Pharmacol 38: 554–561

    CAS  PubMed  Google Scholar 

  • Bonhaus DW, Burge BC, McNamara JO (1978) Biochemical evidence that glycine allosterically regulates an NMDA receptor-coupled ion channel. Eur J Pharmacol 142: 489–490

    Article  Google Scholar 

  • Bonhaus DW, Yeh G-C, Skaryak L, McNamara JO (1989) Glycine regulation of the N-methyl-D-aspartate receptor-gated ion channel in hippocampal membranes. Mol Pharmacol 36: 273–279

    CAS  PubMed  Google Scholar 

  • Cotman CW, Monaghan DT, Ottersen OP, Storm-Mathisen J (1987) Anatomical organization of excitatory amino acid receptors and their pathways. Trends Neurosci 10: 273–280

    Article  CAS  Google Scholar 

  • Danysz W, Wroblewski JT, Brooker G, Costa E (1989) Modulation of glutamate receptors by phencyclidine and glycine in the rat cerebellum: cGMP increase in vivo. Brain Res 479: 270–276

    Article  CAS  PubMed  Google Scholar 

  • Foster AC, Kemp JA, Leeson PD, Grimwood S, Donald AE, Marshall GR, Priestley T, Smith JD, Carling RW (1992) Kynurenic acid analogues with improved affinity and selectivity for the glycine site on the N-methyl-D-aspartate receptor from rat brain. Mol Pharmacol 41: 914–922

    CAS  PubMed  Google Scholar 

  • Hargreaves RJ, Rigby M, Smith D, Hill RG (1993) Lack of effect of L-687,414 ((+)-cis-4-methyl-HA-966), an NMDA receptor antagonist acting at the glycine site, on cerebral glucose metabolism and cortical neuronal morphology. Br J Pharmacol 110: 36–42

    Article  CAS  PubMed  Google Scholar 

  • Jansen KLR, Dragunow M, Faull RLM (1989) [3H]Glycine binding sites, NMDA and PCP receptors have similar distributions in the human hippocampus: an autoradiographic study. Brain Res 482: 174–1178

    Google Scholar 

  • Kessler M, Terramani T, Lynch B, Baudry M (1989) A glycine site associated with N-methyl-D-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem 52: 1319–1328

    Article  CAS  PubMed  Google Scholar 

  • Monahan JB, Corpus VM, Hood WF, Thomas JW, Compton RP (1989) Characterization of a [3H]glycine recognition site as a modulatory site of the N-Methyl-D-aspartate receptor complex. J Neurochem 53: 370–375

    Article  CAS  PubMed  Google Scholar 

  • Oliver MW, Kessler M, Larson J, Schottler F, Lynch G (1990) Glycine site associated with the NMDA receptor modulates long-term potentiation. Synapse 5: 265–270

    Article  CAS  PubMed  Google Scholar 

  • Ransom RW, Deschenes NL (1988) NMDA-induced hippocampal [3H]norepinephrine release is modulated by glycine. Eur J Pharmacol 156: 149–155

    Article  CAS  PubMed  Google Scholar 

  • Rao TS, Cler JA, Emmet MR, Mick SJ, Iyengar S, Wood PL (1990) Glycine, glycinamide, and D-serine act as positive modulators of signal transduction at the N-methyl-Daspartate (NMDA) receptor in vivo: differential effects on mouse cerebellar cyclic guanosine monophosphate levels. Neuropharmacol 29: 1075–1080

    Article  CAS  Google Scholar 

  • Reynolds IJ, Murphy SN, Miller RJ (1987) ‘H-labeled MK-801 binding to the excitatory amino acid receptor complex from rat brain is enhanced by glycine. Proc Natl Acad Sci USA 84: 7744–7748

    Google Scholar 

  • Sacaan AI, Johnson KM (1989) Spermine enhances binding to the glycine site associated with N-methyl-D-aspartate receptor complex. Mol Pharmacol 36: 836–839

    CAS  PubMed  Google Scholar 

  • Snell LD, Morter RS, Johnson KM (1987) Glycine potentiates N-methyl-D-aspartate induced [3H]TCP binding to rat cortical membranes. Neurosci Lett 83: 313–317

    Article  CAS  PubMed  Google Scholar 

  • Snell LD, Morter RS, Johnson KM (1988) Structural requirements for activation of the glycine receptor that modulates the N-methyl-D-aspartate operated ion channel. Eur J Pharmacol 156: 105–110

    Article  CAS  PubMed  Google Scholar 

  • Thomson AM (1989) Glycine modulation of the NMDA recep- tor/channel complex. Trends Neuroscience 12: 349–353

    Article  CAS  Google Scholar 

  • White HS, Harmsworth WL, Sofia RD, Wof HH (1995) Felbamate modulates the strychnine-insensitive glycine receptor. Epilepsy Res 20: 41–48

    Article  CAS  PubMed  Google Scholar 

  • Braestrup C, Nielsen M, Krogsgaard-Larsen P (1986) Glycine antagonists structurally related to 4.5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol inhibit binding of [3H]strychnine to rat brain membranes. J Neurochem 47: 691–696

    Article  CAS  PubMed  Google Scholar 

  • Bristow DR, Bowery NG, Woodruff GN (1986) Light microscopic autoradiographic localisation of [3H]glycine and [3H]strychnine binding sites in rat brain. Eur J Pharmacol 126: 303–307

    Article  CAS  PubMed  Google Scholar 

  • Bruns RF, Welbaum BEA (1985) A sodium chloride shift method to distinguish glycine agonists from antagonists in [3H]strychnine binding. Fed Proc 44: 1828

    Google Scholar 

  • Graham D, Pfeiffer F, Simler R, Betz H (1985) Purification and characterization of the glycine receptor of pig spinal cord. Biochemistry 24: 990–994

    Article  CAS  PubMed  Google Scholar 

  • Johnson G, Drummond JT, Boxer PA, Bruns RF (1992) Proline analogues as agonists at the strychnine-sensitive glycine receptor. J Med Chem 35: 233–241

    Article  CAS  PubMed  Google Scholar 

  • Johnson G, Nickell DG, Ortwine D, Drummond JT, Bruns RF, Welbaum BE (1989) Evaluation and synthesis of aminohydroxyisoxazoles and pyrazoles as potential glycine agonists. J Med Chem 32: 2116–2128

    Article  PubMed  Google Scholar 

  • Kishimoto H, Simon JR, Aprison MH (1981) Determination of the equilibrium constants and number of glycine binding sites in several areas of the rat central nervous system, using a sodium-independent system. J Neurochem 37: 1015–1024

    Article  CAS  PubMed  Google Scholar 

  • Lambert DM, Poupaert JH, Maloteaux JM, Dumont P (1994) Anticonvulsant activities of N-benzyloxycarbonylglycine after parenteral administration. Neuroreport 5: 777–780

    Article  CAS  PubMed  Google Scholar 

  • Marvizön JCG, Vazquez J, Calvo MG, Mayor F Jr, Gbmez AR, Valdivieso F, Benavides J (1986) The glycine receptor: Pharmacological studies and mathematical modeling of the allosteric interaction between the glycine-and strychnine-binding sites. Mol Pharmacol 30: 590–597

    Google Scholar 

  • Young AB, Snyder SH (1974) Strychnine binding in rat spinal cord membranes associated with the synaptic glycine receptor: cooperativity of glycine interactions. Mol Pharmacol 10: 790–809

    CAS  Google Scholar 

  • Alger BE (1984) Hippocampus. Electrophysiological studies of epileptiform activity in vitro. In: Dingledine R (ed) Brain Slices. Plenum Press, New York, London, pp 155–199

    Google Scholar 

  • Alger BE, Dhanjal SS, Dingledine R, Garthwaite J, Henderson G, King GL, Lipton P, North A, Schwartzkroin PA, Sears TA, Segal M, Whittingham TS, Williams J (1984) Brain Slice methods. In: Dingledine R (ed) Brain Slices. Plenum Press, New York, London, pp 381–437

    Google Scholar 

  • Alger BE, Nicoll RA (1982) Pharmacological evidence of two kinds of GABA receptor on rat hippocampal pyramidal cells studied in vitro. J Physiol 328: 125–141

    CAS  PubMed  Google Scholar 

  • Bingmann D, Speckmann EJ (1986) Actions of pentylenetetrazol (PTZ) on CA3 neurons in hippocampal slices of guinea pigs. Exp Brain Res 64: 94–104

    Article  CAS  PubMed  Google Scholar 

  • Coan EJ, Saywood W, Collingridge GL (1987) MK-801 blocks NMDA receptor-mediated synaptic transmission and long term potentiation in rat hippocampal slices. Neurosci Lett 80: 111–114

    Article  CAS  PubMed  Google Scholar 

  • Crain SM (1972) Tissue culture models of epileptiform activity. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental Models of Epilepsy — A Manual for the Laboratory Worker. Raven Press, New York, pp 291–316

    Google Scholar 

  • Dingledine R, Dodd J, Kelly JS (1980) The in vitro brain slice as a useful neurophysiological preparation for intracellular recording. J Neurosci Meth 2: 323–362

    Article  CAS  Google Scholar 

  • Fisher RS (1987) The hippocampal slice. Am J EEG Technol 27: 1–14

    Google Scholar 

  • Fisher RS, Alger BE (1984) Electrophysiological mechanisms of kainic acid-induced epileptiform activity in the rat hippocampal slice. J Neurosci 4: 1312–1323

    CAS  PubMed  Google Scholar 

  • Fredholm BB, Dunwiddie TV, Bergman B, Lindström K (1984) Levels of adenosine and adenine nucleotides in slices of rat hippocampus. Brain Res 295: 127–136

    Article  CAS  PubMed  Google Scholar 

  • Harrison NL, Simmonds MA(1985) Quantitative studies on some antagonists of N-methyl-D-aspartate in slices of rat cerebral cortex. Br J Pharmacol 84: 381–391

    Google Scholar 

  • Langmoe IA, Andersen P (1981) The hippocampal slice in vitro. A description of the technique and some examples of the opportunities it offers. In: Kerkut GA, Wheal HV (eds) Electrophysiology of Isolated Mammalian CNS Preparations. Academic Press, London, New York, pp 51–105

    Google Scholar 

  • Misgeld U (1992) Hippocampal slices. In: Kettenmann H, Grantyn R (eds) Practical ‘Electrophysiological Methods. John Wiley & Sons, New York, pp 41–44

    Google Scholar 

  • Mosfeldt Laursen A (1984) The contribution of in vitro studies to the understanding of epilepsy. Acta Neurol Scand 69: 367–375

    Article  Google Scholar 

  • Müller CM (1992) Extra-and intracellular voltage recording in the slice. In: Kettenmann H, Grantyn R (eds) Practical Electrophysiological Methods. John Wiley & Sons, New York, pp 249–295

    Google Scholar 

  • Oh DJ, Dichter MA (1994) Effect of a γ-aminobutyric acid uptake inhibitor, NNC-711, on spontaneous postsynaptic currents in cultured rat hippocampal neurons: implications for antiepileptic drug development. Epilepsia 35: 426–430

    Article  CAS  PubMed  Google Scholar 

  • Okada Y, Ozawa S (1980) Inhibitory action of adenosine on synaptic transmission in the hippocampus of the guinea pig in vitro. Eur J Pharmacol 68: 483–492

    Article  CAS  PubMed  Google Scholar 

  • Oliver AP, Hoffer BJ, Wyatt RJ (1977) The hippocampal slice: a model system for studying the pharmacology of seizures and for screening of anticonvulsant drugs. Epilepsia 18: 543–548

    Article  CAS  PubMed  Google Scholar 

  • Pandanaboina MM, Sastry BR (1984) Rat neocortical slice preparation for electrophysiological and pharmacological studies. J Pharmacol Meth 11: 177–186

    Article  CAS  Google Scholar 

  • Saltarelli MD, Lowenstein PR, Coyle JT (1987) Rapid in vitro modulation of [3H]hemicholinium-3 binding sites in rat striatal slices. Eur J Pharmacol 135: 35–40

    Article  CAS  PubMed  Google Scholar 

  • Schwartzkroin PA (1975) Characteristics of CAI neurons recorded intracellularly in the hippocampal in vitro slice preparation. Brain Res 85: 423–436

    Article  CAS  PubMed  Google Scholar 

  • Siggins GR, Schubert P (1981) Adenosine depression of hippocampal neurons in vitro: an intracellular study of dose-dependent actions on synaptic and membrane potentials. Neurosci Lett 23: 55–60

    Article  CAS  PubMed  Google Scholar 

  • Skrede KK, Westgard RH (1971) The transverse hippocampal slice: A well-defined cortical structure maintained in vitro. Brain Res 35: 589–659

    Google Scholar 

  • Teyler TT (1980) Brain slice preparation: Hippocampus. Brain Res Bull 5: 391–403

    Article  CAS  PubMed  Google Scholar 

  • Löscher W, Stephens DN (1988) Chronic treatment with diazepam or the inverse benzodiazepine receptor agonist FG 7142 causes different changes in the effects of GABA receptor stimulation. Epilepsy Res. 2: 253–259

    Article  PubMed  Google Scholar 

  • Rastogi SA, Ticku MK (1985) Involvement of a Gabaergic mechanism in the anticonvulsant effect of phenobarbital against maximal electroshock-induced seizures in rats. Pharmacol. Biochem. Behay. 222: 141–146

    Google Scholar 

  • Sohn YJ, Levitt B, Raines A (1970) Anticonvulsive properties of diphenylthiohydantoin. Arch. int. Pharmacodyn. 188: 284–289

    Google Scholar 

  • Swinyard EA (1972) Electrically induced convulsions. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental Models of Epilepsy — A Manual for the Laboratory Worker. Raven Press, New York, pp 433–458

    Google Scholar 

  • Swinyard EA, Brown WC, Goodman LS (1952) Comparative assays of antiepileptic drugs in mice and rats. J Pharmacol Exp Ther 106: 319–330

    CAS  PubMed  Google Scholar 

  • Toman JEP (1964) Animal techniques for evaluating anticonvulsants. In: Nodin JH and Siegler PE (eds) Animal and Clinical Techniques in Drug Evaluation. Year Book Med. Publ. vol 1: 348–352

    Google Scholar 

  • Toman JEP; Everett GM (1964) Anticonvulsants. In: Laurence DR, Bacharach AL (eds) Evaluation of Drug Activities: Pharmacometrics. Academic Press, London and New York, pp 287–300

    Google Scholar 

  • Turner RA (1965) Anticonvulsants, Academic Press, New York & London, pp 164–172

    Google Scholar 

  • Woodbury LA, Davenport VO (1952) Design and use of a new electroshock seizure apparatus and analysis of factors altering seizure threshold and pattern. Arch. int. Pharmacodyn. 92: 97–107

    Google Scholar 

  • Hahn F, Oberdorf A (1960) Vergleichende Untersuchungen über die Krampfwirkung von Begrimid, Pentetrazol and Pikrotoxin. Arch Int Pharmacodyn 135: 9–30

    Google Scholar 

  • Leander JD, Lawson RR, Ornstein PL, Zimmerman DM (1988) N-methyl-D-aspartic acid induced lethality in mice: selective antagonism by phencyclidine-like drugs. Brain Res 448: 115–120

    Article  CAS  PubMed  Google Scholar 

  • Pollack GM, Shen DD (1985) A timed intravenous pentylenetetrazol infusion seizure model for quantitating the anti-convulsant effect of valproic acid in the rat. J Pharmacol Meth 13: 135–146

    Article  CAS  Google Scholar 

  • Shouse MN, Siegel JM, Wu MF, Szymusiak R, Morrison AR (1989) Mechanism of seizure suppression during rapid-eyemovement ( REM) sleep in cats. Brain Res 505: 271–282

    Google Scholar 

  • Snead III OC (1988) y-Hydroxybutyrate model of generalized absence seizures: Further characterization and comparison with other absence models. Epilepsia 29: 361–368

    Google Scholar 

  • Stone WE (1972) Systemic chemical convulsants and metabolic derangements. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental Models of Epilepsy — A Manual for the Laboratory Worker. Raven Press, New York, pp 407–432

    Google Scholar 

  • Testa R, Graziani L, Graziani G (1983) Do different anticonvulsant tests provide the same information concerning the profiles of antiepileptic activity? Pharmacol Res Commun 15: 765–774

    Article  CAS  PubMed  Google Scholar 

  • Toussi HR, Schatz RAS, Waszczak BL (1987) Suppression of methionine sulfoximine seizures by intranigral y-vinyl GABA injection. Eur J Pharmacol 137: 261–264

    Article  CAS  PubMed  Google Scholar 

  • Tursky WA, Cavalheiro EA, Coimbra C, da Penha Berzaghi M Ikonomidou-Turski C, Turski L (1987) Only certain antiepileptic drugs prevent seizures induced by pilocarpine. Brain Res Rev 12: 281–305

    Google Scholar 

  • Buckett WR (1981) Intravenous bicuculline test in mice: Characterisation with Gabaergig drugs. J Pharmacol Meth 5: 35–41

    Article  CAS  Google Scholar 

  • Clineschmidt BV, Martin GE, Bunting PR (1982) Anticonvulsant activity of (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), a substance with potent anticonvulsant, central sympathomimetic, and apparent anxiolytic properties. Drug Dev Res 2: 123–134

    Article  CAS  Google Scholar 

  • Czuczwar SJ, Frey HH, Löscher W (1985) Antagonism of Nmethyl-D,L-aspartic acid-induced convulsions by antiepileptic drugs and other agents. Eur J Pharmacol 108: 273–280

    Article  CAS  PubMed  Google Scholar 

  • Lloyd KG, Morselli PL (1987) Psychopharmacology of Gabaergic drugs. In: Meltzer HY (ed.) Psychopharmacology: The Third Generation of Progress. Raven Press, New York pp 183–195

    Google Scholar 

  • Mecarelli O, de Feo MR, Rina MF, Ricci GF (1988) Effects of Progabide on bicuculline-induced epileptic seizures in developing rats. Clin Neuropharmacol 11: 443–453

    Article  CAS  PubMed  Google Scholar 

  • Rogawski MA, Porter RJ (1990) Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol Rev 42: 223–286

    CAS  PubMed  Google Scholar 

  • Rutecki PA, Lebeda FJ, Johnston D (1987) 4-Aminopyridine produces epileptiform activity in hippocampus and enhances synaptic excitation and inhibition. J Neurophysiol 57: 1911–1924

    Google Scholar 

  • Schaefer Jr. EW, Brunton RB, Cunningham DJ (1973) A summary of the acute toxicity of 4-aminopyridine to birds and mammals. Toxicol Appl Pharmacol 26: 532–538

    Article  Google Scholar 

  • Yamaguchi SI, Rogawski MA (1992) Effects of anticonvulsant drugs on 4-aminopyridine-induced seizures in mice. Epilepsy Res 11. 9–16.

    Article  CAS  PubMed  Google Scholar 

  • Albe-Fessard D, Stutinsky F, Libouban S (1971) Atlas Stéréo- taxique du Diencéphale du Rat Blanc. C.N.R.S., Paris

    Google Scholar 

  • Atsev E, Yosiphov T (1969) Changes in evoked perifocal electrical activity with an acute epileptogenic focus in cat’s cortex. Electrencephalogr Clin Neurophysiol 27: 444

    Article  Google Scholar 

  • Black RG, Abraham J, Ward AA Jr (1967) The preparation of tungstic acid gel and its use in the production of experimental epilepsy. Epilepsia 8: 58–63

    Article  CAS  PubMed  Google Scholar 

  • Blum B, Liban E (1960) Experimental basotemporal epilepsy in the cat. Discrete epileptogenic lesions produced in the hippocampus or amygdaloid by tungstic acid. Neurology 10: 546–554

    Google Scholar 

  • Campell AM, Holmes 0 (1984) Bicuculline epileptogenesis in the rat. Brain Res 323: 239–246

    Article  Google Scholar 

  • Cavalheiro EA, Riche DA, Le Gal la Salle G (1982) Long-term effects of intrahippocampal kainic acid injections in rats: a method for inducing spontaneous recurrent seizures. Electroencephalogr Clin Neurophysiol 53: 581–589

    CAS  Google Scholar 

  • Daniels JC, Spehlman R (1973) The convulsant effect of topically applied atropine. Electroencephalogr Clin Neurophysiol 34: 83–87

    Article  CAS  PubMed  Google Scholar 

  • Dow RS, Fernândez-Guardiola A, Manni E (1962) The production of cobalt experimental epilepsy in the rat. Electroencephalogr Clin Neurophysiol 14: 399–407

    Article  CAS  PubMed  Google Scholar 

  • Ferguson JH, Jasper HH (1971) Laminar DC studies of acetylcholine-activated epileptiform discharge in cerebral cortex. Electroencephalogr Clin Neurophysiol 30: 377–390

    Article  CAS  PubMed  Google Scholar 

  • Feria-Velasco A, Olivares N, Rivas F, Velasco M,. Velasco F (1980) Alumina cream-induced focal motor epilepsy in cats. Arch Neurol 37: 287–290

    CAS  Google Scholar 

  • Fischer J, Holubar J, Malik V (1967) A new method of producing chronic epileptogenic cortical foci in the rat. Physiol Bohemosclov 16: 272–277

    CAS  Google Scholar 

  • Hanna GR, Stalmaster RM (1973) Cortical epileptic lesions produced by freezing. Neurology 23: 918–925

    Article  CAS  PubMed  Google Scholar 

  • Hawkins CA, Mellanby JH (1987) Limbic epilepsy induced by tetanus toxin: a longitudinal electroencephalographic study. Epilepsia 28: 431–444

    Article  CAS  PubMed  Google Scholar 

  • Karpiak SE, Graf L, Rapport MM (1976) Antiserum to brain gangliosides produces recurrent epileptiform activity. Science 194: 735–737

    Article  CAS  PubMed  Google Scholar 

  • Karpiak SE, Mahadik SP, Graf L, Rapport MM (1981) An immunological model of epilepsy: seizures induced by antibodies to GM, ganglioside. Epilepsia 22: 189–196

    Article  CAS  PubMed  Google Scholar 

  • Kopeloff L, Chusid JG, Kopeloff N (1955) Epilepsy in Mac-caca mulatta after cortical or intracerebral alumina. Arch Neurol Psychiatry 74: 523–526

    Article  CAS  Google Scholar 

  • Kopeloff LM, Barrera SE, Kopeloff N (1942) Recurrent convulsive seizures in animals produced by immunologic and chemical means. Am J Psychiatry 98: 881–902

    CAS  Google Scholar 

  • Lange SC, Neafsey EJ, Wyler AR (1980) Neuronal activity in chronic ferric chloride epileptic foci in cats and monkey. Epilepsia 21: 251–254

    Article  CAS  PubMed  Google Scholar 

  • Loiseau H, Avaret N, Arrigoni E, Cohadon F (1987) The early phase of cryogenic lesions: an experimental model of seizures updated. Epilepsia 28: 251–258

    Article  CAS  PubMed  Google Scholar 

  • Marsan CA (1972) Focal electrical stimulation. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental Models of Epilepsy — A Manual for the Laboratory Worker. Raven Press, New York, pp 147–172

    Google Scholar 

  • Matsumoto H, Marsan CA (1964) Cortical cellular phenomena in experimental epilepsy: interictal manifestations. Exper Neurol 9: 286–304

    Article  CAS  Google Scholar 

  • Mellanby J, Hawkins C, Mellanby H, Rawlins JNP, Impey ME (1984) Tetanus toxin as a tool for studying epilepsy. J Physiol, Paris 79: 207–215

    Google Scholar 

  • Pei Y, Zhao D, Huang J, Cao L (1983) Zinc-induced seizures: a new experimental model of epilepsy. Epilepsia 24: 169–176

    Article  CAS  PubMed  Google Scholar 

  • Racine RJ (1972) Modification of seizure activity by electrical stimulation: I. After-discharge threshold. Electroencephalogr Clin Neurophysiol 32: 269–279

    Article  CAS  PubMed  Google Scholar 

  • Reid SA, Sypert GW, Boggs WM, Wilmore LJ (1979) Histopathology of the ferric-induced chronic epileptic focus in cat: a Golgi study. Exper Neurol 66: 205–219

    Article  CAS  Google Scholar 

  • Remler MP, Marcussen WH (1986) Systemic focal epileptogenesis. Epilepsia 27: 35–42

    Article  CAS  PubMed  Google Scholar 

  • Remler MP, Sigvardt K, Marcussen WH (1986) Pharmacological response of systemically derived focal epileptic lesions. Epilepsia 27: 671–6777

    Article  CAS  PubMed  Google Scholar 

  • Stalmaster RM, Hanna GR (1972) Epileptic phenomena of cortical freezing in the cat: Persistent multifocal effects of discrete superficial lesions. Epilepsia 13: 313–324

    Google Scholar 

  • Turski WA, Czuczwar SJ, Kleinrok Z, Turski L (1983) Cholinomimetics produce seizures and brain damage in rats. Experientia 39: 1408–1411

    Article  CAS  PubMed  Google Scholar 

  • Walton NY, Gunnawan S, Treiman DM (1994) Treatment of experimental status epilepticus with the GABA uptake inhibitor, tiagabine. Epilepsy Res 19: 237–244

    Article  CAS  PubMed  Google Scholar 

  • Walton NY, Treiman DM (1989) Phenobarbital treatment of status epilepticus in a rodent model. Epilepsy Res 4: 216–222

    Article  CAS  PubMed  Google Scholar 

  • Ward AA Jr (1972) Topical convulsant metals. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental Models of Epilepsy — A Manual for the Laboratory Worker. Raven Press, New York, pp 13–35

    Google Scholar 

  • Girgis M (1981) Kindling as a model for limbic epilepsy. Neurosci 6: 1695–1706

    Article  CAS  Google Scholar 

  • Goddard GV (1967) Development of epileptic seizures through brain stimulation at low intensity. Nature 214: 1020–1021

    Article  CAS  PubMed  Google Scholar 

  • Goddard GV, Dragunow M, Maru E, Macleod EK (1986) Kindling and the forces that oppose it. In: Doane BK, Livingston KE (eds) The Limbic System: Functional Organization and Clinical Disorders. Raven Press, New York, pp 95–108

    Google Scholar 

  • Goddard GV, McIntyre DC, Leech CK (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25: 295–330

    Article  CAS  PubMed  Google Scholar 

  • Heit MC, Schwark WS (1987) An efficient method for time course studies of antiepileptic drugs using the kindled rat seizure model. J Pharmacol Meth. 18: 319–325

    Article  CAS  Google Scholar 

  • Hoenack D, Loescher W (1989) Amygdala-kindling as a model for chronic efficacy studies on antiepileptic drugs: Experiments with carbamazepine. Neuropharmacology 28: 599–610

    Google Scholar 

  • Koella WP (1985) Animal experimental methods in the study of antiepileptic drugs. In: Frey HH, Danz D (eds) Antiepileptic Drugs, Chapter 12, 283–339. Springer Verlag Heidelberg, New York, Tokyo

    Chapter  Google Scholar 

  • Le Gal la Salle G (1981) Amygdaloid kindling in the rat: regional differences and general properties. In: Wada JA (ed) Kindling 2, Raven Press, New York, pp 31–47

    Google Scholar 

  • Löscher W, Nolting B, Hönack D (1988) Evaluation of CPP, a selective NMDA antagonist, in various rodent models of epilepsy. Comparison with other NMDA antagonists, and with diazepam and phenobarbital. Eur J Pharmacol 152: 9–17

    Google Scholar 

  • Lothman EW, Salerno RA, Perlin JB, Kaiser DL (1988) Screening and characterization of anti-epileptic drugs with rapidly recurring hippocampal seizures in rats. Epilepsy Res. 2: 367–379

    Article  CAS  PubMed  Google Scholar 

  • Mason CR, Cooper RM (1972) A permanent change in convulsive threshold in normal and brain-damaged rats with repeated small doses of pentylenetetrazol. Epilepsia 13: 663–674

    Article  CAS  PubMed  Google Scholar 

  • McNamara JO (1984) Kindling: an animal model of complex partial epilepsy. Ann Neurol 16 (Suppl): S72 - S76

    Article  PubMed  Google Scholar 

  • McNamara JO (1986) Kindling model of epilepsy. In: Advances in Neurology. Basic Mechanisms of the Epilepsies. Molecular and Cellular Approaches. Delgado-Escueta AV, Ward AA, Woodbury DM, Porter RJ (eds) Vol 44, Chapter 14, 303–318. Raven Press; New York

    Google Scholar 

  • Pellegrino LJ, Pellegrino AS, Cushman Ai (1979) A Stereo- tactic Atlas of the Brain. 2nd ed. New York: Plenum Press

    Google Scholar 

  • Pinel JPJ, Rovner LI (1978) Experimental epileptogenesis: kindling-induced epilepsy in rats. Exper Neurol 58: 190–202

    Article  CAS  Google Scholar 

  • Racine R (1978) Kindling: the first decade. Neurosurg 3: 234–252

    Article  CAS  Google Scholar 

  • Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr. Clin Neurophysiol 32: 281–294

    Article  CAS  PubMed  Google Scholar 

  • Schmidt J (1990) Comparative studies on the anticonvulsant effectiveness of nootropic drugs in kindled rats. Biomed Biochim Acta 49: 413–419

    CAS  PubMed  Google Scholar 

  • Wada JA (1977) Pharmacological prophylaxis in the kindling model of epilepsy. Arch Neurol 34: 387–395

    Article  Google Scholar 

  • Wada JA, Mizoguichi T, Osawa T (1978) Secondarily generalized convulsive seizures induced by daily amygdaloid stimulation in rhesus monkeys. Neurol 28: 1026–1036

    Article  CAS  Google Scholar 

  • Wada JKA, Osawa T (1976) Spontaneous recurrent seizure state induced by daily amygdaloid stimulation in Senegalese baboons ( Papio papio ). Neurol 22: 273–286

    Google Scholar 

  • Wahnschaffe U, Loescher W (1990) Effect of selective bilateral destruction of the substantia nigra on antiepileptic drug actions in kindled rats. Eur J Pharmacol 186: 157–167

    Article  CAS  PubMed  Google Scholar 

  • Bartoszyk GD, Hamer M (1987) The genetic animal model of reflex epilepsy in the Mongolian gerbil: differential efficacy of new anticonvulsive drugs and prototype antiepileptics. Pharmacol Res Commun 19: 429–440

    Article  CAS  PubMed  Google Scholar 

  • Chapman AG, Croucher MJ, Meldrum BS (1984) Evaluation of anticonvulsant drugs in DBA/2 mice with sound-induced seizures. Arzneim Forsch/Drug Res 34: 1261–1264

    CAS  Google Scholar 

  • Collins RL (1972) Audiogenic seizures. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental Models of Epilepsy–A Manual for the Laboratory Worker. Raven Press, New York, pp 347–372

    Google Scholar 

  • Consroe P, Picchioni A, Chin L (1979) Audiogenic seizure susceptible rats. Fed Proc 38: 2411–2416

    CAS  PubMed  Google Scholar 

  • Crawford RD (1969) A new mutant causing epileptic seizures in domestic fowl. Poultry Sci 48: 1799

    Google Scholar 

  • Crawford RD (1970) Epileptic seizures in domestic fowl. J Hered 61: 185–188

    CAS  PubMed  Google Scholar 

  • Cunningham JG (1971) Canine seizure disorders. J Am Vet Med Ass 158: 589–598

    CAS  Google Scholar 

  • Edmonds HL, Hegreberg GA, van Gelder NM, Sylvester DM, Clemmons RM, Chatburn CG (1979) Fed Proc 38: 2424–2428

    PubMed  Google Scholar 

  • Faingold CL, Naritoku DK (1992) The genetically epilepsy-prone rat: Neuronal networks and actions of amino acid neurotransmitters. In: Faingold CL, Fromm GH (eds) Drugs for Control of Epilepsy: Actions on Neuronal Networks Involved in Seizure Disorders. CRC Press, Boca Raton, Fl, pp 277–308

    Google Scholar 

  • Faingold CL, Randall ME, Boersma Anderson CA (1994) Blockade of GABA uptake with tiagabine inhibits audio-genic seizures and reduces neuronal firing in the inferior colliculus of the genetically epilepsy-prone rat. Exp Neurol 126: 225–232

    Article  CAS  PubMed  Google Scholar 

  • Green MC, Sidman RL (1962) Tottering–A neuromuscular mutation in the mouse. J Hered 53: 233–237

    CAS  PubMed  Google Scholar 

  • Imaizumi K, Ito S, Kutukake G, Takizawa T, Fujiwara K, Tutikawa K (1959) Epilepsy like anomaly of mice. Exp Anim (Tokyo) 8: 6–10

    Google Scholar 

  • Jobe PC, Mishira PK, Dailey JW (1992) Genetically epilepsy-prone rats: Actions of antiepileptic drugs and monoaminergic neurotransmitters. In: Faingold CL, Fromm GH (eds) Drugs for Control of Epilepsy: Actions on Neuronal Networks Involved in Seizure Disorders. CRC Press, Boca Raton, Fl, pp 253–275

    Google Scholar 

  • Johnson DD, Davis HL, Crawford RD (1979) Pharmacological and biochemical studies in epileptic fowl. Fed Proc 38: 2417–2423

    CAS  PubMed  Google Scholar 

  • Killam KF, Killam EK, Naquet R (1967) An animal model of light sensitivity epilepsy. Electroencephalogr Clin Neurophysiol 22: 497–513

    Article  CAS  PubMed  Google Scholar 

  • Killam KF, Naquet R, Bert J (1966) Paroxysmal responses to intermittent light stimulation in a population of baboons ( Papio papio ). Epilepsia 7: 215–219

    Google Scholar 

  • Löscher W (1984) Genetic animal models of epilepsy as a unique resource for the evaluation of anticonvulsant drugs. A review. Meth Find Exptl Clin Pharmacol 6: 531–547

    Google Scholar 

  • Löscher W, Frey HH (1984) Evaluation of anticonvulsant drugs with reflex epilepsy. Arzneim.-Forsch./Drug Res. 34: 1484–1488

    Google Scholar 

  • Löscher W, Meldrum BS (1984) Evaluation of anticonvulsant drugs in genetic animal models of epilepsy. Fed Proc 43: 276–284

    PubMed  Google Scholar 

  • Loskota WJ, Lomax P, Rich ST (1974) The gerbil as a model for the study of epilepsies. Epilepsia 15: 109–119

    Article  CAS  PubMed  Google Scholar 

  • Majkowski J, Kaplan H (1983) Value of Mongolian gerbils in antiepileptic drug evaluation. Epilepsia 24: 609–615

    Article  CAS  PubMed  Google Scholar 

  • Naquet R, Meldrum BS (1972) Photogenic seizures in baboon. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental Models of Epilepsy–A Manual for the Laboratory Worker. Raven Press, New York, pp 373–406

    Google Scholar 

  • Noebels JL (1979) Analysis of inherited epilepsy using single locus mutations in mice. Fed Proc 38: 2405–2410

    CAS  PubMed  Google Scholar 

  • Oguro K, Ito M, Tsuda H, Mutoh K, Shiraishi H, Shirasaka Y, Mikawa H (1991) Association of NMDA receptor sites and seizures El mice. Epilepsy Res 9: 225–230

    Article  CAS  PubMed  Google Scholar 

  • Reigel CE, Dailey JW, Jobe PC (1986) The genetically epilepsy-prone rat: an overview of seizure-prone characteristics and responsiveness to anticonvulsant drugs. Life Sci 39: 763–774

    Article  CAS  PubMed  Google Scholar 

  • Sasa M, Ohno Y, Ujihara H, Fujita Y, Yoshimura M, Takaori S, Serikawa T, Yamada J (1988) Effects of antiepileptic drugs on absence-like and tonic seizures in the spontaneously epileptic rat, a double mutant rat. Epilepsia 29: 505–513

    Article  CAS  PubMed  Google Scholar 

  • Serikawa T, Kogishi K, Yamada J, Ohno Y, Ujihara H, Fujita Y, Sasa M, Takaori S (1990) Long-term effects of continual intake of phenobarbital on the spontaneously epileptic rat. Epilepsia 31: 9–14

    Article  CAS  PubMed  Google Scholar 

  • Serikawa T, Yamada J (1986) Epileptic seizures in rats homozygous for two mutations, zitter and tremor. J Hered 77: 441–444

    CAS  PubMed  Google Scholar 

  • Seyfried TN (1979) Audiogenic seizures in mice. Fed Proc 38: 2399–2404

    CAS  PubMed  Google Scholar 

  • Smith SE, Dürmüller N. Meldrum BS (1991) The non-Nmethyl-D-aspartate receptor antagonists, GYKI 52466 and NBQX are anticonvulsant in two animal models of reflex epilepsy. Eur J Pharmacol 201: 179–183

    Google Scholar 

  • Stark LG, Killam KF, Killam EK (1970) The anticonvulsant effects of phenobarbital, diphenylhydantoin and two benzodiazepines in the baboon, Papio papio. J Pharmacol Exp Ther 173: 125–132

    Google Scholar 

  • Tacke U, Björk E, Tuomisto J (1984) The effect of changes in sound pressure level and frequency on the seizure response of audiogenic seizure susceptible rats. J Pharmacol Meth 11: 279–290

    Article  CAS  Google Scholar 

  • Thiessen DD, Lindzey G, Friend HC (1968) Spontaneous seizures in the Mongolian gerbil (Meriones unguiculatus) Psycho Sci 11: 227–228

    Google Scholar 

  • Ujihara H, Renming X, Sasa M, Ishihara K, Fujita Y, Yoshimura M, Kishimoto T, Serikawa T, Yamada J. Takaori S (1991) Inhibition by thyrotropin-releasing hormone of epileptic seizures in spontaneously epileptic rats. Eur J Pharmacol 196: 15–19

    Article  CAS  PubMed  Google Scholar 

  • Vergnes M, Marescaux C, Micheletti G, Reis J, Depaulis A, Rumbach L, Warter SM (1982) Spontaneous paroxysmal electroclincal patterns in the rat: A model of generalized non-convulsive epilepsy. Neurosci Lett 33: 97–101

    Google Scholar 

  • Xie R, Fujita Y, Sasa M, Ishihara K, Ujihara H, Takaori S, Serikawa T, Jamada J (1990) Antiepileptic effect of CNK602A, a TRH analogue, in the spontaneously epileptic rat (SER), a double mutant. Jap J Pharmacol 52 (Suppl 1): 290 P

    Google Scholar 

  • Balazs T, Grice HC (1963) The relationship between liver necrosis and pentobarbital sleeping time in rats. Toxicol Appl Pharmacol 5: 387–391

    Article  CAS  Google Scholar 

  • Harris LS, Uhle FC (1961) Enhancement of amphetamine stimulation and prolongation of barbiturate depression by a substituted pyrid[3,4-b]indole derivative. J Pharmacol Exp Ther 132: 251–257

    CAS  PubMed  Google Scholar 

  • Lim, RKS (1964) Animal techniques for evaluating hypnotics. In: Nodine JH Siegler PE (eds.) Animal and Clinical Pharmacologic Techniques in Drug Evaluation. Year Book Medical Publ., Inc., Chicago, pp 291–297

    Google Scholar 

  • Mason DFJ (1964) Hypnotics and general anaesthetics. In: Laurence DR, Bacharach AL (eds) Evaluation of Drug Activities: Pharmacometrics. Academic Press, London and New York, pp 261–286

    Google Scholar 

  • Gardner CR, James V (1987) Activity of some benzodiazepine receptor ligands with reduced sedative and muscle relaxant properties on stress-induced electrocorticogram arousal in sleeping rats. J Pharmacol Meth 18: 47–54

    Article  CAS  Google Scholar 

  • James GWL, Piper DC (1978) A method for evaluating potential hypnotic compounds in rats. J Pharmacol Meth 1: 145–154

    Article  CAS  Google Scholar 

  • Baust W, Heinemann H (1967) The role of the baroreceptors and of blood pressure in the regulation of sleep and wakefulness. Exp Brain Res 3: 12–24

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto T, Hamada C, Wada T, Fukuda N (1992) Comparative study on the behavioral and EEG changes induced by diazepam. buspirone and a novel anxioselective anxiolytic, DN-2327, in the cat. Neuropsychobiol 26: 89–99

    Article  CAS  Google Scholar 

  • Heinemann H, Hartmann A, Stock G, Sturm V (1970) Die Wirkungen von Medazepam auf Schwellen subcorticaler, limbischer Reizantworten gemessen an unnarkotisierten, frei beweglichen Katzen. Arzneim Forsch/Drug Res 20: 413–415

    CAS  Google Scholar 

  • Heinemann H, Hartmann A, Sturm V (1968) Der Einfluß von Medazepam auf die Schlaf-Wach-Regulation von wachen, unnarkotisierten Katzen. Arzneim Forsch/Drug Res 18: 1557–1559

    CAS  Google Scholar 

  • Heinemann H, Stock G (1973) Chlordiazepoxide and its effect on sleep-wakefulness behavior in unrestrained cats. Arzneim Forsch/Drug Res 23: 823–825

    CAS  Google Scholar 

  • Hirotsu I, Kihara T, Nakamura S, Hattori Y, Hatta M, Kitakaze Y, Takahama K, Hashimoto Y, Miyata T, Ishihara T, Satoh F (1988) General pharmacological studies on N-(2,6-dimethylphenyl)-8-pyrrolizidineacetamide hydrochloride hemihydrate. Arzneim Forsch/Drug Res 38: 1398–1410

    CAS  Google Scholar 

  • Holm E, Staedt U, Heep J, Kortsik C, Behne F, Kaske A, Men-nicke I (1991) Untersuchungen zum Wirkungsprofil von D,L-Kavain. Zerebrale Angriffsorte and Schlaf-WachRhythmus im Tierexperiment. Arzneim Forsch/Drug Res 41: 673–683

    Google Scholar 

  • Kuhn FJ, Schingnitz G, Lehr E, Montagna E, Hinzen HD, Giachetti A (1988) Pharmacology of WEB 1881-FU, a central cholinergic agent, which enhances cognition and cerebral metabolism. Arch Int Pharmacodyn 292: 13–34

    CAS  PubMed  Google Scholar 

  • Ruckert RT, Johnson DN, Robins AH (1983) Effects of antihistaminic agents on sleep pattern in cats: a new method for detecting sedative potential. Pharmacologist 25: 180

    Google Scholar 

  • Shouse MN, Siegel JM, Wu MF, Szymusiak R, Morrison AR (1989) Mechanisms of seizure suppression during rapideye-movement ( REM) sleep in cats. Brain Res 505: 271–282

    Google Scholar 

  • Sommerfelt L, Ursin R (1991) Behavioral, sleep-waking and EEG power spectral effects following the two specific 5-HT uptake inhibitors zimeldine and alaproclate in cats. Behav Brain Res 45: 105–115

    Article  CAS  PubMed  Google Scholar 

  • Tobler I, Scherschlicht R (1990) Sleep and EEG slow-wave activity in the domestic cat: effect of sleep deprivation. Behav Brain Res 37: 109–118

    Article  CAS  PubMed  Google Scholar 

  • Wallach MB, Rogers C, Dawber M (1976) Cat sleep: A unique first night effect. Brain Res Bull 1: 425–427

    Google Scholar 

  • Wetzel W (1985) Effects of nootropic drugs on the sleep-waking pattern of the rat. Biomed Biochim Acta 44: 1211–1217

    CAS  PubMed  Google Scholar 

  • Yamagushi N, Ling GM, Marczynski TJ (1964) Recruiting responses observed during wakefulness and sleep in unanesthetized chronic cats. Electroenceph Clin Neurophysiol 17: 246–254

    Article  Google Scholar 

  • Courvoisier S (1956) Pharmacodynamic basis for the use of chlorpromazine in psychiatry. J Clin Exp Psychopathol 17: 25–37

    CAS  PubMed  Google Scholar 

  • Anderson PH, Gingrich JA, Bates MD, Dearry AD, Falardeau P, Senogles SE, Caron MG (1990) Dopamine receptor subtypes: beyond the D,/D2 lassification. Trends Pharmacol Sci 11: 213–236

    Article  Google Scholar 

  • Anderson PH, Gronvald FC, Jansen JA (1985) A comparison between dopamine-stimulated adenylate cyclase and 3H-SCH 23390 binding in rat striatum. Life Sci 37: 1971–1983

    Article  Google Scholar 

  • Anderson PH, Nielsen EB, Gronvald FC, Breastrup C (1986) Some atypical neuroleptics inhibit [3H]SCH 23390 binding in vivo. Eur J Pharmacol 120: 143–144

    Article  Google Scholar 

  • Baldessarini RJ, Kula NS, McGrath CR, Bakthavachalam V, Kebabian JW, Neumeyer JL (1993) Isomeric selectivity at dopamine D3 receptors. Eur J Pharmacol 239: 269–270

    Article  CAS  PubMed  Google Scholar 

  • Billard W, Ruperto V, Crosby G, Iorio LC, Barnett A (1984) Characterisation of the binding of 3H-SCH 23390, a selective D-1 receptor antagonist ligand, in rat striatum. Life Sci 35: 1885–1893

    Article  CAS  PubMed  Google Scholar 

  • Chipkin RE, Iorio LC, Coffin VL, McQuade RD, Berger JG, Barnett A (1988) Pharmacological profile of SCH39166: a dopamine D1 selective benzonaphthazepine with potential antipsychotic activity. J Pharmacol Exp Ther 247: 1093–1102

    CAS  PubMed  Google Scholar 

  • Civelli O, Bunzow JR, Grandy DK, Zhou QY, Van Tol HHM (1991) Molecular biology of the dopamine receptors. Eur H Pharmacol, Mol Pharmacol Sect 207: 277–286

    Google Scholar 

  • Clement-Cormier YC, Kebabian JW, Petzold GR, Greengard P (1974) Dopamine-sensitive adenylate cyclase in mammalian brain. A possible site of action of anti-psychotic drugs. Proc Natl Acad Sci USA 71: 1113–1117

    Google Scholar 

  • Creese I (1987) Biochemical properties of CNS dopamine receptors. In: Meltzer HY (ed) Psychopharmacology: The Third Generation of Progress. Raven Press, New York, pp 257–264

    Google Scholar 

  • Dawson TM, Gehlert DR, Yamamura HI, Barnett A, Wamsley JK (1985) D-1 dopamine receptors in the rat brain: Autoradiographic localisation using [3H]SCH 23390. Eur J Pharmacol 108: 323–325

    Article  CAS  PubMed  Google Scholar 

  • Dearry A, Gingrich JA, Falardeau P, Fremeau RT, Bates MD, Caron MG (1990) Molecular cloning and expression of the gene for a human D, dopamine receptor. Nature 347: 72–76

    Article  CAS  PubMed  Google Scholar 

  • DeNinno MP, Schoenleber R, MacKenzie R, Britton DR, Asin KE, Briggs C, Trugman JM, Ackerman M, Artman L, Bednarz L, Bhatt R, Curzon P, Gomez E, Kang CH, Stittsworth J, Kebabian JW (1991) A68930: a potent agonist selective for the dopamine D, receptor: Eur J Pharmacol 199: 209–219

    CAS  Google Scholar 

  • Gerhardt S, Gerber R, Liebman JM (1985) SCH 23390 dissociated from conventional neuroleptics in apomorphine climbing and primate acute dyskinesia models. Life Sci 37: 2355–2363

    Article  CAS  PubMed  Google Scholar 

  • Ginrich JA, Caron MC (1993) Recent advances in the molecular biology of dopamine receptors. Annu Rev Neurosci 16: 299–321

    Article  Google Scholar 

  • Grandy DK, Zhang Y, Bouvier C, Zhou QY, Johnson RA, Allen L, Buck K, Bunzow JR, Salon J, Civelli 0 (1991) Multiple human dopamine receptor genes: a functional D5 receptor and two pseudogenes. Proc Natl Acad Sci USA 88: 9175–9179

    Article  CAS  Google Scholar 

  • Hess E, Battaglia G, Norman AB, Iorio LC, Creese I (1986) Guanine nucleotide regulation of agonist Robinson T (ed.) Interactions at [3H]SCH 23390-labelled D1 dopamine receptors in rat striatum. Eur J Pharmacol 121: 31–38

    Google Scholar 

  • Hyttel J (1983) SCH 23390–the first selective dopamine D-1 antagonist. Eur J Pharmacol 91: 153–154

    Article  CAS  PubMed  Google Scholar 

  • Iorio LC, Barnett A, Leitz FH, Houser VP, Korduba CA (1983) SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopamine systems. J Pharm Exper Ther 226: 462–468

    CAS  Google Scholar 

  • Kebabian JW, Britton DR, DeNinno MP, Perner R, Smith L, Jenner P, Schoenleber R, Williams M (1992) A-77363: a potent and selective D, receptor antagonist with antiparkinsonian activity in marmosets. Eur J Pharmacol 229: 203–209

    Article  CAS  PubMed  Google Scholar 

  • Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277: 93–96

    Article  CAS  PubMed  Google Scholar 

  • Kilpatrick GJ, Jenner P, Mardsen CD (1986) [3H]SCH 23390 identifies D-1 binding sites in rat striatum and other brain areas. J Pharm Pharmacol 38: 907–912

    Google Scholar 

  • Lévesque D, Diaz J, Pilon C, Martres MP, Giros B, Souil E, Schott D, Morgat JL, Schwartz JC (1992) Identification, characterization, and localization of the dopamine D, receptor in rat brain using 7-[3H]hydroxy-N,N-di-n-propyl-2aminotetralin. Proc Natl Acad Sci USA 89: 8155–8159

    Article  PubMed  Google Scholar 

  • Neumeyer JL, Kula NS, Baldessarini RJ, Baindur (1992) Stereoisomeric probes for the D, dopamine receptor: Synthesis and characterization of R-(+) and S-(-) enantiomers of 3-allyl-7,8-dihydroxy-l -phenyl-2,3,4,5-tetrahydro-1 H-3benzazepine and its 6-bromo analogue. J Med Chem 35: 1466–1471

    CAS  Google Scholar 

  • Niznik HB, Sunahara RK, van Tol HHM, Seeman P, Weiner DM, Stormann TM, Brann MR, O’Dowd BF (1992) The dopamine D, receptors. In: Brann MR (ed) Molecular Biology of G-Protein Coupled Receptors. Birkhäuser, Boston Basel Berlin, pp 142–159

    Chapter  Google Scholar 

  • O’Boyle KM, Waddington JL (1992) Agonist and antagonist interaction with D, dopamine receptors: agonist induced masking of D, receptors depends on intrinsic activity. Neurophartnacol 31: 177–183

    Article  Google Scholar 

  • Seeman P (1977) Anti-schizophrenic drugs. Membrane receptor sites of action. Biochem Pharmacol 26: 1741–1748

    Article  CAS  PubMed  Google Scholar 

  • Seeman P, Chau-Wong C, Tedesco J, Wong K (1975) Binding receptors for antipsychotic drugs and dopamine: direct binding assays. Proc Natl Acad Sci USA 72: 4376–4380

    Article  CAS  PubMed  Google Scholar 

  • Snyder SH, Creese I, Burt DR (1975) The brain’s dopamine receptor: labeling with [3H]dopamine. Psychopharmacol Commun 1: 663–673

    CAS  PubMed  Google Scholar 

  • Stoff JC, Kebabian JW (1982) Independent in vitro regulation by the D-2 dopamine receptor of dopamine-stimulated efflux of cyclic AMP and K’-stimulated release of acetylcholine from rat neostriatum. Brain Res 250: 263–270

    Article  Google Scholar 

  • Sunahara RK, Niznik HB, Weiner DM, Stormann TM, Brann MR, Kennedy JL, Gelernter JE, Rozmahel R, Yang Y, Israel Y, Seeman P, O’Dowd BF (1990) Human dopamine D, receptor encoded by an intronless gene on chromosome 5. Nature 347: 80–83

    Article  CAS  PubMed  Google Scholar 

  • Todd RD, O’Malley KL (1993) Family ties: The dopamine D2-like receptor genes. Neurotransmiss 9 (3): 1–4

    Google Scholar 

  • Trampus M, Ongini E, Borea PA (1991) The neutral endopeptidase-24.11 inhibitor SCH 34826 does not change opioid binding but reduces D, dopamine receptors in rat brain. Eur J Pharmacol 194: 17–23

    Article  CAS  PubMed  Google Scholar 

  • Tricklebank MD, Bristow LJ, Hutson PH (1992) Alternative approaches to the discovery of novel antipsychotic agents. Progr Drug Res 38: 299–336

    CAS  Google Scholar 

  • Van Tol HHM, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB, Civelli 0 (1991) Cloning of the gene of a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350: 610–614

    Google Scholar 

  • Weinshank RL, Adham N, Macchi M, Olsen MA, Branchek TA, Hartig PR (1991) Molecular cloning and characterization of a high affinity dopamine receptor (D,1) and its pseudogene. J Biol Chem 266: 22427–22435

    CAS  PubMed  Google Scholar 

  • Zhou QY, Grandy DK, Thambi L, Kusher JA, Van Tol HHM, Cone R, Pribnow D, Salon J, Bunzow JR, Civelli O (1990) Cloning and expression of human and rat dopamine D, receptors. Nature 347: 76–80

    Article  CAS  PubMed  Google Scholar 

  • Bunzow JR, Van Tol HHM, Grandy DK, Albert P, Salon J, Christie MD, Machida CA, Neve KA, Civelli 0 (1988) Cloning and expression of rat D2 dopamine receptor cDNA. Nature 336: 783–787

    CAS  Google Scholar 

  • Civelli O, Bunzow J, Albert P, van Tol HHM, Grandy D (1992) The dopamine D2 receptor. In: Brann MR (ed) Molecular Biology of G-Protein Coupled Receptors. Birkhäuser, Boston Basel Berlin, pp 160–169

    Chapter  Google Scholar 

  • Fields, JZ, Reisine TD, Yamamura HI (1977) Biochemical demonstration of dopaminergic receptors in rat and human brain using [3H1-spiroperidol. Brain Res 136: 578–584

    Article  CAS  PubMed  Google Scholar 

  • Grandy DK, Marchionni MA, Makam H, Stofko RE, Alfano M, Frothingham L, Fischer JB, Burke-Howie KJ, Bunzow JR, Server AC, Civelli 0 (1989) Cloning of the cdna and gene for a human D2 dopamine receptor. Proc Natl Acad Sci USA 86: 9762–9766

    Article  CAS  Google Scholar 

  • Hall H, Köhler C, Gawell L (1985) Some in vitro receptor binding properties of [3H]eticlopride, a novel substituted benzamide, selective for dopamine-D2 receptors in the rat brain. Eur J Pharmacol 111: 191–199

    Article  CAS  PubMed  Google Scholar 

  • Hayes G, Biden TJ, Selbie LA, Shine J (1992) Structural subtypes of the dopamine D2 receptor are functionally distinct: Expression of the D2A and D2B subtypes in a heterologous cell line. Mol Endocrinol 6: 920–926

    Article  CAS  PubMed  Google Scholar 

  • Laduron PM, Janssen PFM, Leysen JE (1978) Spiperone: A ligand of choice for neuroleptic receptors. 2. Regional distribution and in vivo displacement of neuroleptic drugs. Biochem Pharmacol 27: 317–328

    Article  CAS  PubMed  Google Scholar 

  • Leysen JE, Gommeren W, Laduron PM (1978) Spiroperone: A ligand of choice for neuroleptic receptors. 1. Kinetics and characteristics of in vitro binding. Biochem Pharmacol 27: 307–316

    Article  CAS  PubMed  Google Scholar 

  • Locke KW, Dunn RW, Hubbard JW, Vanselous ChL, Cornfeldt M, Fielding St, Strupczewski JT (1990) HP 818: A centrally acting analgesic with neuroleptic properties. Drug Dev Res 19: 239–256

    Google Scholar 

  • Martres MP, Bouthenet ML, Sales N, Sokoloff P, Schwartz JC (1985) Widespread distribution of brain dopamine receptors evidenced with [’25I]iodosulpiride, a highly selective ligand. Science 228: 752–755

    Article  CAS  PubMed  Google Scholar 

  • McConnell HM, Owicki JC, Parce JW, Miller DL, Baxter GT, Wada HG, Pitchford S (1992) The Cytosensor Microphysiometer: biological applications of silicon technology. Science 257: 1906–1912

    Article  CAS  PubMed  Google Scholar 

  • McConnell HM, Rice P, Wada GH, Owicki JC, Parce JW (1991) The microphysiometer biosensor. Curr Opin Struct Biol 1: 647–652

    Article  CAS  Google Scholar 

  • Neve KA, Kozlowski MR, Rosser MP (1992) Dopamine D2 receptor stimulation of Na’/H’ exchange assessed by quantification of extracellular acidification. J Biol Chem 267: 25748–25753

    CAS  PubMed  Google Scholar 

  • Niznik HB, Grigoriadis DE, Pri-Bar I, Buchman O, Seeman P (1985) Dopamine D2 receptors selectively labeled by a benzamide neuroleptic: [3H]-YM-09151–2. Naunyn-Schmiedeberg’s Arch Pharmacol 329: 333–343

    Article  CAS  PubMed  Google Scholar 

  • Owicki JC, Parce JW. (1992) Biosensors based on the energy metabolism of living cells: The physical chemistry and cell biology of extracellular acidification. Biosensors Bioelectronics 7: 255–272

    Google Scholar 

  • Seeman Ph (1981) Brain dopamine receptors. Pharmacol Rev 32: 229–313

    Google Scholar 

  • Sibley DR, Monsma FJ Jr (1992) Molecular biology of dopamine receptors. Trends Pharmacol Sci 13: 61–69

    Article  CAS  PubMed  Google Scholar 

  • Terai M, Hidaka K, Nakamura Y (1989) Comparison of [3H]YM-09151–2 with [3H]spiperone and [3H]raclopride for dopamine D-2 receptor binding to rat striatum. Eur J Pharmacol 173: 177–182

    Article  CAS  PubMed  Google Scholar 

  • Baldessarini RJ, Kula NS, McGrath CR, Bakthavachalam V, Kebabian JW, Neumeyer JL (1993) Isomeric selectivity at dopamine D3 receptors. Eur J Pharmacol 239: 269–270

    Article  CAS  PubMed  Google Scholar 

  • Brücke T, Wenger S, Podreka I, Asenbaum S (1991) Dopamine receptor classification, neuroanatomical distribution and in vivo imaging. Wien Klin Wochenschr 103: 639–646

    PubMed  Google Scholar 

  • Ginrich JA, Caron MC (1993) Recent advances in the molecular biology of dopamine receptors. Annu Rev Neurosci 16: 299–321

    Article  Google Scholar 

  • Kung MP, Fung HF, Chumpradit S, Foulon C (1993) In vitro binding of a novel dopamine D3 receptor ligand: [125I]trans7-OH-PIPAT-A. Eur J Pharmacol 235: 165–166

    Article  CAS  PubMed  Google Scholar 

  • Lévesque D, Diaz J, Pilon C, Martres MP, Giros B, Souil E, Schott D, Morgat JL, Schwartz JC (1992) Identification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-[3H]hydroxy-N,N-di-n-propyl-2aminotetralin. Proc Natl Acad Sci USA 89: 8155–8159

    Article  PubMed  Google Scholar 

  • MacKenzie RG, VanLeeuwen D, Pugsley TA, Shih YH, Demattos S, Tang L, Todd RD, O’Malley KL (1994) Characterization of the human dopamine D3 receptor expressed in transfected cell lines. Eur J Pharmacol, Mol Pharmacol Sect 266: 79–85

    Google Scholar 

  • Sibley DR (1991) Cloning of a `D3’ receptor subtype expands dopamine receptor family. Trend Pharmacol Sci 12: 7–9

    Article  CAS  Google Scholar 

  • Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347: 146–151

    Article  CAS  PubMed  Google Scholar 

  • Todd RD, O’Malley KL (1993) Family ties: The dopamine D2-like receptor genes. Neurotransmiss 9 (3): 1–4

    Google Scholar 

  • Ginrich JA, Caron MC (1993) Recent advances in the molecular biology of dopamine receptors. Annu Rev Neurosci 16: 299–321

    Article  Google Scholar 

  • Sunahara RK, Guan HC, O’Dowd BF, Seeman P, Laurier LG, Ng G, George SR, Torchia J, Van Tol HHM, Niznik HB (1991) Cloning of the gene for a human D5 receptor with higher affinity for dopamine than D,. Nature 350: 614–619

    Article  CAS  PubMed  Google Scholar 

  • Todd RD, O’Malley KL (1993) Family ties: The dopamine D2-like receptor genes. Neurotransmiss 9 (3): 1–4

    Google Scholar 

  • Van Tol HHM, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB, Civelli 0 (1991) Cloning of the gene for a human dopamine D, receptor with high affinity for the antipsychotic clozapine. Nature 350: 610–614

    Google Scholar 

  • Van Tol HHM, Wu CM, Guan HC, Ohara K, Bunzow JR, Civelli O, Kennedy J, Seeman P, Niznik HB, Jovanovic V (1992) Multiple dopamine D4 receptor variants in the human population. Nature 358: 149–152

    Article  PubMed  Google Scholar 

  • Broaddus WC, Bennett JP Jr (1990) Postnatal development of striatal dopamine function. I. An examination of D, and D2 receptors, adenylate cyclase regulation and presynaptic dopamine markers. Develop Brain Res 52: 265–271

    Article  CAS  Google Scholar 

  • Clement-Cormier YC, Kebabian JW, Petzold GL, Greengard P (1974) Dopamine-sensitive adenylate cyclase in mammalian brain: a possible site of action of antipsychotic drugs. Proc Natl Acad Sci USA 71: 1113–1 117

    Google Scholar 

  • Clement-Cormier YC, Parrish RG, Petzold GL, Kebabian JW, Greengard P (1975) Characterisation of a dopamine-sensitive adenylate cyclase in the rat caudate nucleus. J Neurochem 25: 143–149

    Article  CAS  PubMed  Google Scholar 

  • Creese I (1987) Biochemical properties of CNS dopamine receptors. In: Meltzer HY (ed.) Psychopharmacology; The Third Generation of Progress. Raven Press New York, pp 257–264

    Google Scholar 

  • Gale K, Giudotti A, Costa E (1977) Dopamine-sensitive adeny- late cyclase: Location in substantia nigra. Science 195: 503–505

    Google Scholar 

  • Horn S, Cuello AC, Miller RJ (1974) Dopamine in the mesolimbic system of the rat brain: endogenous levels and the effect of drugs on the uptake mechanism and stimulation of adenylate cyclase activity. J Neurochem 22: 265–270

    Article  CAS  PubMed  Google Scholar 

  • Iversen LL (1975) Dopamine receptors in the brain. Science 188: 1084–1089

    Article  CAS  PubMed  Google Scholar 

  • Kebabian JW, Petzold GL, Greengard P (1972) Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine receptor” Proc Nat Acad Sci USA 69: 2145–2149

    CAS  PubMed  Google Scholar 

  • Kebabian JW; Caine DB (1979) Multiple receptors for dopamine. Nature 277: 93–96

    Article  CAS  PubMed  Google Scholar 

  • Magnusson O, Mohringe B, Fowler CJ (1987) Comparison of the effects of dopamine D1 and D2 receptor antagonists on rat striatal, limbic and nigral dopamine synthesis and utilisation. J Neural Transm 69: 163–177

    Article  CAS  PubMed  Google Scholar 

  • Setler PE, Rarau HM, Zirkle CL, Saunders HL (1978) The central effects of a novel dopamine agonist. Eur J Pharmacol 50: 419–430

    Article  CAS  PubMed  Google Scholar 

  • Creese I (1978) Receptor binding as a primary drug screening device. In: ( HI Yamamura et al, eds.) Neurotransmitter receptor binding pp 141–170, Raven Press, New York

    Google Scholar 

  • Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192: 481–483

    Article  CAS  PubMed  Google Scholar 

  • Greenberg DA, U’Prichard DC, Snyder SH (1976) Alphanoradrenergic receptor binding in mammalian brain: Differential labelling of agonist and antagonist states. Life Sci 19: 69–76

    Google Scholar 

  • Huger FP, Smith CP, Chiang Y, Glamkowski EJ, Ellis DB (1987) Pharmacological evaluation of HP 370, a potential atypical antipsychotic agent. Drug Dev Res 11: 169–175

    Article  CAS  Google Scholar 

  • Janowsky A, Sulser F (1987) Alpha and beta adrenoreceptors in brain. In: Meltzer HY (ed.) Psychopharmacology: The Third Generation of Progress. pp. 249–256, Raven Press, New York

    Google Scholar 

  • Mottram DR, Kapur H (1975) The a-adrenoceptor blocking effects of a new benzodioxane. J Pharm Pharmacol 27: 295–296

    Article  CAS  PubMed  Google Scholar 

  • Peroutka SJ, U’Prichard DC, Greenberg DA, Snyder SH (1977) Neuroleptic drug interactions with norepinephrine alpha receptor binding sites in rat brain. Neuropharmacol 16: 549–566

    Article  CAS  Google Scholar 

  • U’Prichard DC, Snyder SH (1979) Distinct a-noradrenergic receptors differentiated by binding and physiological relationships. Life Sci 24: 79–88

    Article  PubMed  Google Scholar 

  • U’Prichard DC, Greenberg DA, Shehan PP, Snyder SH (1978) Tricyclic antidepressants: Therapeutic properties and affinity for a-noradrenergic receptor binding sites in the brain. Science 199: 197–198

    Google Scholar 

  • Yamada S et al (1980) Characterisation of alpha-1 adrenergic receptors in the heart using [3H]-WB 4101: Effect of 6hydroxydopamine treatment. J Pharmacol Exper Ther 215: 176–185

    CAS  Google Scholar 

  • Altar CA, Wasley AM, Neale RF, Stone GA (1986) Typical and atypical antipsychotic occupancy of D2 and S2 receptors: an autoradiographic analysis in rat brain. Brain Res Bull 16: 517–525

    Article  CAS  PubMed  Google Scholar 

  • Bennett JP Jr, Snyder SH (1976) Serotonin and lysergic acid diethylamide binding in rat brain membranes: Relationship to postsynaptic serotonin receptors. Mol Pharmacol 12: 373–389

    Google Scholar 

  • Costalj B, Fortune DH, Naylor RJ, Marsden CD, Pycock C (1975) Serotonergic involvement with neuroleptic catalepsy. Neuropharmacol 14: 859–868

    Article  Google Scholar 

  • Fajolles C, Boireau A, Pochant M, Laduron PM (1992) [3H]RP 62203, a ligand of choice to label in vivo brain 5-HT, receptors. Eur J Pharmacol 216: 53–57

    Google Scholar 

  • Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP (1994) VII. International Union of Pharmacology Classification of Receptors for 5-Hydroxytryptamine ( Serotonin ). Pharmacol Rev 46: 157–203

    Google Scholar 

  • Humphrey PPA, Hartig P, Hoyer D (1993) A proposed new nomenclature for 5-HT receptors. Trends Pharmacol Sci 14: 233–236

    Article  CAS  PubMed  Google Scholar 

  • Leysen JE, de Chaffoy de Courcelles D, de Clerck F, Niemegeers CJE, van Nueten JM (1984) Serotonin-S2 receptor binding sites and functional correlates. Neuropharmacol 23: 1493–1501

    CAS  Google Scholar 

  • Leysen JE, Niemegeers CJE, Tollenaere JP, Laduron PM (1978) Serotonergic component of neuroleptic receptors. Nature 272: 168–171

    Article  CAS  PubMed  Google Scholar 

  • Leysen JE, Niemegeers CJE, van Nueten JM, Laduron PM (1981) [’H]Ketanserin (R 41 468), a selective 3H-ligand for serotonin, receptor binding sites. Binding properties, brain distribution, and functional role. Mol Pharmacol 21: 301–314

    Google Scholar 

  • Leysen JE, Niemegeers CJE, Van Nueten JM, Laduron PM (1982) [3H]Ketanserin (R41 468) a selective 3H-ligand for serotonin, receptor binding sites. Mol Pharmacol 21: 301–314

    Google Scholar 

  • List SJ, Seeman P (1981) Resolution of dopamine and serotonin receptor components of [3H]spiperone binding of rat brain regions. Proc Natl Acad Sci USA 78: 2620–2624

    Article  CAS  PubMed  Google Scholar 

  • Martin GR, Humphrey PPA (1994) Classification review. Receptors for 5-hydroxytryptamine: Current perspectives on classification and nomenclature. Neuropharmacol 33: 261–273

    Google Scholar 

  • Meltzer HV, Matsubara S, Lee JC (1989) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D„ D2 and serotonin2 pK, values. J Pharmacol Exp Ther251: 238–246

    Google Scholar 

  • Morgan DG, Marcusson JO, Finch CE (1984) Contamination of serotonin-2 binding sites with an alpha-] adrenergic component in assays with (3H)spiperone. Life Sci 34: 2507–2514

    Article  CAS  PubMed  Google Scholar 

  • Muramatsu M, Tamaki-Ohashi J, Usuki C, Araki H, Aihara H (1988) Serotonin-2 receptor mediated regulation of release of acetylcholine by minaprine in cholinergic nerve terminal of hippocampus of rat. Neuropharmacol 27: 603–609

    Article  CAS  Google Scholar 

  • Palacios JM, Niehoff DL, Kuhar MJ (1981) [3H]Spiperone binding sites in brain: autoradiographic localization of multiple receptors. Brain Res 213: 277–289

    Google Scholar 

  • Pazos A, Cortés R, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 2346: 231–249

    Article  Google Scholar 

  • Pedigo NW, Yamamura HI, Nelson DL (1981) Discrimination of multiple [3H]5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain. J Neurochem 36: 220–226

    Article  CAS  PubMed  Google Scholar 

  • Peroutka SJ, Lebovitz RM, Snyder SH (1979) Serotonin receptors binding sites affected differentially by guanine nucleotides. Mol Pharmacol 16: 700–708

    CAS  PubMed  Google Scholar 

  • Peroutka SJ, Snyder SH (1979) Multiple serotonin receptors: Differential binding of [3H]5-hydroxytryptamine, [3H]-lysergic acid diethylamide and [’H)spiroperido1. Mol Pharmacol 16: 687–699

    CAS  PubMed  Google Scholar 

  • Rastogi RB, Singhal RL, Lapierre YD (1981) Effects of short-and long-term neuroleptic treatment on brain serotonin synthesis and turnover: Focus on the serotonin hypothesis of schizophrenia. Life Sci. 29: 735–741

    Google Scholar 

  • Samanin R, Quattrone A, Peri G, Ladinsky H, Consolo S (1978). Evidence of an interaction between serotonergic and cholinergic neurons in the corpus striatum and hippocampus of the rat brain. Brain Res 151: 73–82

    Article  CAS  PubMed  Google Scholar 

  • Saxena PR (1994) Modern 5-HT receptor classification and 5-HT based drugs. Exp Opin Invest Drugs 3: 513–523

    Article  CAS  Google Scholar 

  • Scatton B (1982) Effect of dopamine agonists and neuroleptic agents on striatal acetylcholine transmission in the rat: Evidence against dopamine receptor multiplicity. J Pharmacol Exp Ther 220: 197–202

    CAS  PubMed  Google Scholar 

  • Abou-Gharbia M, Ablordeppey SY, Glennon RA (1993) Sigma receptors and their ligands: the sigma enigma. Ann Rep Med Chem 28: 1–10

    Article  CAS  Google Scholar 

  • Angulo JA, Cadet JL, McEwen BS (1990) a Receptor blockade by BMY 14802 affects enkephalinergic and tachykinin cells differentially in the striatum of the rat. Eur J Pharmacol 175: 225–228

    Google Scholar 

  • de Costa BR, Bowen WD, Hellewell SB, Walker JM, Thurkauf A, Jacobson AE, Rice KC (1989) Synthesis and evaluation of optically pure [3H1-(+)-pentazocine, a highly potent and selective radioligand for a receptors. FEBS Lett 251: 53–58

    Article  PubMed  Google Scholar 

  • DeHaven-Hudkins DL, Fleissner LC, Ford-Rice FY (1992) Characterization of the binding of [3H1(+)-pentazocine to a recognition sites in guinea pig brain. Eur J Pharmacol 227: 371–378

    Article  CAS  PubMed  Google Scholar 

  • Deutsch SI, Weizman A, Goldman ME, Morihisa JM (1988) The sigma receptor: A novel site implicated in psychosis and antipsychotic drug efficacy. Clin Neuropharmacol 11: 105–119

    Google Scholar 

  • Ferris RM, Tang FLM, Chang KJ, Russell A (1986) Evidence that the potential antipsychotic agent rimcazole (BW 234U) is a specific, competitive antagonist of sigma sites in brain. Life Sci 38: 2329–2339

    Article  CAS  PubMed  Google Scholar 

  • Goldman ME, Jacobson AE, Rice KC, Paul SM (1985) Differentiation of [3H]phencyclidine and (+)-[3H]SKF-10,047 binding sites in rat cerebral cortex. FEBS Lett 190: 333–336

    Article  CAS  PubMed  Google Scholar 

  • Hoffman DW (1990) Neuroleptic drugs and the sigma receptor. Am J Psychiatry 147: 1093–1094

    CAS  PubMed  Google Scholar 

  • Itzhak Y, Hiller JM, Simon EJ (1985) Characterisation of specific binding sites for [3H](ci7-N-allylnormetazocine in rat brain membranes. Mol Pharmacol 27: 46–52

    CAS  PubMed  Google Scholar 

  • Kaiser C, Pontecorvo MJ, Mewshaw RE (1991) Sigma receptor ligands: Function and activity. Neurotransm 7: 1–5

    Google Scholar 

  • Khazan N, Young GA, El-Fakany EE, Hong O, Calligaro D (1984) Sigma receptors mediate the psychotomimetic effects of N-allylnor-metazocine (SKF-0,047), but not its opioid agonistic-antagonistic properties. Neuropharmacol. 23: 983–987

    Google Scholar 

  • Largent BL, Gundlach AL, Snyder SH (1986) Pharmacological and autoradiographic discrimination of sigma and phencyclidine receptor binding sites in brain with (+)-[3H]SKF 10,047, (+)-[3H]-3-[3-hydroxyphenyl]-N-(1-propyl)piperidine and [3H]-1-[1-(2-thienyl)cyclohexyl]piperidine. J Pharmacol Exp Ther 238: 739–748

    CAS  PubMed  Google Scholar 

  • Quirion R, Bowen WD, Itzhak Y, Junien JL, Musacchio JM, Rothman RB, Su TP, Tam SW, Taylor DP (1992) A proposal for the classification of sigma binding sites. Trends Pharmacol Sci 13: 85–86

    Article  CAS  PubMed  Google Scholar 

  • Quirion R, Chicheportiche R, Contreras PC, Johnson KM, Lodge D, Tam SW, Woods JH, Zukin SR (1987) Classification and nomenclature of phencyclidine and sigma receptor sites. Trends Neurosci 10: 444–446

    Article  CAS  Google Scholar 

  • Sircar R, Nichtenhauser R, leni JR, Zukin SR (1986) Characterisation and autoradiographic visualisation of (+)-[3HJSKF 10,047 binding in rat and mouse brain: Further evidence for phencyclidine/“sigma opiate” receptor commonalty. J Pharmacol Exper Ther 237: 681–688

    CAS  Google Scholar 

  • Su TP (1982) Evidence for sigma opioid receptor: Binding of [3H1-SKF 10047 to etorphine-inaccessible sites in guinea pig brain. J Pharmacol Exper Ther 223: 284–290

    CAS  Google Scholar 

  • Tam SW, Cook L (1984) a-opiates and certain antipsychotic drugs mutually inhibit (+)-[3H]-SKF 10,047 and [3H]haloperidol binding in guinea pig membranes. Proc. Natl Acad. Sci. USA 81: 5618–5621

    Google Scholar 

  • Taylor DP, Dekleva J (1987) Potential antipsychotic BMY 14802 selectively binds to sigma sites. Drug Dev Res 11: 65–70

    Article  CAS  Google Scholar 

  • Vaupel DB (1983) Naltrexone fails to antagonize the a effects of PCP and SKF 10.047 in the dog. Eur J Pharmacol 92: 269–274

    Article  CAS  PubMed  Google Scholar 

  • Walker JM, Bowen WD, Walker FO, Matsumoto RR, de Costa B, Rice KC (1990) Sigma receptors: Biology and function. Pharmacol Reviews 42: 355–402

    Google Scholar 

  • Weber E, Sonders M, Quarum M, McLean S, Pou S, Keana JFW (1986) 1,3-Di(2[5–3H]tolyl)guanidine: A selective ligand that labels a-type receptors. Proc Natl Acad Sci 83: 8784–8788

    Google Scholar 

  • Zukin SR, Tempel A, Gardner EL, Zukin RS (1986) Interaction for psychotomimetic opiates and antipsychotic drugs. Proc Natl Acad Sci 83:8784–8788. of [3H](-)-SKF 10,047 with brain a receptors: Characterization and autoradiographic visualisation. J. Neurochem. 46: 1032–1041

    Google Scholar 

  • Kreiskott H, Vater W (1959) Verhaltensstudien am Goldhamster unter dem Einfluß zentral-wirksamer Substanzen. Naunyn-Schmiedeberg’s Arch exp Path Pharm 236: 100–105

    Google Scholar 

  • Lorenz K (1943) Die angeborenen Formen möglicher Erfahrung. Zeitschr Tierpsychol 5: 235–409

    Article  Google Scholar 

  • Lorenz K (1965) Evolution and modification of behavior. University of Chicago Press, Chicago

    Google Scholar 

  • Lorenz K (1966) Evolution and modification of behavior. Methuen & Co Ltd, London

    Google Scholar 

  • Ther L, Vogel G, Werner Ph (1959) Zur pharmakologischen Differenzierung und Bewertung von Neuroleptica. Arzneim Forsch/Drug Res 9: 351–354

    CAS  Google Scholar 

  • Lorenz K (1943) Die angeborenen Formen möglicher Erfahrung. Zeitschr Tierpsychol 5: 235–409

    Article  Google Scholar 

  • Lorenz K (1966) Evolution and modification of behavior. Methuen & Co Ltd, London

    Google Scholar 

  • Vogel G, Ther L (1960) Das Verhalten der Baumwollratte zur Beurteilung der neuroleptischen Breite zentral-depressiver Stoffe. Arzneim Forsch/Drug Res 10: 806–808

    CAS  Google Scholar 

  • Courvoisier S, Fournel J, Ducrot R, Kolsky M, Koeschet P (1953) Propriétés pharmacodynamiques du chlorhydrate de chloro-3-(diméthylamino-3’-propyl)-10-phenothiazine (4.560 R.P.) Arch Int Pharmacodyn 92: 305–361

    CAS  Google Scholar 

  • Giaja J (1938) Sur l’analyse de la fonction de calorification de l’homéotherme par la dépression barométrique. C R Soc Biol 127: 1355–1359

    Google Scholar 

  • Giaja J (1940) Léthargie obtenue che le Rat par la dépression barométrique. C R Acad Sci 210: 80–84

    Google Scholar 

  • Giaja J (1953) Sur la physiologie de l’organisme refroidi. Press Medicale 61: 128–129

    CAS  Google Scholar 

  • Giaja J, Markovic-Giaja L (1954) L’hyperthermie produite par la chlorpromazine et la résistance a l’asphyxie. Bull Soc Chim Biol 36: 1503–1506

    CAS  PubMed  Google Scholar 

  • Ther L, Lindner E, Vogel G (1963) Zur pharmakologischen Wirkung der optischen Isomeren des Methadons. Dtsch Apoth Ztg 103: 514–520

    CAS  Google Scholar 

  • Ther L, Vogel G, Werner P (1959) Zur pharmakologischen Differenzierung und Bewertung der Neuroleptica. Arzneim Forsch/Drug Res 9: 351–354

    CAS  Google Scholar 

  • Vogel G (1959) Über die Wirkung von Dolantin und Polamidon im Vergleich zu anderen stark wirksamen Analgetica an der unterkühlten Ratte nach Giaja. Naunyn-Schmiedeberg’s Arch exp Path Pharmak 236: 214–215

    CAS  Google Scholar 

  • Costall B, Naylor RJ (1973) Is there a relationship between the involvement of extrapyramidal and mesolimbic brain areas with the cataleptic action of neuroleptic agents and their clinical antipsychotic effects? Psychopharmacol (Berl.) 32: 161–170

    Article  CAS  Google Scholar 

  • Costall B, Naylor RJ (1974) On catalepsy and catatonia and the predictability of the catalepsy test for neuroleptic activity. Psychopharmacol (Berl.) 34: 233–241

    Article  CAS  Google Scholar 

  • Duvoisin R (1976) Parkinsonism: Animal analogues of the human disorder. In: Yahr M (ed) The Basal Ganglia. Raven Press, New York, pp 293–303

    Google Scholar 

  • Honma T, Fukushima H (1976) Correlation between catalepsy and dopamine decrease in the rat striatum induced by neuroleptics. Neuropharmacol 15: 601–607

    Article  CAS  Google Scholar 

  • Locke KW, Dunn RW, Hubbard JW, Vanselous CL, Cornfeldt M, Fielding S, Strupczewski JT (1990) HP 818:A centrally analgesic with neuroleptic properties. Drug Dev Res 19: 239–256

    Article  CAS  Google Scholar 

  • Moore NA, Tye NC, Axton MS, Risius FC (1992) The behavioral pharmacology of olanzapine, a novel “atypical” anti-psychotic agent. J Pharmacol Exp Ther 262: 545–551

    CAS  PubMed  Google Scholar 

  • Szewczak MR, Cornfeldt, ML, Dunn RW, Wilker JC, Geyer HM, Glamkowski EJ, Chiang Y, Fielding S (1987) Pharmacological evaluation of HP 370, a potential atypical antipsychotic agent. 1. In vivo profile. Drug Dev Res 11: 157–168

    Google Scholar 

  • Cook L, Catania AC (1964) Effects of drugs on avoidance and escape behavior. Fed Proc 23: 818–835

    CAS  PubMed  Google Scholar 

  • Cook L, Weidley E. (1957) Behavioral effects of some psycho- pharmacological agents. Ann NY Acad Sci 66: 740–752

    Article  CAS  PubMed  Google Scholar 

  • Dunn RW, Carlezon WA, Corbett R., (1991) Preclinical anxiolytic versus antipsychotic profiles of the 5-H1’3-antagonists Ondansedron, Zacopride, 3a-tropanyl-1 H-indole-3carboxylic ester, and laH, 3a, 5aH-tropan-3-y1–3,5-dichlorobenzoate

    Google Scholar 

  • Locke KW, Dunn RW, Hubbard JW, Vanselous CL, Cornfeldt M, Fielding S, Strupczewski JT, (1990) HP 818:A centrally acting analgesic with neuroleptic properties. Drug Dev Res 19: 239–256

    Article  CAS  Google Scholar 

  • Szewczak MR, Cornfeldt, ML, Dunn RW, Wilker JC, Geyer HM, Glamkowski EJ, Chiang Y, Fielding S (1987) Pharmacological evaluation of HP 370, a potential atypical antipsychotic agent. 1. In vivo profile. Drug Dev Res 11: 157–168

    Google Scholar 

  • Tedeschi RE, Tedeschi DH, Mucha A, Cook L, Mattis PA, Fellows EJ. (1959) Effects of various centrally acting drugs on fighting behavior of mice. J Pharmacol Exp Ther 125: 28–34

    CAS  PubMed  Google Scholar 

  • Brodie DA, Moreno OM, Malis JE, Boren JJ (1960) Rewarding properties of intracranial stimulation. Science 131: 920–930

    Article  Google Scholar 

  • Broekkamp CLE, Van Rossum JM (1975) The effect of micro-injections of morphine and haloperidol into the neostriatum and the nucleus accumbens on self-stimulation behavior. Arch Int Pharmacodyn 217: 110–117

    CAS  PubMed  Google Scholar 

  • Corbett D, Laferriere A, Milner P (1982) Plasticity of the medial prefrontal cortex: Facititated acquisition of intracranial self-stimulation by pretraining stimulation. Physiol Behav 28: 531–543

    Google Scholar 

  • Cornfeldt M, Fisher B, Fielding S (1982) Rat internal capsule lesion: a new test for detecting antidepressants. Fed Proc 41: 1066

    Google Scholar 

  • Dunn RW, Carlezon WA, Corbett R (1991) Preclinical anxiolytic versus antipsychotic profiles of the 5-HT3 antagonists ondansetron, zacopride, 3a-tropanyl-1H-indole-3-carboxylic acid ester, and laH, 3a, 5aH-tropan-3-y1–3,5-dichlorobenzoate. Drug Dev Res 23: 289–300

    Article  CAS  Google Scholar 

  • Fielding S, Lal H (1978) Behavioral actions of neuroleptics. In: Iversen LL, Iversen SD, Snyder SH (eds.) Neuroleptics and Schizophrenia, Vol 10, pp 91–128, Plenum Press, New York

    Google Scholar 

  • Gallistel CR, Freyd G (1987) Quantitative determination of the effects of catecholaminergic agonists and antagonists on the rewarding efficacy of brain stimulation. Pharmacol Biochem Behav 26: 731–741

    Article  CAS  PubMed  Google Scholar 

  • Goldstein JM, Malick JB (1983) An automated descending rate-intensity self-stimulation paradigm: usefulness for distinguishing antidepressants from neuroleptics. Drug Dev Res 3: 29–35

    Article  CAS  Google Scholar 

  • Koob GF, Fray Pi, Iversen SD (1978) Self-stimulation at the lateral hypothalamus and locus caeruleus after specific unilateral lesions of the dopamine system. Brain Res 146: 123–140

    Article  CAS  PubMed  Google Scholar 

  • Mekarski JE (1989) Main effects of current and pimozide on prepared and learned self-stimulation behaviors are on performance not reward. Pharmacol Biochem Behav 31: 845–853

    Article  Google Scholar 

  • Mora F, Vives F, Alba F (1980) Evidence for an involvement of acetylcholine in self-stimulation of the prefrontal cortex in the rat. Experientia 36: 1180–1181

    Article  CAS  PubMed  Google Scholar 

  • Olds J (1961) Differential effects of drives and drugs on self-stimulation at different brain sites. In:Sheer DE (ed.) Electrical Stimulation of the Brain. University of Texas Press, Austin TX, pp 350–366

    Google Scholar 

  • Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47: 419–427

    Article  CAS  PubMed  Google Scholar 

  • Olds ME (1972) Alterations by centrally acting drugs of the suppression of self-stimulation behavior in the rat by tetrabenazine, physostigmine, chlorpromazine and pentobarbital. Psychopharmacology 25: 299–314

    Article  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. 2nd Edition; Academic Press, New York

    Google Scholar 

  • Roberts DCS, Zito KA (1987) Interpretation of lesion effects on stimulant self-administration. In: Bozarth MA (ed) Methods for Assessing the Reinforcing Properties of Abused Drugs. Springer Verlag New York, Berlin, Heidelberg, pp 87–103

    Chapter  Google Scholar 

  • Szewczak MR, Cornfeldt, ML, Dunn RW, Wilker JC, Geyer HM, Glamkowski EJ, Chiang Y, Fielding S (1987) Pharmacological evaluation of HP 370, a potential atypical antipsychotic agent. 1. In vivo profile. Drug Dev Res 11: 157–168

    Google Scholar 

  • Derlet RW, Albertson TE, Rice P (1990) Protection against d-amphetamine toxicity. Am J Emerg Med 8: 105–108

    Article  CAS  PubMed  Google Scholar 

  • Locke KW, Dunn RW, Hubbard JW, Vanselous CL, Cornfeldt M, Fielding S, Strupczewski JT (1990) HP 818: A centrally acting analgesic with neuroleptic properties. Drug Dev Res 19: 239–256

    Article  CAS  Google Scholar 

  • Ljungberg T, Ungerstedt U (1985) A rapid and simple behavioral screening method for simultaneous assessment of limbic and striatal blocking effects of neuroleptic drugs. Pharmacol Biochem Behav 23: 479–485

    Article  CAS  PubMed  Google Scholar 

  • Locke KW, Dunn RW, Hubbard JW, Vanselous CL, Cornfeldt M, Fielding S, Strupczewski JT (1990) HP 818: A centrally acting analgesic with neuroleptic properties. Drug Dev Res 19: 239–259

    Article  CAS  Google Scholar 

  • Machiyama Y (1992) Chronic methylamphetamine intoxication model of schizophrenia in animals. Schizophren Bull 18: 107–113

    Article  CAS  Google Scholar 

  • Bischoff S, Christen P, Vassout A. (1988) Blockade of hippocampal dopamine ( DA) receptors: A tool for antipsychotics with low extrapyramidal side effects. Prog Neuropsychopharmacol Biol Psychiat 12: 455–467

    Google Scholar 

  • Brown F, Campell W, Clark MSG, Graves DS, Hadley MS, Hatcher J, Mitchell P, Needham P, Riley G, Semple J (1988) The selective dopamine antagonist properties of BRL 34779: a novel substituted benzamide. Psychopharmacology 94: 350–358

    CAS  PubMed  Google Scholar 

  • Cabib S, Puglisi-Allegra St (1988) A classical genetic analysis of two apomorphine-induced behaviors in the mouse. Pharmacol Bioch Behav 30: 143–147

    Article  CAS  Google Scholar 

  • Corral C, Lissavetzky J, Valdeolmillos A, Bravo L, Darias V, Sanchez Mateo C (1992) Neuroleptic activity of 10-(4methyl-1-piperazinyl)-thieno(3,2-b)(1,5)benzothiazepine derivatives. Arzneim Forsch/Drug Res. 42: 896–900

    CAS  Google Scholar 

  • Costall B, Naylor RJ, Nohria V (1978) Climbing behavior induced by apomorphine in mice: A potent model for the detection of neuroleptic activity. Eur J Pharmacol 50: 39–50

    Google Scholar 

  • Duterte-Boucher D, Costentin J 1989 ) Appearance of a stereotyped apomorphine-induced climbing in unresponsive DBA2 mice after chronic manipulation of brain dopamine transmission. Psychopharmacology 98: 56–60

    Article  CAS  PubMed  Google Scholar 

  • Horvath K, Andrasi P, Berzsenyi P, Patfalusy M, Patthy M, Szab G, Sebestyén L, Bagdy E, Körösi J, Botka P, Hamaori T, Lang T (1989) A new psychoactive 5H-2,3-benzodiazepine with an unique spectrum of activity. Arzneim Forsch/Drug Res 39: 894–899

    CAS  Google Scholar 

  • Moore NA, Axton MS (1988) Production of climbing behaviour in mice requires both DI and D2 receptor activation. Psychopharmacology 94: 263–266

    Article  CAS  PubMed  Google Scholar 

  • Moore NA, Tye NC, Axton MS, Risius FC (1992) The behavioral pharmacology of olanzapine, a novel “atypical” antipsychotic agent. J Pharmacol Exp Ther 262: 545–551

    CAS  PubMed  Google Scholar 

  • Protais P, Costentin J, Schwartz JC (1976) Climbing behavior induced by apomorphine in mice: A simple test for the study of dopamine receptors in the striatum. Psychopharmacology 50: 1–6

    Google Scholar 

  • Szewczak MR, Cornfeldt, ML, Dunn RW, Wilker JC, Geyer HM, Glamkowski EJ, Chiang Y, Fielding S (1987) Pharmacological evaluation of HP 370, a potential atypical antipsychotic agent. 1. In vivo profile. Drug Dev Res 11: 157–168

    Google Scholar 

  • Vasse M, Chagraoui A, Protais P (1988) Climbing and stereotyped behaviors in mice require the stimulation of D-1 dopamine receptors. Eur J Pharmacol 148: 221–229

    Article  CAS  PubMed  Google Scholar 

  • Akbas O, Verimer T, Onur R, Kayaalp SO (1984) The effects of yohimbine and neuroleptics on apomorphine-induced pecking behavior in the pigeon. Neuropharmacol 23: 1261–1264

    Article  CAS  Google Scholar 

  • Andén NE; Rubenson A, Fuze K, Hoekfelt T (1967) Evidence for dopamine receptor stimulation by apomorphine. J Pharm Pharmac 19: 627–629

    Article  Google Scholar 

  • Christensen A, Fjalland B, Moller Nielsen I (1976) On the supersensitivity of dopamine receptors, induced by neuroleptics. Psychopharmacology 48: 1–6

    Article  CAS  PubMed  Google Scholar 

  • Clow A, Theodorou A, Jenner P, Marsden CD (1980) A comparison of striatal and mesolimbic dopamine function in the rat during a 6-month trifluoperazine administration. Psycho-pharmacology 69: 227–233

    Article  CAS  Google Scholar 

  • Costall B, Naylor RJ (1973) On the mode of action of apomorphine. Eur J Pharmacol 21: 350–361

    Article  CAS  PubMed  Google Scholar 

  • Dall’Olio R, Gandolfi 0. (1993) The NMDA positive modulator D-cycloserine potentiates the neuroleptic activity of D, and D2 dopamine receptor blockers in the rat. Psychopharmacology 110: 165–168

    Google Scholar 

  • Ernst AM (1967) Mode of action of apomorphine and dexamphetamine on gnawing compulsion in rats. Psychopharmacologie (Berl.) 10: 316–323

    Article  CAS  Google Scholar 

  • Gower AJ, Berendsen HHG, Princen MM, Broekkamp CLE (1984) The yawning-penile erection syndrome as a model for putative dopamine autoreceptor activity. Eur J Pharmacol 103: 81–89

    Article  CAS  PubMed  Google Scholar 

  • Janssen PAJ, Niemegeers CJC, Jageneau AHM (1960) Apomorphine-antagonism in rats. Arzneim Forsch. 10: 1003–1005

    CAS  Google Scholar 

  • Jolicoeur FB, Gagne MA, Rivist R, Drumheller A, St Pierre S (1991) Neurotensin selectively antagonizes apomorphine-induced stereotypic climbing. Pharmacol Biochem Behav 38: 463–465

    Article  CAS  PubMed  Google Scholar 

  • Klawans HL, Rubovits R (1972) An experimental model of tardive dyskinesia. J Neural Transmiss 33: 235–246

    Article  Google Scholar 

  • Kostowski W, Krzascik P (1989) Research for evaluating the role of dopaminergic mechanisms in the action of valproate. Biogen Amin 6: 169–176

    CAS  Google Scholar 

  • Ljungberg T, Ungerstedt U (1978) Classification of neuroleptic drugs according to their ability to inhibit apomorphine-induced locomotion and gnawing: evidence for two different mechanisms of action. Psychopharmacology 56: 239–247

    Article  CAS  PubMed  Google Scholar 

  • Locke KW, Dunn RW, Hubbard JW, Vanselous CL, Cornfeldt M, Fielding F, Strupczewski JT (1990) HP 818: A centrally acting analgesic with neuroleptic properties. Drug Dev Res 19: 239–256

    Article  CAS  Google Scholar 

  • StMhle L, Ungerstedt U (1983) Assessment of dopamine autoreceptor properties of apomorphine, (+)-3-PPP and (—)-3-PPP by recording of yawning behaviour in rats. Eur J Pharmacol 98: 307–310

    Article  Google Scholar 

  • Szewczak MR, Cornfeldt, ML, Dunn RW, Wilker JC, Geyer HM, Glamkowski EJ, Chiang Y, Fielding S (1987) Pharmacological evaluation of HP 370, a potential atypical antipsychotic agent. 1. In vivo profile. Drug Dev Res 11: 157–168

    Google Scholar 

  • Tarsy D, Baldessarini RJ (1974) Behavioral supersensitivity to apomorphine following chronic treatment with drugs which interfere with the synaptic function of catecholamines. Neuropharmacol 13: 927–940

    Article  CAS  Google Scholar 

  • Fielding S, Marky M, Lal H (1975) Elicitation of mouse jumping by combined treatment with amphetamine and L-dopa: Blockade by known neuroleptics. Pharmacologist 17: 210

    Google Scholar 

  • Fielding S, Lal H (1978) Behavioral actions of neuroleptics. In: Iversen LL, Iversen SD, Snyder SH (eds.) Neuroleptics and Schizophrenia Vol 10, pp 91–128, Plenum Press, New York

    Google Scholar 

  • Lal H, Colpaert F, Laduron P (1975) Narcotic withdrawal-like mouse jumping produced by amphetamine and L-dopa. Eur J Pharmacol 30: 113–116

    Article  CAS  PubMed  Google Scholar 

  • Lal H, Marky M, Fielding S (1976) Effect of neuroleptic drugs on mouse jumping induced by L-dopa in amphetamine treated mice. Neuropharmacol 15: 669–671

    Article  CAS  Google Scholar 

  • Carlson M, Carlson A (1989) The NMDA antagonist MK-801 causes marked locomotor stimulation in monoamine-depleted mice. J Neural Transm 75: 221–226

    Article  Google Scholar 

  • Verma A, Kulkarni SK (1992) Modulation of MK-801 response by dopaminergic agents in mice. Psychopharmacol 107: 431–436

    Article  CAS  Google Scholar 

  • Chipkin RE, Iorio LC, Coffin VL, McQuade RD, Berger JG, Barnett A (1988) Pharmacological profile of SCH39166: A dopamine D1 selective benzonaphthazepine with potential antipsychotic activity. J Pharmacol Exp Ther 247: 1093–1102

    CAS  PubMed  Google Scholar 

  • Janssen PA, Niemegeers CJE, Shellekens HL. (1965) Is it possible to predict the clinical effects of neuroleptic drugs (major tranquilizers) from animal data? Arzneim.- Forsch. 15: 1196–1206

    Google Scholar 

  • Janssen PAJ, Niemegeers CJE, (1959) Chemistry and pharmacology of compounds related to 4-(4-hydroxy-4-phenylpiperidino)-butyrophenone. Part II — Inhibition of apomorphine vomiting in dogs. Arzneim.-Forsch. 9: 765–767

    Google Scholar 

  • Rotrosen J, Wallach MB, Angrist B, Gershon S., (1972) Antagonism of apomorphine-induced stereotypy and emesis in dogs by thioridiazine, haloperidol and pimozide. Psychopharmacol (Berl.) 26: 185–195

    Article  CAS  Google Scholar 

  • Bernardini GL, Gu X, Viscard E, German DC (1991) Amphetamine-induced and spontaneous release of dopamine from A9 and A10 cell dendrites: an in vitro electrophysiological study in the mouse. J Neural Transm 84: 183–193

    Article  CAS  Google Scholar 

  • Bowery B, Rothwell LA, Seabrock GR (1994) Comparison between the pharmacology of dopamine receptors mediating the inhibition of cell firing in rat brain slices through the substantia nigra pars compacta and ventral tegmental area. Br. J Pharmacol 112: 873–880

    Google Scholar 

  • Bunney BS, Grace AA (1978) Acute and chronic haloperidol treatment: comparison of effects on nigral dopaminergic cell activity. Life Sci 23: 1715–1728

    Article  CAS  PubMed  Google Scholar 

  • Cedarbaum JM, Aghajanian GK (1977) Catecholamine receptors on locus coeruleus neurons: pharmacological characterization. Eur J Pharmacol 44: 375–385

    Article  CAS  PubMed  Google Scholar 

  • Chiodo LA, Bunney BS (1983) Typical and atypical neuroleptics: differential effect of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons. J Neurosci 3: 1607–1619

    CAS  PubMed  Google Scholar 

  • Marwaha J, Aghajanian GK (1982) Relative potencies of alpha-1 and alpha-2 antagonists in the locus coeruleus, dorsal raphe and dorsal lateral geniculate nuclei: an electrophysiological study. J Pharmacol Exp Ther 222: 287–293

    CAS  PubMed  Google Scholar 

  • Mooney RD, Bennett-Clarke C, Chiaia NL, Sahibzada N, Rhoades RW (1990) Organization and actions of the noradrenergic input to the hamster’s superior colliculus. J Comp Neurol 292: 214–230

    Article  CAS  PubMed  Google Scholar 

  • Nybäck I1V, Walters JR, Aghajanian GK, Roth RH (1975) Tricyclic antidepressants: effects on the firing rate of brain noradrenergic neurons. Eur J Pharmacol 32: 302–312

    Article  Google Scholar 

  • Paxinos G, Watson C (1986) The Rat Brain in Stereotaxic Coordinates. 2nd ed, Academic Press, Sydney, Australia

    Google Scholar 

  • Schmidt CJ, Black CK, Taylor VL, Fadayel GM, Humphreys TM, Nieduzak TR, Sorensen SM (1992) The 5-HT2 receptor antagonist, MDL 28,133A, disrupts the serotoninergicdopaminergic interaction mediating the neurochemical effects of 3,4-methylenedioxymethylamphetamine. Eur J Pharmacol 220: 151–159

    Article  CAS  PubMed  Google Scholar 

  • Scuvée-Moreau JJ, Dreese AE (1979) Effect of various antidepressant drugs on the spontaneous firing rate of locus coenileus and dorsal raphe neurons of the rat. Eur J Pharmacol 57: 219–225

    Article  PubMed  Google Scholar 

  • Todorova A, Dimpfel W (1994) Multiunit activity from the A9 and A10 areas in rats following chronic treatment with different neuroleptic drugs. Eur Neuropsychopharmacol 4: 491–501

    Article  CAS  PubMed  Google Scholar 

  • White FJ, Wang RY (1983) Comparison of the effects of chronic haloperidol treatment on A9 and A10 dopamine neurons in the rat. Life Sci 32: 983–993

    Article  CAS  PubMed  Google Scholar 

  • White FJ, Wang RY (1983) Differential effects of classical and atypical antipsychotic drugs on A9 and A10 dopamine neurons. Science 221: 1054–1057

    Article  CAS  PubMed  Google Scholar 

  • Chen G (1964) Antidepressives, analeptics and appetite suppressants. In: Laurence DR, Bacharach AL (eds.) Evaluation of Drug Activities: Pharmacometrics. pp 239–260. Academic Press, London and New York

    Google Scholar 

  • Johnson RW, Reisine T, Spotnitz S, Weich N, Ursillo R, Yamamura HI (1980) Effects of desipramine and yohimbine on oc2- and ß-adrenoreceptor sensitivity. Eur J Pharmacol 67: 123–127

    Article  CAS  PubMed  Google Scholar 

  • Kuhn R (1958) The treatment of depressive states with G22355 (imipramine hydrochloride) Am J Psychiatry 115: 459–464

    CAS  Google Scholar 

  • Vetulani J, Stawarz RJ, Dingell JV, Sulser F (1976) A possible common mechanism of action of antidepressant treatments: Reduction in the sensitivity of the noradrenergic cyclic AMP generating system in the rat limbic forebrain. Naunyn-Schmiedebergs Arch. Pharmacol. 293: 109–114

    Google Scholar 

  • Coyle JT, Snyder SH (1969) Catecholamine uptake by synaptosomes in homogenates of rat brain: Stereospecificity in different areas. J Pharmacol Exper Ther 170: 221–231

    Google Scholar 

  • Hertting G, Axelrod J (1961) Fate of tritiated noradrenaline at the sympathetic nerve endings. Nature 192: 172–173

    Article  CAS  PubMed  Google Scholar 

  • Iversen LL (1975) Uptake mechanisms for neurotransmitter amines. Biochem Pharmacol 23: 1927–1935

    Article  Google Scholar 

  • Lippmann W, Pugsley TA (1977) Effects of 3,4-dihydro-1H1,4-oxazino[4,3-a]indoles, potential antidepressants, on biogenic amine uptake mechanisms and related activities. Arch Int Pharmacodyn 227: 324–342

    CAS  PubMed  Google Scholar 

  • Morin D, Zini R, Urien S, Tillement JP (1989) Pharmacological profile of Binedaline, a new antidepressant drug. J Pharmacol Exp Ther 249: 288–296

    CAS  PubMed  Google Scholar 

  • Pacholczyk T, Blakely RD, Amara SG (1991) Expression cloning of a cocaine-and antidepressant-sensitive human noradrenaline transporter. Nature 350: 350–354

    Article  CAS  PubMed  Google Scholar 

  • Schloss P, Mayser W, Betz H (1992) Neurotransmitter transporters. A novel family of integral plasma membrane proteins. FEBS Lett 307: 76–80

    Google Scholar 

  • Snyder SH, Coyle JT (1969) Regional differences in H’norepinephrine and H3-dopamine uptake into rat brain homogenates. J Pharmacol Exper Ther 165: 78–86

    CAS  Google Scholar 

  • Tehani-Butt SM (1992) [3H]Nisoxetine: a radioligand for quantitation of norepinephrine uptake sites by autoradiography or by homogenate binding. J Pharmacol Exp Ther 260:427–436

    Google Scholar 

  • Altar CA, Marshall JF (1987) Neostriatal dopamine uptake and reversal of age-related movement disorders with dopamine-uptake inhibitors. Ann NY Acad Sci 515: 343–353

    Article  Google Scholar 

  • Carroll FI, Gao Y, Abraham P, Lewin AH, Lew R, Patel A, Boja JW, Kuhar MJ (1992) Probes for the cocaine receptor. Potentially irreversible ligands for the dopamine transporter. J Med Chem 35: 1814–1817

    Google Scholar 

  • Cline EJ, Scheffel U, Boja JW, Carroll FI, Katz JL, Kuhar MJ (1992) Behavioral effects of novel cocaine analogs: a comparison with in vivo receptor binding potency. J Pharmacol Exp Ther 260: 1174–1179

    CAS  PubMed  Google Scholar 

  • Cooper BR; Hester TJ, Maxwell RA (1980) Behavioral and biochemical effects of the antidepressant bupropion (Wellbutrin): Evidence of selective blockade of dopamine uptake in vivo. J Pharmacol Exper Ther 215: 127–134

    CAS  Google Scholar 

  • Elsworth JD, Taylor JR, Berger P, Roth RH (1993) Cocaine-sensitive and -insensitive dopamine uptake in prefrontal cortex, nucleus accumbens and striatum. Neurochem Int 23: 61–69

    Article  CAS  PubMed  Google Scholar 

  • Giros B, El Mestikawi S, Bertrand L, Caron MG (1991) Cloning and functional characterization of a cocaine-sensitive dopamine transporter. FEBS Lett 295: 149–153

    Article  CAS  PubMed  Google Scholar 

  • Giros B, El Mestikawi S, Godinot N, Zheng K, Han H, YangFeng T, Caron MG (1992) Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter. Mol Pharmacol 42: 383–390

    CAS  PubMed  Google Scholar 

  • Heikkila RE, Orlansky H, Cohen G (1975) Studies on the distinction between uptake inhibition and release of [3H]dopamine in rat brain slices. Biochem Pharmacol 24: 847–852

    Article  CAS  PubMed  Google Scholar 

  • Horn AS, Coyle JT, Snyder SH (1970) Catecholamine uptake by synaptosomes from rat brain: Structure-activity relationships of drugs with different effects on dopamine and norepinephrine neurons. Mol. Pharmacol. 7: 66–80

    Google Scholar 

  • Hunt P, Raynaud J-P, Leven M, Schacht U (1979) Dopamine uptake inhibitors and releasing agents differentiated by the use of synaptosomes and field-stimulated brain slices in vitro. Biochem. Pharmacol. 28: 2011–2016

    Google Scholar 

  • Kilty JE, Lorang D, Amara SG (1991) Cloning and expression of a cocaine-sensitive rat dopamine transporter. Science 254: 578–579

    Article  CAS  PubMed  Google Scholar 

  • Laruelle M, Baldwin RM, Malison RT, Zea-Ponce Y, Zoghbi SS, Al-Tikriti MS, Sybirska EH, Zimmermann RC, Wisniewski G, Neumeyer JL, Milius RA, Wang S, Smith EO, Roth RH, Charney DS, Hoffer PB, Innis RB (1993) SPECT imaging of dopamine and serotonin transporters with [123I]ß-CIT: Pharmacological characterization of brain uptake in nonhuman primates. Synapse 13: 295–309

    Google Scholar 

  • Madras BK, Spealman RD, Fahey MA, Neumeyer JL, Saha JK, Milius RA (1989) Cocaine receptors labeled by [3H]213carbomethoxy-30-(4-fluorophenyl)tropane. Mol Pharmacol 36: 518–524

    CAS  PubMed  Google Scholar 

  • Michel MC, Rother A, Hiemke Ch, Ghraf R (1987) Inhibition of synaptosomal high-affinity uptake of dopamine and serotonin by estrogen agonists and antagonists. Biochem Pharmacol 36: 3175–3180

    Article  CAS  PubMed  Google Scholar 

  • Reith MEA, de Costa B, Rice KC, Jacobson AE (1992) Evidence for mutually exclusive binding of cocaine, BTCP, GBR 12935, and dopamine to the dopamine transporter. Eur J Pharmacol 227: 417–425

    Article  CAS  PubMed  Google Scholar 

  • Richfield AK (1991) Quantitative autoradiography of the dopamine uptake complex in rats brain using [3H]GBR 12935:binding characteristics. Brain Res 540: 1–13

    Article  CAS  PubMed  Google Scholar 

  • Rothman RB, Grieg N, Kim A, de Costa BR, Rice KC, Carroll FI, Pert A (1992) Cocaine and GBR 12909 produce equivalent motoric responses at different occupancy of the dopamine transporter. Pharmacol Biochem Behav 43: 1135–1142

    Article  CAS  PubMed  Google Scholar 

  • Saijoh K, Fujiwara H, Tanaka C (1985) Influence of hypoxia on release and uptake of neurotransmitters in guinea pig striatal slices: dopamine and acetylcholine. Japan J Pharmacol 39: 529–539

    Article  CAS  Google Scholar 

  • Shimada S, Kitayama S, Lin CL, Patel A, Nanthakumar E, Gregor P, Kuhar M, Uhl G (1991) Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA. Science 254: 576–578

    Article  CAS  PubMed  Google Scholar 

  • Snyder SH, Coyle JT (1969) Regional differences in H3norepinephrine and H3-dopamine uptake into rat brain homogenates. J. Pharmacol Exper Ther 165: 78–86

    CAS  Google Scholar 

  • Tuomisto L, Tuomisto J (1974) Dopamine uptake in striatal and hypothalamic synaptosomes: conformational selectivity of the inhibition. Eur J Pharmacol 25: 351–361

    Article  CAS  PubMed  Google Scholar 

  • Usdin RB, Mezey E, Chen C, Brownstein MJ, Hoffman BJ (1991) Cloning of the cocaine-sensitive bovine dopamine transporter. Proc Natl Acad Sci USA 88: 11168–11171

    Article  CAS  PubMed  Google Scholar 

  • Ashberg M, Thoren P, Traskman L, Bertillson L, Ringberger V (1975) “Serotonin depression” - A biochemical subgroup within the affective disorders. Science 191:478–480

    Google Scholar 

  • Biegon A, Mathis C (1993) Evaluation of [3H]paroxetine as an in vivo ligand for serotonin uptake sites: a quantitative autoradiographic study in the rat brain. Synapse 13: 1–9

    Article  CAS  PubMed  Google Scholar 

  • Blakely RD, Berson HE, Fremeau RT, Caron MG, Peek MM, Prince HK, Bradley CC (1991) Cloning and expression of a functional serotonin transporter from rat brain. Nature 354: 66–70

    Article  CAS  PubMed  Google Scholar 

  • de Montigy C (1980) Enhancement of 5HT neurotransmission by antidepressant treatment. J Physiol (Paris) 77: 455–461

    Google Scholar 

  • Fuller RW (1990) Drugs affecting serotonin neurones. Progr Drug Res 35: 85–108

    CAS  Google Scholar 

  • Fuller RW (1993) Biogenic amine transporters Neurotransmissions 9 /2: 1–4

    Google Scholar 

  • Fuller RW, Wong DT (1990) Serotonin uptake and serotonin uptake inhibition. Ann NY Acad Sci 600: 68–80

    Article  CAS  PubMed  Google Scholar 

  • Gershon MD, Miller Jonakait G (1979) Uptake and release of 5-hydroxytryptamine by enteric 5-hydroxytryptaminergic neurons: Effects of fluoxetine (Lilly 110140) and chlorimipramine. Br J Pharmacol 66: 7–9

    Article  CAS  PubMed  Google Scholar 

  • Grimsley SR, Jahn MW (1992) Paroxetine, sertaline, and fluvoxamine: new selective serotonin reuptake inhibitors. Clin Pharm 11: 930–957

    CAS  PubMed  Google Scholar 

  • Hallstrom COS, Rees WL, Pare CMB, Trenchard A, Turner P (1976) Platelet uptake of 5-hydroxytryptamine and dopamine in depression. Postgrad Med J 52 (Suppl 3): 40–44

    Article  CAS  PubMed  Google Scholar 

  • Hoffman BJ Mezey E, Brownstein MJ (1991) Cloning of a serotonin transporter affected by antidepressants. Science 254: 579–580

    Article  CAS  PubMed  Google Scholar 

  • Horn AS (1973) Structure-activity relations for the inhibition of 5-HT uptake into rat hypothalamic homogenates by serotonin and tryptamine analogues, J Neurochem 21: 883–888

    Article  CAS  PubMed  Google Scholar 

  • Horn AS, Trace RCAM (1974) Structure-activity relations for the inhibition of 5-hydroxytryptamine uptake by tricyclic antidepressants into synaptosomes from serotoninergic neurons in rat brain homogenates. Br J Pharmacol 51: 399–403

    Article  CAS  PubMed  Google Scholar 

  • Koe BK, Weissman A, Welch WM, Browne RG (1983) Sertaline, 1S,4S-N-methyl-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydro-l-naphthylamine, a new uptake inhibitor with selectivity for serotonin. J Pharmacol Exp Ther 226: 686–700

    CAS  PubMed  Google Scholar 

  • Langer SZ, Moret C, Raisman R, Dubocovich ML, Briley M (1980) High-affinity [3H]imipramine binding in rat hypothalamus: association with uptake of serotonin but not of epinephrine. Science 210: 1133–1135

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Richardson JS (1993) A pharmacological comparison of citalopram, a bicyclic serotonin selective uptake inhibitor, with traditional tricyclic antidepressants. Internat Clin Psychopharmacol 8: 3–12

    Article  CAS  Google Scholar 

  • Marcusson JO, Norinder U, Högberg T, Ross SB (1992) Inhibition of [3H]paroxetine binding by various serotonin uptake inhibitors: Eur J Pharmacol 215: 191–198

    CAS  Google Scholar 

  • Mennini T, Mocaer E, Garattini S (1987) Tianeptine, a selective enhancer of serotonin uptake in rat brain. Naunynschmiedeberg’s Arch Pharmacol 336: 478–482

    CAS  Google Scholar 

  • Ögren SO, Ross SB, Holm AC, Renyi AL (1981) The pharmacology of zimelidine: a 5-HT selective reuptake inhibitor. Acta Psychiatr Scand 290: 127–151

    Article  Google Scholar 

  • Ross SB (1980) Neuronal transport of 5-hydroxytryptamine. Pharmacol 21: 123–131

    Article  CAS  Google Scholar 

  • Scatton B, Claustre Y, Graham D, Dennis T, Serrano A, Ar-billa S, Pimoule C, Schoemaker H, Bigg D, Langer SZ (1988) SL 81.0385: a novel selective and potent serotonin uptake inhibitor. Drug Dev Res 12: 29–40

    Article  CAS  Google Scholar 

  • Shank RP, Vaught JL, Pelley A, Setler PE, McComsey DF, Maryanoff BE (1988) McN-5652: a highly potent inhibitor of serotonin uptake. J Pharmacol Exp Ther 247: 1032–1038

    CAS  PubMed  Google Scholar 

  • Shaskan EG, Snyder SH (1970) Kinetics of serotonin accumulation into slices from rat brain: relationship to catecholamine uptake. J Pharmacol Exp Ther 175: 404–418

    CAS  PubMed  Google Scholar 

  • Wong DT, Bymaster FP, Reid LR, Mayle DA, Krushiski JH, Robertson DW (1993) Norfluoxetine enantiomers as inhibitors of serotonin uptake in rat brain. Neuropsychopharmacol 8: 337–344

    Article  CAS  Google Scholar 

  • Fuller RW, Snoddy HD, Perry KW, Bymaster FP, Wong DT (1978) Importance of duration of drug action in the antagonism of p-chloroamphetamine depletion of brain serotonin — Comparison of fluoxetine and chlorimipramine. Biochem. Pharmacol. 27: 193–198

    Google Scholar 

  • Harvey JA, McMaster SE, Yunger LM (1975) p-Chloramphetamine: Selective neurotoxic action in brain. Science 187: 841–843

    Google Scholar 

  • Meek JL, Fuxe K, Carlsson A (1971) Blockade of pchloromethamphetamine induced 5-hydroxytryptamine depletion by chlorimipramine, chlorpheniramine and meperidine. Biochem. Pharmacol. 20: 707–709

    Google Scholar 

  • Sekerke HJ, Smith HE, Bushing JA, Sanders-Busch E (1975) Correlation between brain levels and biochemical effects of the optical isomers of p-chloroamphetamine. J Pharmacol Exper Ther 193: 835–844

    CAS  Google Scholar 

  • Squires R (1972) Antagonism of p-chloramphetamine (PCA) induced depletion of 5-HT from rat brain by some thymoleptics and other psychotropic drugs. Acta Pharmacol Toxicol 31: 35

    Google Scholar 

  • Banerjee SP, Kung SL, Riggi SJ, Chanda SK (1977) Development of 0-adrenergic receptor subsensitivity by antidepressants. Nature 268: 455–456

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom DA, Kellar KJ (1979) Adrenergic and serotoninergic receptor binding in rat brain after chronic desmethylimipramine treatment. J Pharmacol Exper Ther 209: 256–261

    CAS  Google Scholar 

  • Blackshear MA, Sanders-Bush E (1982) Serotonin receptor sensitivity after acute and chronic treatment with mianserin. J Pharmacol Exper Ther 221: 303–308

    CAS  Google Scholar 

  • Bylund DB, Snyder SH (1976) Beta adrenergic receptor binding in membrane preparations from mammalian brain. Mol Pharmacol 12: 568–580

    CAS  PubMed  Google Scholar 

  • Charney DS, Menkes DB, Heninger GR (1981) Receptor sensitivity and the mechanism of action of antidepressant treatment. Arch Gen Psychiatry 38: 1160–1180

    Article  CAS  PubMed  Google Scholar 

  • Clements-Jewery S (1978) The development of cortical 13adrenoreceptor subsensitivity in the rat by chronic treatment with trazodone, doxepin and mianserine. Neuropharmacol 17: 779–781

    Article  CAS  Google Scholar 

  • Enna SJ, Mann E, Kedall D, Stancel GM (1981) Effect of chronic antidepressant administration on brain neurotransmitter receptor binding. In: Enna SJ, Malick JB, Richelson E, Antidepressants: Neurochemical, Behav ioral, and Clinical Perspectives. pp 91–105, Raven Press New York

    Google Scholar 

  • Lee T, Tang SW (1984) Loxapine and clozapine decrease serotonin (S2) but do not elevate dopamine (D2) receptor numbers in the rat brain. Psychiatry Res 12: 277–285

    Article  CAS  PubMed  Google Scholar 

  • Leysen JE, Niemegeers CJE, Van Nueten JM, Laduron PM (1982) [3H]Ketanserin (R 41 468) a selective 3H-ligand for serotonin2 receptor binding sites. Mol Pharmacol 21: 301–214

    Google Scholar 

  • Maggi A, U’Prichard DC, Enna SJ (1980) Differential effects of antidepressant treatment on brain monoaminergic receptors. Eur J Pharmacol 61: 91–98

    Article  CAS  PubMed  Google Scholar 

  • Matsubara R, Matsubara S, Koyama T, Muraki A, Yamashita I (1993) Effect of chronic treatment with milnacipran (TN-912), a novel antidepressant, on (3-adrenergic-receptoradenylate cyclase system and serotonin2 receptor in the rat cerebral cortex. Jpn J Neuropsychopharmacol 15: 119–126

    CAS  Google Scholar 

  • Meyerson LR, Ong HH, Martin LL, Ellis DB (1980) Effect of antidepressant agents on I3-adrenergic receptor and neurotransmitter regulatory systems. Pharmacol Biochem Behav 12: 943–948

    Article  CAS  PubMed  Google Scholar 

  • Peroutka SJ, Snyder SH (1980) Regulation of serotonin2 (5HT2) receptors labeled with [3H]spiroperidol by chronic treatment with the antidepressant amitriptyline. J Pharmacol Exper Ther 215: 582–587

    CAS  Google Scholar 

  • Reynolds CP, Garrett NJ, Rupniak N, Jenner P, Marsden CD (1983) Chronic clozapine treatment of rats down-regulates 5-HT2 receptors. Eur J Pharmacol 89: 325–326

    Article  CAS  PubMed  Google Scholar 

  • Savage DD, Frazer A, Mendels J (1979) Differential effects of monoamine oxidase inhibitors and serotonin reuptake inhibitors on 3H-serotonin receptor binding in rat brain. Eur J Pharmacol 58: 87–88

    Article  CAS  PubMed  Google Scholar 

  • Scatchard G (1949) The attraction of proteins for small molecules and ions. Ann NY Acad Sci 51: 660–672

    Article  CAS  Google Scholar 

  • Schmidt CJ, Black CK, Taylor VL, Fadayel GM, Humphreys TM, Nieduzak TR, Sorensen SM (1992) The 5-HT2 receptor antagonist, MDL 28,133A, disrupts the serotonergicdopaminergic interaction mediating the neurochemical effects of 3,4-methylenedioxymethamphetamine. Eur J Pharmacol 220: 151–159

    Article  CAS  PubMed  Google Scholar 

  • Scott JA, Crews FT (1983) Rapid decrease in rat brain beta adrenergic receptor binding during combined antidepressant alpha-2 antagonist treatment. J Pharmacol Exp Ther 224: 640–646

    CAS  PubMed  Google Scholar 

  • Segawa T, Mizuta T, Nomura Y (1979) Modifications of central 5-hydroxytryptamine binding sites in synaptic membranes from rat brain after long-term administration of tricyclic antidepressants. Eur J Pharmacol 58: 75–83

    Article  CAS  PubMed  Google Scholar 

  • Sellinger-Barnette MM, Mendels J, Frazer A (1980) The effect of psychoactive drugs on beta-adrenergic receptor binding in rat brain. Neuropharmacol 19: 447–454

    Article  CAS  Google Scholar 

  • Vetulani J, Stawarz RJ, Dingell JV, Sulser F (1976) A possible common mechanism of action of antidepressant treatments: Reduction in the sensitivity of the noradrenergic cyclic AMP generating system in the rat limbic forebrain. Naunyn-Schmiedeberg’s Arch Pharmacol 293: 109–114

    Google Scholar 

  • Wilmot CA, Szczepanik AM (1989) Effects of acute and chronic treatment with clozapine and haloperidol on serotonin (5-HT2) and dopamine (D2) receptors in the rat brain. Brain Res 487: 288–298

    Article  CAS  PubMed  Google Scholar 

  • Banerjee SP, Kung SL, Riggi SJ, Chanda SK (1977) Development of 13-adrenergic receptor subsensitivity by antidepressants. Nature 268: 455–456

    Article  CAS  PubMed  Google Scholar 

  • Clements-Jewery S (1978) The development of cortical 3adrenoreceptor subsensitivity in the rat by chronic treatment with trazodone, doxepin and mianserine. Neuropharmacol 17: 779–781

    Article  CAS  Google Scholar 

  • Heal D, Cheetham SH, Martin K, Browning J, Luscombe G, Buckett R (1992) Comparative pharmacology of dothiepin, its metabolites, and other antidepressant drugs. Drug Dev Res 27: 121–135

    Article  CAS  Google Scholar 

  • Lefkowitz RJ, Stadel JM, Caron MG (1983) Adenylate cyclase-coupled beta-adrenergic receptors. Struture and mechanisms of activation and desensitization. Ann Rev Biochem 52: 159–186

    Google Scholar 

  • Maggi A, U’Prichard DC, Enna SJ (1980) Differential effects of antidepressant treatment on brain monoaminergic receptors. Eur J Pharmacol 61: 91–98

    Article  CAS  PubMed  Google Scholar 

  • Meyerson LR, Ong HH, Martin LL, Ellis DB (1980) Effect of antidepressant agents on 13-adrenergic receptor and neurotransmitter regulatory systems. Pharmacol Biochem Behav 12: 943–948

    Article  CAS  PubMed  Google Scholar 

  • Salomon Y (1979) Adenylate cyclase assay. In: Brooker G, Greengard P, Robinson GA (eds): Advances in Cyclic Nucleotide Research. Raven Press, New York, Vol 10, pp 35–55

    Google Scholar 

  • Sulser F (1978) Functional aspects of the norepinephrine receptor coupled adenylate cyclase system in the limbic forebrain and its modification by drugs which precipitate or alleviate depression: molecular approaches to an understanding of affective disorders. Pharmacopsychiat 11: 43–52

    Article  CAS  Google Scholar 

  • Vetulani J, Stawarz RJ, Dingell JV, Sulser F (1976) A possible common mechanism of action of antidepressant treatments: Reduction in the sensitivity of the noradrenergic cyclic AMP generating system in the rat limbic forebrain. Naunyn-Schmiedebergs Arch Pharmacol 293: 109–114

    Google Scholar 

  • Wolfe BB, Harden TK, Sporn JR, Molinoff PB (1978) Presynaptic modulation of beta adrenergic receptors in rat cerebral cortex after treatment with antidepressants. J Pharmacol Exp Ther 207: 446–457

    CAS  PubMed  Google Scholar 

  • Johnson RW, Reisine T, Spotnitz S, Weich N, Ursillo R, Yamamura HI (1980) Effects of desipramine and yohimbine on a2- and ß-adrenoreceptor sensitivity. Eur J Pharmacol 67: 123–127

    Article  CAS  PubMed  Google Scholar 

  • Scott JA, Crews FT (1983) Rapid decrease in rat brain betaadrenergic receptor binding during combined antidepressant-alpha-2 antagonist treatment. J Pharmacol Exp Ther 224: 640–646

    CAS  PubMed  Google Scholar 

  • Starke K, Borowski E, Endo T (1975) Preferential blockade of presynaptic a-adrenoceptors by yohimbine. Eur J Pharmacol 34: 385–388

    Article  CAS  PubMed  Google Scholar 

  • Hollister LE (1964) Complications from psychotherapeutic drugs–1964. Clin Pharmacol Ther 5: 322–333

    CAS  PubMed  Google Scholar 

  • Marks MJ, Romm E, Collins AC (1987) Genetic influences on tolerance development with chronic oxotremorine infusion. Pharmacol Biochem Behav 27: 723–732

    Article  CAS  PubMed  Google Scholar 

  • Meyerhöffer A (1972) Absolute configuration of 3-quinuclidinyl benzilate and the behavioral effect in the dog of the optical isomers. J. Med. Chem. 15: 994–995

    Article  PubMed  Google Scholar 

  • Smith CP, Huger FP (1983) Effects of zinc on [3H]-QNB displacement by cholinergic agonists and antagonists. Biochem Pharmacol 32: 377–380

    Article  CAS  PubMed  Google Scholar 

  • Snyder SH, Yamamura HI (1977) Antidepressants and the muscarinic acetylcholine receptor. Arch. Gen. Psychiatry 34: 236–239

    Google Scholar 

  • Snyder SH; Greenberg D, Yamamura HI (1974) Antischizophrenic drugs and brain cholinergic receptors. Arch. Gen. Psychiatry 31: 58–61

    Google Scholar 

  • Wamsley JK, Gehlert DL, Roeske WR, Yamamura HI (1984) Muscarinic antagonist binding site as evidenced by autoradiography after direct labeling with [311-QNB and [3H1-pirenzepine. Life Sci 34: 1395–1402

    Article  CAS  PubMed  Google Scholar 

  • Yamamura HI, Snyder SH (1974) Muscarinic cholinergic binding in rat brain (quinuclidinyl benzilate/receptors). Proc. Nat. Acad. Sci. USA 71: 1725–1729

    Google Scholar 

  • Callingham BA (1989) Biochemical aspects of the pharmacology of moclobemide. The implications of animal studies. Br J Psychiatry 155 (Suppl 6): 53–60

    Google Scholar 

  • Cesura AM, Pletscher A (1992) The new generation of mono- amine oxydase inhibitors. Progr Drug Res 38: 171–297

    CAS  Google Scholar 

  • Colzi A, d’Agostini F, Cesura AM, Da Prada M (1992) Brain microdialysis in rats: a technique to reveal competition between endogenous dopamine and moclobemide, a RIMA antidepressant. Psychopharmacology 106: S17 — S20

    Article  CAS  PubMed  Google Scholar 

  • Haefeli W, Burkard WP, Cesura AM, Kettler R, Lorez HP, Martin JR, Richards JG, Scherschlicht R, Da Prada M (1992) Biochemistry and pharmacology of moclobemide, a prototype RIMA. Psychopharmacol 106: 56 — S14

    Article  Google Scholar 

  • Johnston JP (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17: 1285–1297

    Article  CAS  PubMed  Google Scholar 

  • Kettler R, Da Prada M, Burkard WP (1990) Comparison of monoamine oxydase-A inhibition by moclobemide in vitro and ex vivo in rats. Acta Psychiatr Scand Suppl 82: 101–102

    Article  Google Scholar 

  • Knoll J (1980) Monoamine oxidase inhibitors: Chemistry and pharmacology. In: Sandler M (ed.) Knoll J. pp 151–173. University Park Press

    Google Scholar 

  • Ozaki M, Weissbach H, Ozaki A, Witkop B, Udenfriend S (1960) Monoamine oxidase inhibitors and procedures for their evaluation in vivo and in vitro. J Med Pharmac Chem 2: 591–607

    Article  CAS  Google Scholar 

  • Rowler CJ, Ross SB (1984) Selective inhibitors of monoamine oxydase A and B: biochemical, pharmacological, and clinical parameters. Med Res Rev 4: 323–358

    Article  Google Scholar 

  • Waldmeier PC (1993) Newer aspects of the reversible inhibitor of MAO-A and serotonin reuptake, Brofaromine. Progr Neuro-Psychopharmacol Biol Psychiat 17: 183–198

    Article  CAS  Google Scholar 

  • Waldmeier PC, Stöcklin K (1990) Binding of [3H]brofaromine to monoamine oxydase A in vivo: displacement by clogyline and moclobemide. Eur J Pharmacol 180: 297–304

    Article  CAS  PubMed  Google Scholar 

  • White HL, Scates PW (1992) Mechanism of monoamine oxydase inhibition by BW 137U87. Drug Dev Res 25: 185–193

    Article  Google Scholar 

  • Wurtman RI, Axelrod J (1963) A sensitive and specific assay for the estimation of monoamine oxidase. Biochem Pharmacol 12: 1439–1441

    Article  CAS  PubMed  Google Scholar 

  • Czermak J (1873) Beobachtungen und Versuche über “hypnotische” Zustände bei Thieren. Pflüger’s Arch ges Physiol 7: 107–121

    Article  Google Scholar 

  • Danilewski B (1881) Über die Hemmungen der Reflex-und Willkürbewegungen. Beiträge zur Lehre vom thierischen Hypnotismus. Pflüger’s Arch ges Physiol 24: 489–525

    Article  Google Scholar 

  • Heubel E (1877) fiber die Abhängigkeit des wachen Gehirnzustandes von äusseren Erregungen. Ein Beitrag zur Physiologie des Schlafes und zur Würdigung des Kircher’schen Experimentum mirabile. Pflüger’s Arch ges Physiol 14: 158–210

    Google Scholar 

  • Kircher A (1646) Experimentum mirabile. De imaginatione gallinae. In: “Ars magna lucis et umbrae” Romae, Lib.11, pars I, 154

    Google Scholar 

  • Schwenter D (1636) Deliciae physico-mathematicae oder Mathematische und Philosophische Erquickstunden. Nürnberg

    Google Scholar 

  • Verworn M (1898) Beitraege zur Physiologie des Centralnervensystems. Erster Theil. Die sogenannte Hypnose der Thiere. G Fischer Jena, pp-92

    Google Scholar 

  • Vogel G, Ther L (1963) Zur Wirkung der optischen Isomeren von Aethyltryptamin-acetat auf die Lagekatalepsie des Huhnes und auf die Motilitaet der Maus. Arzneim Forsch/ Drug Res 13: 779–783

    CAS  Google Scholar 

  • Alpermann HG, Schacht U, Usinger P, Hock FJ (1992) Pharmacological effects of Hoe 249: A new potential antidepressant. Drug Dev Res 25: 267–282

    Google Scholar 

  • Borsini F, Meli A. (1988) Is the forced swimming test a suitable model for revealing antidepressant activity? Psycho-pharmacology 94: 147 160

    Google Scholar 

  • Buckett WR, Fletcher J, Hoperoft RH, Thomas PC (1982) Automated apparatus for behavioural testing of typical and atypical antidepressants in mice. Br J Pharmacol 75: 170 P

    Article  Google Scholar 

  • Giardina WJ, Ebert DM (1989) Positive effects of captopril in the behavioral despair swim test. Biol Psychiatry 25: 697–702

    Article  CAS  PubMed  Google Scholar 

  • Kauppila T, Tanila H, Carlson S, Taira T (1991) Effects of atipamezole, a novel z -adreno-receptor antagonist, in openfield, plus-maze, two compartment exploratory, and forced swimming tests in the rat. Eur. J. Pharmacol. 205: 177–182

    Google Scholar 

  • Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressive treatments. Eur J Pharmacol 47: 379–391

    Article  CAS  PubMed  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977) Behavioural despair in mice: A primary screening test for antidepressants. Arch Int Pharmacodyn 229: 327–336

    Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: A new animal model sensitive to antidepressant treatments. Nature 266: 730–732

    Google Scholar 

  • Porsolt RD, Martin P, Lenègre, Fromage S, Drieu K.: (1990) Effects of an extract of Ginkgo biloba (EBG 761) on “learned helplessness” and other models of stress in rodents. Pharmacol Biochem Behav 36: 963–971

    Article  CAS  PubMed  Google Scholar 

  • Wallach MB, Hedley LR (1979) The effects of antihistamines in a modified behavioral despair test. Communic Psychopharmacol 3: 35–39

    CAS  Google Scholar 

  • Steru L, Chermat R, Thierry B, Simon P (1985) Tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology 85: 367–370

    Google Scholar 

  • Trullas R, Jackson B, Skolnick P (1989) Genetic differences in a tail suspension test for evaluating antidepressant activity. Psychopharmacology 99: 287–288

    Article  CAS  PubMed  Google Scholar 

  • van der Heyden J, Molewijk E, Olivier B (1987) Strain differences in response to drugs in the tail suspension test for antidepressant activity. Psychopharmacology 92: 127–130

    Article  PubMed  Google Scholar 

  • Curzon G, Kennett GA, Sarna GS, Whitton PS (1992) The effects of tianeptine and other antidepressants on a rat model of depression. Br J Psychiatry 160 (Suppl 15): 51–55

    Google Scholar 

  • Giral P, Martin P, Soubrie P, Simon P (1988) Reversal of helpless behavior in rats by putative 5-HT,A agonists. Biol Psychiat 23: 237–242

    Article  CAS  PubMed  Google Scholar 

  • Maier SF, Seligman MEP (1976) Learned helplessness: Theory and evidence. J Exp Psychol 105: 3–46

    Google Scholar 

  • Overmier JB, Seligman MEP (1967) Effects of inescapable shock upon subsequent escape and avoidance learning. J comp Physiol Psychol 63: 28–33

    Article  CAS  PubMed  Google Scholar 

  • Porsolt RD, Martin P, Lenègre A, Fromage S, Drieu K (1990) Effects of an extract of Ginkgo biloba (EGB 761) on “learned helplessness” and other models of stress in rodents. Pharmacol Biochem Behav 36: 963–971

    Article  CAS  PubMed  Google Scholar 

  • Sherman AD, Allers GL, Petty F, Henn FA (1979) A neuropharmacologically-relevant animal model of depression. Neuropharmacology 18: 891–893

    Article  CAS  PubMed  Google Scholar 

  • Simiand J, Keane PE, Guitard J, Langlois X, Gonalons N, Martin P, Bianchetti A, LeFur G, Soubrie P (1992) Antidepressive profile in rodents of SR 5811A, a new selective agonist for atypical ß-adrenoreceptors. Eur J Pharmacol 219: 193–201

    Article  CAS  PubMed  Google Scholar 

  • Vaccheri A, Dall’Olio R, Gaggi R, Gandolfi O, Montanaro N (1984) Antidepressant versus neuroleptic activities of sulpiride isomers on four animal models of depression. Psychopharmacology 83: 28–33

    Article  CAS  PubMed  Google Scholar 

  • Horovitz ZP, Ragozzino PW, Leaf RC. (1965) Selective block of rat mouse-killing by anti-depressants. Life Sci 4: 1909–1912

    Article  CAS  PubMed  Google Scholar 

  • Karli P, Vergnes M, Didiergeorges F (1969) Rat-mouse inter-specific aggressive behaviour and its manipulation by brain ablation and by brain stimulation. In: Garattini S, Sigg EB (eds.) Aggressive behaviour. Excerpta Medica Foundation, Amsterdam, pp 47–55

    Google Scholar 

  • Kreiskott H (1969) Some comments on the killing response behaviour of the rat. In: Garattini S, Sigg EB (eds) Aggressive Behaviour. Excerpta Medica Foundation, Amsterdam, pp 56–58

    Google Scholar 

  • Alpermann HG, Schacht U, Usinger P, Hock FJ (1992) Pharmacological effects of Hoe 249: A new potential antidepressant. Drug Dev Res 25: 267–282

    Google Scholar 

  • De Feo G, Lisciani R, Pavan L, Samarelli M, Valeri P (1983) Possible dopaminergic involvement in biting compulsion induced by large doses of clonidine. Pharmacol Res Commun 15: 613–619

    Article  PubMed  Google Scholar 

  • Klawans HL, Rubovits R (1972) An experimental model of tardive dyskinesia. J Neural Transmiss 33: 235–246

    Article  Google Scholar 

  • Molander L, Randrup A (1974) Investigation of the mechanism by which L-DOPA induces gnawing in mice. Acta Pharmacol Toxicol 34: 312–324

    Article  CAS  Google Scholar 

  • Nielsen EB, Suzdak PD, Andersen KE, Knutsen LJS, Sonnewald U, Braestrup C (1991) Characterization of tiagabine (NO-328), a new potent and selective GABA uptake inhibitor. Eur J Pharmacol 196: 257–266

    Article  CAS  PubMed  Google Scholar 

  • Pedersen V, Christensen AV (1972) Antagonism of methylphenidate-induced stereotyped gnawing in mice. Acta Pharmacol Toxicol 31: 488–496

    Article  CAS  Google Scholar 

  • Randall PK (1985) Quantification of dopaminergic supersensitization using apomorphine-induced behavior in the mouse. Life Sci 37: 1419–1423

    Article  CAS  PubMed  Google Scholar 

  • Ther L, Schramm H. (1962) Apomorphin-Synergismus ( Zwangs-nagen bei Mäusen) als Test zur Differenzierung psycho-[roper Substanzen. Arch Int Pharmacodyn 138: 302–310

    Google Scholar 

  • Alpermann HG, Schacht U, Usinger P, Hock FJ (1992) Pharmacological effects of Hoe 249: A new potential antidepressant. Drug Dev Res 25: 267–282

    Google Scholar 

  • Cox B, Lee TF (1981) 5-Hydroxytryptamine-induced hypothermia in rats as an in vivo model for the quantitative study of 5-hydroxytryptamine receptors. J Pharmacol Meth 5: 43–51

    Google Scholar 

  • Alpermann HG, Schacht U, Usinger P, Hock FJ (1992) Pharmacological effects of Hoe 249: A new potential antidepressant. Drug Dev Res 25: 267–282

    Google Scholar 

  • Benesovâ O, Ndhunek K (1971) Correlation between the experimental data from animal studies and therapeutic effects of antidepressant drugs. Psychopharmacologia (Berl.) 20: 337–347

    Article  Google Scholar 

  • Doble A, Girdlestone D, Piot O, Allam D, Betschart J, Boireau A, Dupuy A, Guérémy C, Ménager J, Zundel JL, Blanchard JC (1992) Pharmacological characterisation of RP 62203, a novel 5-hydroxytryptamine 5-HT2 receptor antagonist. Br J Pharmacol 15: 27–36

    Article  Google Scholar 

  • Gylys JA, Muccia PMR, Taylor MK (1963) Pharmacological and toxicological properties of 2-methyl-3-piperidinopyrazine, a new antidepressant. Ann NY Acad Sci 107: 899–913

    Article  CAS  PubMed  Google Scholar 

  • Jamieson DD, Duffield PH, Cheng D, Duffield AM (1989) Comparison of the central nervous system activity of the aqueous and lipid extract of kava (Piper methysticum) Arch Int Pharmacodyn 301: 66–80

    CAS  PubMed  Google Scholar 

  • Nakagawa T, Ukai K, Kubo S (1993) Antidepressive effects of the stereoisomer cis-dosulepin hydrochloride. Arzneim Forsch/Drug Res 43: 11–15

    CAS  Google Scholar 

  • Rubin B; Malone MH, Waugh MH, Burke JC (1957) Bioassay of Rauwolfia roots and alkaloids. J Pharmacol Exp Ther 120: 125–136

    CAS  PubMed  Google Scholar 

  • Alpermann HG, Schacht U, Usinger P, Hock FJ (1992) Pharmacological effects of Hoe 249: A new potential antidepressant. Drug Dev Res 25: 267–282

    Google Scholar 

  • Askew BM (1963) A simple screening procedure for imi- pramine-like antidepressant drugs. Life Sci 10: 725–730

    Article  CAS  PubMed  Google Scholar 

  • Bill DJ, Hughes IE, Stephens RJ (1989) The effects of acute and chronic desimipramine on the thermogenic and hypoactivity responses to a2-agonists in reserpinized and normal mice. Br J Pharmacol 96: 144–152

    Article  CAS  PubMed  Google Scholar 

  • Bourin M (1990) Is it possible to predict the activity of a new antidepressant in animals with simple psychopharmacological tests? Fundam Clin Pharmacol 4: 49–64

    Article  CAS  PubMed  Google Scholar 

  • Koe BK, Lebel LA, Nielsen JA, Russo LL, Saccomano NA, Vinick FJ, Williams IA (1990) Effects of novel catechol ether imidazolidinones on calcium-dependent phosphodiesterase activity, (’H)Rolipram binding, and reserpineinduced hypothermia in mice. Drug Dev Res 21: 135–142

    Article  CAS  Google Scholar 

  • Muth EA, Moyer JA, Haskins JT, Andree TH, Husbands GEM (1991) Biochemical, neurophysiological, and behavioral effects of Wy-45,233 and other identified metabolites of the antidepressant Venlafaxine. Drug Dev Res 23: 191–199

    Article  CAS  Google Scholar 

  • Pawlowski L, Nowak G (1987) Biochemical and pharmacological tests for the prediction of ability of monoamine uptake blockers to inhibit the uptake of noradrenaline in vivo: the effects of desimipramine, maprotiline, femoxitine and citalopram. J Pharm Pharmacol 39: 1003–1009

    Article  CAS  PubMed  Google Scholar 

  • Ahtee L, Saarnivaara L. (1971) The effect of drugs upon the uptake of 5-hydroxytryptamine and metaraminol by human platelets, J. Pharm. Pharmacol 23: 495–501

    Google Scholar 

  • Alpermann HG, Schacht U, Usinger P, Hock FJ (1992) Pharmacological effects of Hoe 249: A new potential antidepressant. Drug Dev Res 25: 267–282

    Google Scholar 

  • Chen G (1964) Antidepressives, analeptics and appetite suppressants. In: Laurence DR, Bacharach AL (eds) Evaluation of Drug Activities: Pharmacometrics. Academic Press, London and New York, pp 239–260

    Google Scholar 

  • Corne SJ, Pickering RW, Warner BT (1963) A method for assessing the effects of drugs on the central actions of 5hydroxytryptamine. Br J Pharmacol 20: 106–120

    CAS  Google Scholar 

  • Martin P, Frances H, Simon P (1985) Dissociation of head twitches and tremors during the study of interactions with 5-hydroxytryptophan in mice. J Pharmacol Meth 13: 193–200

    Article  CAS  Google Scholar 

  • Moore NA, Tye NC, Axton MS, Risius FC (1992) The behavioral pharmacology of olanzapine, a novel “atypical” antipsychotic agent. J Pharmacol Exp Ther 262: 545–551

    CAS  PubMed  Google Scholar 

  • Shank RP, Gardocki JF, Schneider CR, Vaught JL, Setler PE, Maryanoff BE, McComsey DF (1987) Preclinical evaluation of McN-5707 as a potential antidepressant. J Pharmacol Exp Ther 242: 74–84

    CAS  PubMed  Google Scholar 

  • Shank RP; Vaught JL, Pelley KA, Setler PE, McComsey DF, Maryanoff BE (1988) McN-5652: A highly potent inhibitor of serotonin uptake. J Pharmacol Exp Ther 247: 1032–1038

    Google Scholar 

  • Ahtee L, Saarnivaara L. (1971) The effect of drugs upon the uptake of 5-hydroxytryptamine and metaraminol by human platelets, J. Pharm. Pharmacol 23: 495–501

    Google Scholar 

  • Colpaert FC, Janssen PA (1983) The head-twitch response to intraperitoneal injection of 5-hydroxytryptophan in the rat: Antagonist effects of purported 5-hydroxytryptamine antagonists and of pirenperone, an LSD antagonist. Neuropharmacology 22: 993–1000

    Article  CAS  PubMed  Google Scholar 

  • Hallberg H, Carlson L, Elg R (1985) Objective quantification of tremor in conscious unrestrained rats, exemplified with 5-hydroxytryptamine-mediated tremor. J Pharmacol Meth 13: 261–266

    Article  CAS  Google Scholar 

  • Matthews WD, Smith CD (1980) Pharmacological profile of a model for central serotonin receptor activation Life Sci 26: 1397–1403

    CAS  Google Scholar 

  • Shank RP, Gardocki JF, Schneider CR, Vaught JL, Setler PE, Maryanoff BE, McComsey DF (1987) Preclinical evaluation of McN-5707 as a potential antidepressant. J Pharmacol Exp Ther 242: 74–84

    CAS  PubMed  Google Scholar 

  • Alpermann HG, Schacht U, Usinger P, Hock FJ (1992) Pharmacological effects of Hoe 249: A new potential antidepressant. Drug Dev Res 25: 267–282

    Google Scholar 

  • Bourin M, Malinge M, Colombel MC, Larousse C (1988) Influence of alpha stimulants and beta blockers on yohimbine toxicity. Prog Neuro-Psychopharmacol Biol Psychiat 12: 569–574

    Article  CAS  Google Scholar 

  • Goldberg MR, Robertson D (1983) Yohimbine: A pharmacological probe for study the a2-adrenoreceptor. Pharmacol Rev 35: 143–180

    CAS  PubMed  Google Scholar 

  • Quinton RM (1963) The increase in the toxicity of yohimbine induced by imipramine and other drugs in mice. Br J Pharmacol 21: 51–66

    CAS  Google Scholar 

  • Knoll J (1980) Monoamine oxidase inhibitors: Chemistry and pharmacology. In: Sandler M (ed.) Knoll J. pp 151–173. University Park Press

    Google Scholar 

  • Ozaki M, Weissbach H, Ozaki A, Witkop B, Udenfriend S (1960) Monoamine oxidase inhibitors and procedures for their evaluation in vivo and in vitro. J. Med. Pharmac. Chem. 2: 591–607

    Google Scholar 

  • Duvoisin RC (1976) Parkinsonism: Animal analogues of the human disorder. in: Yahr MD (ed) The Basal Ganglia. Raven Press, New York, pp 293–303

    Google Scholar 

  • Hornykiewicz 0 (1975) Parkinsonism induced by dopaminergic antagonists. In: Caine DB, Chase TN, Barbeau A (eds) Advances in Neurology. Raven Press, New York, pp 155–164

    Google Scholar 

  • Marsden CD, Duvoisin RC, Jenner P, Parkes JD, Pycock C, Tarsy D (1975) Relationship between animal models and clinical parkinsonism. In: Caine DB, Chase TN, Barbeau A (eds) Advances in Neurology. Raven Press, New York, pp 165–175

    Google Scholar 

  • Miller R, Hiley R (1975) Antimuscarinic actions of neuroleptic drugs. In: Caine DB, Chase TN, Barbeau A (eds) Advances in Neurology. Raven Press, New York, pp 141–154

    Google Scholar 

  • Vernier VG (1964) Anti-Parkinsonian agents. In: Laurence DR, Bacharach AL (eds) Evaluation of Drug Activities: Pharmacometrics. Academic Press, London, New York, pp 301–311

    Google Scholar 

  • Agarwal JC, Chandishwar N, Sharma M, Gupta GP, Bhargava KP, Shanker K (1983) Some new piperazino derivatives as antiparkinson and anticonvulsant agents. Arch Pharm (Weinheim) 316: 690–694

    Article  CAS  Google Scholar 

  • Bebbington A, Brimblecombe RW, Shakeshaft D (1966) The central and peripheral activity of acetylenic amines related to oxotremorine. Br J Pharmacol 26: 56–67

    CAS  Google Scholar 

  • Cho AK, Haslett WL, Jenden DJ (1962) The peripheral actions of oxotremorine, a metabolite of tremorine. J Pharmacol Exp Ther 138: 249–257

    CAS  PubMed  Google Scholar 

  • Clement JG, Dyck WR (1989) Device for quantitating tremor activity in mice: Antitremor activity of atropine versus so-man-and oxotremorine-induced tremors. J Pharmacol Meth 22: 25–36

    Google Scholar 

  • Coward DM, Doggett NS, Sayers AC (1977) The pharmacology of N-carbamoyl-2-(2,6-dichlorophenyl)acetamidine hydrochloride (LON-954) a new tremorogenic agent. Arzneim Forsch/Drug Res 27: 2326–2332

    CAS  Google Scholar 

  • Duvoisin RC (1976) Parkinsonism: Animal analogues of the human disorder. in: Yahr MD (ed) The Basal Ganglia. Raven Press, New York, pp 293–303

    Google Scholar 

  • Everett GM (1964) Animal and clinical techniques for evaluating anti-Parkinson agents. In Nodin JH, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical Publ., Inc. Chicago, pp 359–368

    Google Scholar 

  • Johnson JD, Meisenheimer TL, Isom GE (1986) A new method for quantification of tremors in mice. J Pharmacol Meth 16: 329–337

    Article  CAS  Google Scholar 

  • Matthews RT, Chiou CY (1979) A rat model for resting tremor. J Pharmacol Meth 2: 193–201

    Article  Google Scholar 

  • Ringdahl B, Jenden DJ (1983) Pharmacological properties of oxotremorine and its analogs. Life Sci 32: 2401–2413

    Article  CAS  PubMed  Google Scholar 

  • Turner RA (1965) Anticonvulsants, Academic Press, New York & London, pp 164–172

    Google Scholar 

  • Vernier VG (1964) Anti-Parkinsonian agents. In: Laurence DR, Bacharach AL (eds) Evaluation of Drug Activities: Pharmacometrics. Academic Press, London and New York, pp 301–311

    Google Scholar 

  • Bemardini GL, Speciale SG, German DC (1990) Increased midbrain dopaminergic activity following 2’CH3-MPTPinduced dopaminergic cell loss: an in vitro electrophysiological study. Brain Res 527: 123–129

    Google Scholar 

  • Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism: Selective destruction of dopaminergic neurones in the pars compacta of the substantia nigra by N-methyl-4-phenyl-l,2,3,6tetrahydropyridine. Proc Natl Acad Sci, USA, 80: 4546–4550

    Google Scholar 

  • Chiba K, Trevor A, Castagnoli N (1984) Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun 120: 574–578

    Google Scholar 

  • Fuxe K, Janson AM, Rosén L. Finnman UB, Tanganelli S, Morari M, Goldstein M, Agnati LF (1992) Evidence for a protective action of the vigilance promoting drug Modafinil on the MPTP-induced degeneration of the nigrostriatal dopamine neurons in the black mouse: an immunocytochemical and biochemical analysis. Exp Brain Res 88: 117–130

    Article  CAS  PubMed  Google Scholar 

  • Heikkila RE, Manzino L, Cabbat FS, Duvoisin RC (1984) Protection against dopaminergic neurotoxicity of 1-methyl4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxydase inhibitors. Nature 311: 467–469

    Article  CAS  PubMed  Google Scholar 

  • Kebabian JW, Britton DR, DeNinno MP, Perner R, Smith L, Jenner P, Schoenleber R, Williams M (1992) A-77363:a potent and selective D, receptor antagonist with antiparkinsonian activity in marmosets. Eur J Pharmacol 229: 203–209

    Article  CAS  PubMed  Google Scholar 

  • Kindt MV, Youngster SK, Sonsalla PK, Duvoisin RC, Heikkila RE (1988) Role for monoamine oxydase-A (MAO-A) in the bioactivation and nigrostriatal dopaminergic neurotoxicity of the MPTP analog, 2’Me-MTPT. Eur J Pharmacol 146: 313–318

    Article  CAS  PubMed  Google Scholar 

  • Nomoto M, Jenner P, Marsden CD (1985) The dopamine D2 agonist LY 141865, but not the D, agonist SKF 38393, reverses parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6tetrahydropyridine ( MPTP) in the common marmoset. Neurosci Lett 57: 37–41

    Google Scholar 

  • Nomoto M, Jenner P, Marsden CD (1988) The D, agonist SKF 38393 inhibits the anti-parkinsonian activity of the D2 agonist LY 141555 in the MPTP-treated marmoset. Neurosci Lett 93: 275–280

    Article  CAS  PubMed  Google Scholar 

  • Temlett JA, Quinn NP, Jenner PG, Marsden CD, Pourcher E, Bonnet AM, Agid Y, Markstein R, Lataste X (1989) Antiparkinsonian activity of CY 208–243, a partial D1 dopamine receptor agonist, in MTPT-treated marmosets and patients with Parkinson’s disease. Movement Disord 4: 261–265

    Google Scholar 

  • Abbott B, Starr BS, Starr MS (1991) CY 208–243 behaves as a typical D-I agonist in the reserpine-treated mouse. Pharmacol Biochem Behav 38: 259–263

    Article  CAS  PubMed  Google Scholar 

  • Agarwal JC, Chandishwar N, Sharma M, Gupta GP, Bhargava KP, Shanker K (1983) Some new piperazino derivatives as antiparkinson and anticonvulsant agents. Arch Pharm (Weinheim) 316: 690–694

    Article  CAS  Google Scholar 

  • Amt J (1985) Behavioral stimulation is induced by separate dopamine Dl and D2 receptor sites in reserpine pretreated but not in normal rats. Eur J Pharmacol 113: 79–88

    Article  Google Scholar 

  • Duvoisin RC (1976) Parkinsonism: Animal analogues of the human disorder. in: Yahr MD (ed) The Basal Ganglia. Raven Press, New York, pp 293–303

    Google Scholar 

  • Agarwal JC, Chandishwar N, Sharma M, Gupta GP, Bhargava KP, Shanker K (1983) Some new piperâzino derivatives as antiparkinson and anticonvulsant agents. Arch Pharm (Weinheim) 316: 690–694

    Article  CAS  Google Scholar 

  • Agid Y, Javoy F, Glowinski J, Bouvet D, Sotelo C (1973) Injection of 6-hydroxydopamine into the substantia nigra of the rat. II. Diffusion and specificity. Brain Res 58: 291–301

    Google Scholar 

  • Carey RJ (1989) Stimulant drugs as conditioned and unconditioned stimuli in a classical conditioning paradigm. Drug Devel Res 16: 305–315

    Article  CAS  Google Scholar 

  • Carpenter MB, McMasters RE (1964) Lesions of the substantia nigra in the rhesus monkey. Efferent fiber degeneration and behavioral observations. Am J Anat 114: 293–319

    Google Scholar 

  • Clineschmidt BV, Martin GE, Bunting PR (1982) Central sympathomimetic activity of (+)-5-methyl-10,11-dihydro5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), a substance with potent anticonvulsant, central sympathomimetic, and apparent anxiolytic properties. Drug Dev Res 2: 135–145

    Article  CAS  Google Scholar 

  • Costall B, Kelly ME, Naylor RJ (1983) The production of asymmetry and circling behavior following unilateral, intrastriatal administration of neuroleptic agents: a comparison of abilities to antagonise striatal function. Eur J Pharmacol 96: 79–86

    Article  CAS  PubMed  Google Scholar 

  • De Jonge MC, Funcke ABH (1962) Sinistrotorsion in guinea pigs as a method of screening central anticholinergic activity. Arch Int Pharmacodyn 137: 375–382

    CAS  PubMed  Google Scholar 

  • Engber TM, Susel Z, Juncos JL, Chase TN (1989) Continuous and intermittent levodopa differentially affect rotation induced by D-1 and D-2 dopamine agonists. Eur J Pharmacol 168: 291–298

    Article  CAS  PubMed  Google Scholar 

  • Etemadzadeh E, Koskinen L, Kaakola S (1989) Computerized rotometer apparatus for recording circling behavior. Meth and Find Exp Clin Pharmacol 11: 399–407

    CAS  Google Scholar 

  • Fuxe K, Agnati LF, Corrodi H, Everitt BJ, Hökfelt T, Löfström A, Ungerstedt U (1975) Action of dopamine receptor agonists in forebrain and hypothalamus: rotational behavior, ovulation, and dopamine turnover. In: Caine DB, Chase TN, Barbeau A (eds) Advances in Neurology. Raven Press, New York, pp 223–242.

    Google Scholar 

  • Herrera-Marschitz M, Terenius L, Grehn L, Ungerstedt U (1989) Rotational behaviour produced by intranigral injections of bovine and human ß-casomorphins in rats. Psycho-pharmacology 99: 357–361

    Article  CAS  Google Scholar 

  • Kebabian JW, Britton DR, DeNinno MP, Perner R, Smith L, Jenner P, Schoenleber R, Williams M (1992) A-77363: a potent and selective D, receptor antagonist with antiparkinsonian activity in marmosets. Eur J Pharmacol 229: 203–209

    Article  CAS  PubMed  Google Scholar 

  • König JFR, Klippel RA (1963) The rat brain — A stereotaxic atlas. Williams and Wilkins Co., Baltimore, Md

    Google Scholar 

  • Mandel RJ, Wilcox RE, Randall PK (1992) Behavioral quantification of striatal dopaminergic supersensitivity after bilateral 6-hydroxydopamine lesions in the mouse. Pharmacol Biochem Behav 41: 343–347

    Article  CAS  PubMed  Google Scholar 

  • Morelli M (1990) Blockade of NMDA transmission potentiates dopaminergic D-1 while reduces D-2 responses in the 6OHDA model of Parkinson. Pharmacol Res 22, Suppl 2: 343

    Google Scholar 

  • Schwarz RD, Stein JW; Bernard P (1978) Rotometer for recording rotation in chemically or electrically stimulated rats. Physiol Behav 20: 351–354

    Article  CAS  PubMed  Google Scholar 

  • Ungerstedt U (1971) Postsynaptic hypersensitivity after 6hydroxydopamine induced degeneration of the nigrostriatal dopamine system. Acta Physiol Scand, Suppl 367: 69–93

    CAS  Google Scholar 

  • Vernier VG, Unna KR (1963) The central nervous system effects of drugs in monkeys with surgically-induced tremor: Atropine and other antitremor agents. Arch Int Pharmacodyn 141: 30–53

    Google Scholar 

  • Yasuda Y, Kikuchi T, Suzuki S, Tsutsui M, Yamada K, Hiyama T (1988) 7-[3-(4-[2,3-Dimethylphenyl]piperazinyl)propoxy]-2(1H)-quinolinone (OPC-4392), a presynaptic dopamine autoreceptor agonist and postsynaptic D2 receptor antagonist. Life Sci 42: 1941–1954

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vogel, H.G., Vogel, W.H. (1997). Psychotropic and neurotropic activity. In: Vogel, H.G., Vogel, W.H. (eds) Drug Discovery and Evaluation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03333-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03333-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03335-7

  • Online ISBN: 978-3-662-03333-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics