Advertisement

Respiratory activity

Chapter
  • 205 Downloads

Abstract

Histamine is considered to play a major role in asthmatic attacks. H1-antagonists have been used since decades as therapeutic agents. This assay is used to determine the affinity of test compounds to the histamine H1 receptor by measuring their inhibitory activities on the binding of the H1 antagonist 3H-pyrilamine to a plasma membrane preparation from guinea pig brain.

Keywords

Nedocromil Sodium Ciliary Beat Frequency Ciliary Activity Potassium Channel Opener Mucociliary Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carswell H, Nahorski SR (1982) Distribution and characteristics of histamine H,-receptors in guinea-pig airways identified by [3H]mepyramine. Eur J Pharmacol 81: 301–307PubMedGoogle Scholar
  2. Chang RSL, Tran VT, Snyder SH (1979) Heterogeneity of histamine H,-receptors: Species variations in [3H]mepyramine binding of brain membranes. J Neurochem 32: 16531663Google Scholar
  3. Hill SJ, Emson PC, Young JM (1978) The binding of [3H]mepyramine to histamine H, receptors in guinea-pig brain. J Neurochem 31: 997–1004PubMedGoogle Scholar
  4. Ruat M, Schwartz JC (1989) Photoaffinity labeling and electrophoretic identification of the H,-receptor: Comparison of several brain regions and animal species. J Neurochem 53: 335–339Google Scholar
  5. Barrow RE (1986) Volume-pressure cycles from air and liquid-filled intact rabbit lungs. Resp Physiol 63: 19–30Google Scholar
  6. Foreman JC, Shelly R, Webber SE (1985) Contraction of guinea-pig lung parenchymal strips by substance P and related peptides. Arch Int Pharmacodyn 278: 193–206PubMedGoogle Scholar
  7. Frazer DG, Weber KC, Franz GN (1985). Evidence of sequential opening and closing of lung units during inflation-deflation of excised rat lungs. Resp Physiol 61: 277–288Google Scholar
  8. Kleinstiver PW, Eyre P (1979) Evaluation of the lung parenchyma strip preparation to measure bronchoactivity. J Pharmacol Meth 2: 175–185Google Scholar
  9. Lach E, Haddad EB, Gies JP (1993) Contractile effect of bombesin on guinea pig lung in vitro: involvement of GRPpreferring receptors. Am J Physiol 264: L80–86PubMedGoogle Scholar
  10. Lach E, Trifilieff A, Muosli M, Landry Y, Gies JP (1994) Bradykinin-induced contraction of guinea pig lung in vitro. Naunyn-Schmiedeberg’s Arch Pharmacol 350: 201–208PubMedGoogle Scholar
  11. Lulich KM, Papadimitriou JM, Paterson JW (1979) The isolated lung strip and single open tracheal ring: a convenient combination for characterizing Schultz-Dale anaphylactic contractions in the peripheral and central airways. Clin Exp Pharmacol Physiol 6: 625–629PubMedGoogle Scholar
  12. Castillo JC, de Beer EJ. (1947). The tracheal chain. I. A preparation for the study of antispasmodics with particular reference to bronchodilator drugs. J Pharmacol Exp Ther 90: 104–109PubMedGoogle Scholar
  13. Da Silva A, Amrani YS, Trifilieff A, Landry Y (1995) Involvement of B2 receptors in bradykinin-induced relaxation of guinea-pig isolated trachea. Br J Pharmacol 114: 103108Google Scholar
  14. Englert CE, Wirth K, Gehring D, Fürst U, Albus U, Scholz W, Rosenkranz B, Schölkens BA (1992) Airway pharmacology of the potassium channel opener, HOE 234, in guinea pigs: in vitro and in vivo studies. Eur J Pharmacol 210: 69–75PubMedGoogle Scholar
  15. Farmer SG, Broom T, DeSiato MA (1994) Effects of bradykinin receptor agonists, and captopril and thiorphan in ferret isolated trachea: evidence for bradykinin generation in vitro. Eur J Pharmacol 259: 309–313PubMedGoogle Scholar
  16. Farmer SG, Fedan JS, Hay DWP, Raeburn D (1986) The effects of epithelium removal on the sensitivity of guinea-pig isolated trachealis to bronchodilator drugs. Br J Pharmacol 89: 407–414PubMedGoogle Scholar
  17. Foster RW (1966) The nature of the adrenergic receptors of the trachea of the guinea-pig. J Pharm Pharmacol 18: 1–12PubMedGoogle Scholar
  18. Hock JF, Wirth K, Albus U, Linz W, Gerhards HJ, Wiemer G, Henke St, Breipohl G, König W, Knolle J, Schölkens BA (1991) HOE 140 a new potent and long acting bradykininantagonist. In vitro studies. Br J Pharmacol 102: 769–773Google Scholar
  19. Rhoden KJ, Barnes PJ (1989) Effect of hydrogen peroxide on guinea-pig tracheal smooth muscle in vitro: role of cyclooxygenase and airway epithelium. Br J Pharmacol 98: 325–330PubMedGoogle Scholar
  20. Sheth UK, Dadkar NK, Kamat UG (1972) Selected Topics in Experimental Pharmacology Published by Kothari Book Depot, IndiaGoogle Scholar
  21. Waldeck B, Widmark E (1985) Comparison of the effects of forskolin and isoprenaline on tracheal, cardiac and skeletal muscles from guinea-pig. Eur J Pharmacol 112: 349–353PubMedGoogle Scholar
  22. Nossaman BD, Feng CJ, Kadowith PJ (1994) Analysis of responses to bradykinin and influence of HOE 140 in the isolated perfused rat lung. Am J Physiol Heart Circ Physiol 266: H2452–2461Google Scholar
  23. Belvisi MG, Chung KF, Jackson DM, Barnes PJ (1989) Opioid modulation of non-cholinergic neural bronchoconstriction in guinea-pig in vivo. Br J Pharmacol 97: 1225–1231PubMedGoogle Scholar
  24. Belvisi MG, Ichinose M, Barnes PJ (1989) Modulation of nonadrenergic, non-cholinergic neural bronchoconstriction in guinea-pig airways via GABAB receptors. Br. J Pharmacol 97: 1225–1231Google Scholar
  25. De la Motta S (1991) Simultaneous measurement of respiratory and circulatory parameters on anesthetized guinea pigs. Seventh Freiburg Focus on Biomeasurement (FFB7) Publ. by Biomesstechnik Verlag, 79232 March, Germany. B IV, pp 45–65Google Scholar
  26. Konzett H, Rössler R (1940) Versuchsanordung zu Untersuchungen an der Bronchialmuskulatur. Naunyn-Schmiedeberg’s Arch Exp Path Pharmakol 192: 71–74Google Scholar
  27. Lau WAK, Rechtman MP, Boura ALA, King RG (1989) Synergistic potentiation by captopril and propranolol of bradykinin-induced bronchoconstriction in the guinea-pig. Clin Exp Pharmacol Physiol 16: 849–857PubMedGoogle Scholar
  28. Lefort J, Vargaftig BB (1978) Role of platelets in aspirin-sensitive bronchoconstriction in the guinea pig; interactions with salicylic acid. Br J Pharmacol 63: 35–42PubMedGoogle Scholar
  29. Lundberg JM, Brodin E, Saria A (1983) Effects and distribution of vagal capsaicin-sensitive substance P neurons with special reference to the trachea and lungs. Acta Physiol Scand 119: 243–252PubMedGoogle Scholar
  30. Miura M, Belvisi MG, Barnes PJ (1994) Modulation of nonadrenergic noncholinergic neural bronchoconstriction by bradykinin in anesthetized guinea pigs in vivo. J Pharm Exp Ther 268: 482–486Google Scholar
  31. Orr TSC, Blair AMJN (1969) Potentiated reagin response to egg albumin and conalbumin in Nippostrongylus brasiliensis infected rats. Life Sci 8: 1073–1077PubMedGoogle Scholar
  32. Riley PA, Mather ME, Keogh RW, Eady RP (1987) Activity of nedocromil sodium in mast-cell-dependent reactions in the rat. Int Arch Allergy Appl Immun 82: 108–110Google Scholar
  33. Rosenthale ME, Dervinis A (1968) Improved apparatus for measurement of guinea pig lung overflow. Arch Int Pharmacodyn 172: 91–94Google Scholar
  34. Schiantarelli P, Bongrani S, Papotti M, Cadel S (1982) Investigation of the activity of bronchodilators using a simple but accurate inhalation procedure: forced insufflation. J Pharmacol Meth 8: 9–17Google Scholar
  35. Lefort J, Vargaftig BB (1978). Role of platelets in aspirin-sensitive bronchoconstriction in the guinea pig; interactions with salicylic acid. Br. J. Pharmac. 63: 35–42Google Scholar
  36. Vargaftig BB, Lefort J, Prancan AV, Chignard M, Benveniste J (1979). Platelet-lung in vivo interactions: An artifact of a multi-purpose model?. Haemostasis 8: 171–182Google Scholar
  37. Brigham KL, Meyrick B (1986) Endotoxin and lung injury: state of the art review. Am Rev Respir Dis 133: 913–927PubMedGoogle Scholar
  38. Christman BW, Lefferts PL, Snapper JR (1987) Effect of a platelet activating factor receptor antagonist (SRI 63–441) on the sheep’s response to endotoxin. Am Rev Respir Dis 135: A82Google Scholar
  39. Eady RP (1986) The pharmacology of nedocromil sodium. Eur J Respir Dis 69: (Suppl 147): 112–119Google Scholar
  40. Elwood W, Lötvall JO, Barnes PJ, Chung KF (1992) Effect of dexamethasone and cyclosporin A on allergen-induced airway hyperresponsiveness and inflammatory cell responses in sensitized Brown-Norway rats. Am Rev Respir Dis 145: 1289–1294PubMedGoogle Scholar
  41. Harris JO, Bice D, Salvaggio JE (1976) Cellular and humoral bronchopulmonary immune response of rabbits immunized with thermophilic actinomyces antigen. Am Rev Respir Dis 114: 29–43PubMedGoogle Scholar
  42. Hutchinson AA, Hinson JM, Brigham KL, Snapper JL (1983) Effect of endotoxin on airway responsiveness to aerosol histamine in sheep. J Appl Physiol 54: 1463–1468Google Scholar
  43. Kallos P, Pagel W (1937) Experimentelle Untersuchungen über Asthma bronchiale. Acta Med Scand 91: 292–305Google Scholar
  44. Patterson R, Suszko IM, Harris KE (1983) The in vivo transfer of antigen-induced airway reactions by bronchial lumen cells. J Clin Invest 62: 519–524Google Scholar
  45. Pritchard DI, Eady PR, Harper ST, Jackson DM, Orr TSC, Richards IM, Trigg S, Wells E (1983) Laboratory infection of primates with Ascaris suum to provide a model of allergic bronchoconstriction. Clin Exp Immunol 54: 469–476PubMedGoogle Scholar
  46. Reynolds HY (1991) Immunologic system in the respiratory tract. Physiol Rev 71: 1117–1133PubMedGoogle Scholar
  47. Richards IM, Dixon M, Jackson DM, Vendy K (1986) Alternative modes of action of cromoglycate. Agents Actions 18: 294–300PubMedGoogle Scholar
  48. Rosenthale ME, Dervinis A (1968) Improved apparatus for measurement of guinea pig lung overflow. Arch Int Pharmacodyn 172: 91–94Google Scholar
  49. Rosenthale ME, Dervinis A, Begany AJ, Lapidus M, Gluck-mann MI (1970) Bronchodilator activity of prostaglandin E2 when administered by aerosol to three species. Experientia 26: 1119–1121PubMedGoogle Scholar
  50. Rylander R, Marchat B (1988) Modulation of acute endotoxin pulmonary inflammation by a corticosteroid. J Clin Lab Immunol 27: 83–86PubMedGoogle Scholar
  51. Santing RE, Hoekstra Y, Pasman Y, Zaagsma J, Meurs H (1994) The importance of eosinophil activation for the development of allergen-induced bronchial hyperreactivty in conscious, unrestrained guinea pigs. Clin Exp Allergy 24: 1157–1163PubMedGoogle Scholar
  52. Snapper JR, Christman BW (1989) Models of acute pulmonary inflammation. In: Pharmacological Methods in the Control of Inflammation. Alan R. Liss, Inc., pp 255–281Google Scholar
  53. Tarayre JP, Aliaga M, Barbara M, Tisseyre N Vieu S, TisneVersailles J (1990). Model of bronchial hyperreactivity after active anaphylactic shock in conscious guinea pigs. J Pharmacol Meth 23: 13–19Google Scholar
  54. Ufkes JGR, Ottenhof M, Aalberse RC (1983) A new method for inducing fatal, IgE mediated, bronchial and cardiovascular anaphylaxis in the rat. J Pharmacol Meth 9: 175–181Google Scholar
  55. Agrawal KP (1981) Specific airway conductance in guinea pigs: normal values and histamine induced fall. Respir Physiol 43: 23–30PubMedGoogle Scholar
  56. Amdur MO, Mead J (1958) Mechanics of respiration in unanesthetized guinea pigs. Am J Physiol 192: 364–368PubMedGoogle Scholar
  57. Arch JRS, Buckle DR, Bumstead J, Clarke GD, Taylor JF, Taylor SG (1988) Evaluation of the potassium channel activator cromakalim (BRL 34915) as a bronchodilator in the guinea pig: comparison with nifedipine. Br J Pharmacol 95: 763–770PubMedGoogle Scholar
  58. Ball DI, Coleman RA, Hartley RW, Newberry A (1991) A novel method for the evaluation of bronchoactive agents in the conscious guinea pig. J Pharmacol Meth 26: 187–202Google Scholar
  59. Chand N, Nolan K, Pillar J, Lomask M, Diamantis W, Sofia RD (1993) Aeroallergen-induced dyspnea in freely moving guinea pigs: quantitative measurement by bias flow ventilated whole body plethysmography. Allergy 48: 230–235PubMedGoogle Scholar
  60. Chapman RW, Danko G, Siegel MI (1985) Effect of propranolol on pulmonary function and bronchoconstrictor responsiveness in guinea pigs and rats. Pharmacol Res Comm 17: 149–163Google Scholar
  61. Danko G, Chapman RW (1988) Simple, noninvasive method to measure antibronchoconstrictor activity of drugs in conscious guinea pigs. J Pharmacol Meth 19: 165–173Google Scholar
  62. Elliott RD, Fitzgerald MF, Clay TP (1991) A whole body plethysmograph for small animals. 7`h Freiburg Focus on Biomeasurement. Cardiovascular and Respiratory in vivo Studies. Biomesstechnik-Verlag March GmbH, 79232 March, Germany. pp 66–71Google Scholar
  63. Englert CE, Wirth K, Gehring D, Fürst U, Albus U, Scholz W, Rosenkranz B, Schölkens BA (1992) Airway pharmacology of the potassium channel opener, HOE 234, in guinea pigs: in vitro and in vivo studies. Eur J Pharmacol 210: 69–75PubMedGoogle Scholar
  64. Griffith-Johnson DA, Nicholl PJ, McDermott M (1988) Measurement of specific airway conductance in guinea pigs A noninvasive method. J Pharmacol Meth 19: 233–242Google Scholar
  65. James JT, Infiesto BP (1983) Concurrent measurement of respiratory and metabolic parameters in rats during exposure to a test vapor: Respiratory stress test. J Pharmacol Meth 10: 283–292Google Scholar
  66. Kisagawa K, Saitoh K, Tanizaki A, Ohkubo K, Irino 0 (1984) A new method for measuring respiration in the conscious mouse. J Pharmacol Meth 12: 183–189Google Scholar
  67. Linton P (1991) Improvements incorporated in the animal whole-body plethysmograph after Elliott et al. 7th Freiburg Focus on Biomeasurement. Cardiovascular and Respiratory in vivo Studies. Biomesstechnik-Verlag March GmbH, 79232 March, Germany. pp 72–76Google Scholar
  68. Pennock BE, Cox CP, Rogers RM, Cain WA, Wells JH (1979) A noninvasive technique for measurements of changes in specific airway resistance. J Appl Physiol 46: 399–406PubMedGoogle Scholar
  69. Schlegelmilch R (1991) Respiratory measurements on conscious guinea pigs using a double chamber plethysmograph box with aerosol challenge. 7`h Freiburg Focus on Biomeasurement. Cardiovascular and Respiratory in vivo Studies. Biomesstechnik-Verlag March GmbH, 79232 March, Germany. pp 136–140Google Scholar
  70. Schlenker EH (1984) An evaluation of ventilation in dystrophic Syrian hamsters. J Appl Physiol 56: 914–921PubMedGoogle Scholar
  71. Schlenker EH, Metz Ti (1989) Ventilatory responses of dystrophic and control hamsters to naloxone. Pharmacol Biochem Behav 34: 681–684PubMedGoogle Scholar
  72. Wasserman MA, Griffin RL (1977) Thromboxane B2–comparative bronchoactivity in experimental sytems. Eur J Pharmacol 46: 303–313PubMedGoogle Scholar
  73. Wegner CD, Jackson AC, Berry JD, Gillepsie JR (1984) Dynamic respiratory mechanics in monkeys measured by forced oscillations. Resp Physiol 55: 47–61Google Scholar
  74. Wirth K, Hock FJ, Albus U, Linz W, Alpermann HG, Anagnostopoulos H, Henke St, Breipohl W, Knolle J, Schölkens BA (1991) HOE 140, a new potent and long acting bradykinin-antagonist: in vivo studies. Br J Pharmacol 102: 774–777PubMedGoogle Scholar
  75. Wirth KJ, Gehring D, Schölkens BA (1993) Effect of HOE 140 on bradykinin-induced bronchoconstriction in anesthetized guinea pigs. Am Rev Respir Dis 148: 702–706PubMedGoogle Scholar
  76. De la Motta S (1991) Simultaneous measurement of respiratory and circulatory parameters on anesthetized guinea pigs. Seventh Freiburg Focus on Biomeasurement (FFB7) Publ. by Biomesstechnik Verlag, 79232 March, Germany. B IV, pp 45–65Google Scholar
  77. Döring HJ (1991) Historical review of methods for the measurement and evaluation of respiratory parameters, in particular airway resistance. Seventh Freiburg Focus on Biomeasurement (1FI-B7) Publ. by Biomesstechnik Verlag, 79232 March, Germany. B IV, pp 17–29Google Scholar
  78. Fleisch A (1925) Der Pneumotachograph; ein Apparat zur Geschwindigkeitsregistrierung der Atemluft. Pflüger’s Arch 209: 713–722Google Scholar
  79. Gad J (1880) Die Regulirung der normalen Athmung. Arch Anat Physiol, Physiol Abthlg:l-32Google Scholar
  80. Gildemeister M (1922) Über die Messung der Atmung mit Gasuhr und Ventilen. Pflügers Arch 195: 96–100Google Scholar
  81. Hastings SG (1990a) An integrated system for data acquisition and analysis. Sixth Freiburg Focus on Biomeasurement (FFB6) Publ. by Biomesstechnik Verlag, 79232 March, Germany. pp 206–209Google Scholar
  82. Hastings SG (1990b) Typical data reduction process. Sixth Freiburg Focus on Biomeasurement (FFB6) Publ. by Biomesstechnik Verlag, 79232 March, Germany. G IV 1–27Google Scholar
  83. Jaquet A (1908) Zur Mechanik der Atembewegungen. Arch exp Path Pharmakol, Suppl, Festschr. O Schmiedeberg: 309–316Google Scholar
  84. Lai YL, Diamond L (1986) Comparison of five methods of analyzing respiratory pressure-volume curves. Respir Physiol 66: 147–155PubMedGoogle Scholar
  85. Lomask MR (1987) BUXCO respiratory mechanics analyzer for non invasive measurements in conscious animals. Third Freiburg Focus on Biomeasurement (FFB3) Publ. by Biomesstechnik Verlag, 79232 March, Germany. pp 212–226Google Scholar
  86. Lorino AM, Bénichou M, Macquin-Mavier I, Lorino H, Harf A (1988) Respiratory mechanics for assessment of histamine bronchopulmonary reactivity in guinea pigs. Resp Physiol 73: 155–162Google Scholar
  87. O’Neil RM, Ashack RJ, Goodman FR (1981) A comparative study of respiratory responses to bronchoactive agents in rhesus and cynomolgus monkeys. J Pharmacol Meth 5: 267–273Google Scholar
  88. Pflüger E (1882) Das Pneumonometer. Pflügers Arch 29: 244246Google Scholar
  89. Rayburn DB, Mundie TG, Phillips YY(1989) Computer-controlled large-animal pulmonary function system. Comput Meth Progr Biomed 28: 1–9Google Scholar
  90. Rohrer F (1915) Der Strömungswiderstand in den menschlichen Atemwegen und der Einfluss der unregelmässigen Verzweigungen des Bronchialsystems auf den Atmungsverlauf in verschiedenen Lungenbezirken. Pflügers Arch 162: 225–299Google Scholar
  91. Santing RE, Meurs H, van der Mark TW, Remie R, Oosterom WC, Brouwer F, Zaagsma J (1992) A novel method to assess airway function parameters in chronically instrumented, unrestrained guinea-pigs. Pulmon Pharmacol 5: 265–272Google Scholar
  92. v. Neergaard K, Wirz K (1927) über eine Methode zu Messung der Lungenelastizität am lebenden Menschen, insbesondere beim Emphysem. Z klin Med. 105: 35–50Google Scholar
  93. Zwaardemaker H, Ouwehand CD (1904) Die Geschwindigkeit des Athemstromes und das Athemvolum des Menschen. Arch Anat Physiol, Physiol Abthlg. Suppl: 241–263Google Scholar
  94. Rogers DF, Boschetto P, Barnes PJ (1989) Plasma exsudation: Correlation between Evans Blue dye and radiolabelled albumin in guinea-pig airways in vivo. J Pharmacol Meth 21: 309–315Google Scholar
  95. Sakamoto T, Elwood W, Barnes PJ, Chung FK (1992) Effect of Hoe 140, a new bradykinin receptor antagonist, on bradykinin-and platelet-activating factor-induced bronchoconstriction and airway microvascular leakage in guinea pig. Eur J Pharmacol 213: 367–373PubMedGoogle Scholar
  96. Sakamoto T Sun J, Barbnes PJ, Chung KF (1994) Effect of a bradykinin receptor antagonist, HOE 140, against bradykinin-and vagal stimulation-induced airway responses in the guinea-pig. Eur J Pharmacol 251: 137–142PubMedGoogle Scholar
  97. Benson WM, Stefko PL, Randall LO (1953) Comparative pharmacology of levorphan, racemorphan and dextromorphan and related methyl esters. J Pharmacol Exp Ther 109: 189–200PubMedGoogle Scholar
  98. Braga PC, Bossi R, Piatti G, Dal Sasso M (1993) Antitussive effect of oxatomide on citric acid-induced cough in conscious guinea pig. Arzneim Forsch/Drug Res 43: 550–553Google Scholar
  99. Charlier R, Prost M, Binon F, Deltour G (1961) Étude pharmacologique d’un antitussif, le fumarate acide de phénéthyl-1 (propyne-2-y1)-4-propionoxy-4 pipéridine. Arch intern Pharmacodyn 134: 306–327Google Scholar
  100. Charmat R, Kornowski H, Jondet A (1966) Technique de sélection rapide des substances antitussives. Application à l’évaluation de l’activité d’un dérivé de la prométhazine. Ann pharmaceut franç 24: 181–184Google Scholar
  101. Chen JYP, Biller HF, Montgomery EG (1960) Pharmacologic studies of a new antitussive, alpha-(dimetylaminomethyl)ortho-chlorobenzhydrol hydrochloride (SL-501, Bayer B186) J Pharmacol Exp Ther 128: 384–391PubMedGoogle Scholar
  102. Eichler O, Smiatek A (1940) Versuche zur Auswertung von Mitteln zur Bekämpfung des Reizhustens. Arch Exp Path Pharm 194: 621–627Google Scholar
  103. Ellis GP, Goldberg L, King J, Sheard P (1963) The synthesis and antitussive properties of some cyclopentane derivates. J Med Chem 6: 111–117PubMedGoogle Scholar
  104. Friebel H, Reichle C, v.Graevenitz A (1955) Zur Hemmung des Hustenreflexes durch zentral angreifende Arzneimittel. Arch exp Path Pharm 224: 384–400.Google Scholar
  105. Granier-Doyeux M, Horande M, Kucharski W (1959) Méthode d’évaluation quantitative des agents antitussigènes. Arch Int Pharmacodyn 121: 287–296PubMedGoogle Scholar
  106. Gross A (1957) Etude expérimentale, chez le chien choralosé, de l’action antitussive de la codéine, au moyen du réflexe pleuro-tussigène et de la toux lobélinique. C R Soc Biol, Paris 151: 704–707Google Scholar
  107. Gross A, Lebon P, Rambert R (1958) Technique de toux expérimentale chez le Chien., par excitation faradique, sous bronchoscopie, de l’éperon trachéal. C R Soc Biol Paris 152: 495–497PubMedGoogle Scholar
  108. Hara S, Yanaura S (1959) A method of inducing and recording cough and examination of the action of some drugs with this method. Jap J Pharmacol 9: 46–54PubMedGoogle Scholar
  109. Källqvist I, Melander B (1957) Experimental and clinical evaluation of chlorcyclizine as an antitussive. Arzneim Forsch 7: 301–304Google Scholar
  110. Kamei J, Tanihara H, Igarashi H, Kasuya Y (1989) Effects of N-methyl-D-aspartate antagonists on the cough reflex. Eur J Pharmacol 168: 153–158PubMedGoogle Scholar
  111. Karlsson JA, Lanner AS, Persson CGA (1989) Airway opioid receptors mediate inhibition of cough and reflex bronchoconstriction in guinea pigs. J Pharmacol Exp The 252: 863–868Google Scholar
  112. Karttunen P, Koskiniemi J, Airaksinen MM (1982) An improvement to the use of sulfur dioxide to induce cough in experimental animals. J Pharmacol Meth 7: 181–184Google Scholar
  113. Kasé Y (1952) New methods of estimating cough depressing action. Jap J Pharmacol 2: 7–13Google Scholar
  114. Kasè Y (1954) The “coughing dog” - an improved method for the evaluation of an antitussive. Pharm Bull (Jpn) 2: 298299Google Scholar
  115. Kroepfli P (1950) Über das Verhalten einiger Atmungsgrößen beim Husten. I. Mitteilung fiber den Hustenmechanismus. Helv Physiol Acta 8: 33–43Google Scholar
  116. Lemeignan M, Streichenberger G, Lechat P (1966) De l’utilisation du Cobaye décérébré pour l’étude des antitusssifs. Thérapie 21: 361–366PubMedGoogle Scholar
  117. May AJ, Widdicombe JG (1954) Depression of the cough reflex by pentobarbitone and some opium derivatives. Br J Pharmacol 9: 335–340Google Scholar
  118. Reichle C, Friebel H (1955) Zur Hemmung des Hustenreflexes durch zentral angreifende Arzneimittel. Il. Mitteilung. Arch exp Path Pharm 226: 558–562Google Scholar
  119. Rosiere CE, Winder CV, Wax J (1956) Ammonia cough elicited through a tracheal side tube inn unanesthetized dogs. Comparative antitussive bioassay of four morphine derivatives and methadone in terms of ammonia thresholds. J Pharmacol Exp Ther 116: 296–316Google Scholar
  120. Sallé J Brunaud M (1960), Nouvelle technique d’enregistrement des mouvements de toux provoqués par l’inhalation de vapeurs irritantes chez le cobaye. Arch Int Pharmacodyn 126: 120–125PubMedGoogle Scholar
  121. Shemano I (1964) Techniques for evaluating antitussive drugs in animals. In: Nodine JH, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical Publishers, Inc. Chicago, pp 456–460Google Scholar
  122. Stefko PL, Benson WM (1953) A method for the evaluation of antitussive agents in the unanesthetized dog. J Pharmacol Exp Ther 108: 217–223PubMedGoogle Scholar
  123. Stefko PL, Denzel J, Hickey I (1961) Experimental investiga- tion of nine antitussive drugs. J Pharm Sci 50: 216–221Google Scholar
  124. Tedeschi RE, Tedeschi DH, Hitchens JD, Cook L, Mattis PA, Fellows EJ (1959) A new antitussive method involving mechanical stimulation in unanesthetized dogs. J Pharmacol Exp Ther 126: 338–344PubMedGoogle Scholar
  125. Wiedemeijer JC, Kramer HW, deJongh DK (1960) A screening method for antitussive compounds. Acta physiol pharmacol Neerl 9: 501–508PubMedGoogle Scholar
  126. Winter CA, Flakater L (1952) Antitussive action of disomethadone and d-methadone in dogs. Proc Soc Exp Biol Med. 81: 463–465PubMedGoogle Scholar
  127. Winter CA, Flakater L (1954) Antitussive compounds: Testing methods and results. J Pharmacol Exp Ther 112: 99–108Google Scholar
  128. Winter CA, Flakater L (1955) The effects of drugs upon a graded cough response obtained in sensitized guinea pigs exposed to aerosol of specific antigen. J Exp Med 101: 17–24PubMedGoogle Scholar
  129. Yanaura S, Iwase H, Sato S, Nishimura T (1974) A new method for induction of the cough reflex. Jap J Pharmacol 24: 453–460PubMedGoogle Scholar
  130. Bobb JRR, Ellis S (1951) Production of cough and its suppression in the unanesthetized dog. Am J Physiol 167: 768–769Google Scholar
  131. Braga PC (1989) Experimental models for the study of cough. In: Braga PC, Allegra L (eds) Cough. Raven Press, Ltd. New York, pp 55–70Google Scholar
  132. Chakravarty NK, Mattalana A, Jensen R, Borison HL (1956) Central effects of antitussive drugs on cough and respiration. J Pharm Exp Ther 117: 127–135Google Scholar
  133. Domenjoz R (1952) Zur Auswertung hustenstillender Arzneimittel. Arch exper Path Pharmakol 215: 19–24Google Scholar
  134. Kasé Y, Wakita Y, Kito T, Miyata T, Yuizono T, Kataoka M (1970) Centrally-induced coughs in the cat. Life Sci 9: 49–59PubMedGoogle Scholar
  135. Mattalana A, Borison HL (1955) Antitussive agents and centrally-induced cough. Fed Proc 14: 367–368Google Scholar
  136. Schröder W (1951) Die Verwendung des Vagusschlingenhundes für die Wertbestimmung hustenstillender Substanzen. Arch Exp Path Pharmakol 212: 433–439Google Scholar
  137. Toner JJ, Macko E (1952) Pharmacological studies on bis-(1- carbo-O-diethyl-aminoethoxy)-1-phenylcyclopentane)- ethane disulfonate. J Pharm Exp Ther 106: 246–251Google Scholar
  138. van Dongen K (1956) The effect of Narcotine, Ticarda and Romilar on coughs and on the movements of the cilia in the air passages. Acta Physiol Pharmacol Neerl 4: 500–507Google Scholar
  139. Borson DB, Chinn RA, Davis B, Nadel JA (1980) Adrenergic and cholinergic nerves mediate fluid secretion from tracheal glands of ferrets. J Appl Physiol. Respir Environ Exercise Physiol 49: 1027–1031Google Scholar
  140. Kyle H, Robinson NP, Widdicombe JG (1987) Mucus secretion by tracheas of ferret and dog. Eur J Resp Dis 70: 14–22Google Scholar
  141. Quinton PM (1979) Composition and control of secretions from tracheal bronchial submucosal glands. Nature 279: 551–552PubMedGoogle Scholar
  142. Robinson N, Widdicombe JG, Xie CC (1983) In vitro collec- tion of mucus from the ferret trachea. J Phys 340: 7P - 8 PGoogle Scholar
  143. Robinson N, Widdicombe JG, Xie CC (1983) In vitro measurement of submucosal gland secretion in the ferret trachea by observation of tantalum dust-coated “hillocks”. J Phys 340: 8 PGoogle Scholar
  144. Widdicombe JG (1988) Methods for collecting and measuring mucus from specific sources. In. Braga PC, Allegra L (eds) Methods in Bronchial Mucology. Raven Press, Ltd., pp 21–29Google Scholar
  145. Braga PC (1988) Methods for collecting and measuring airway mucus in animals. In: Braga PC, Allegra L (eds) Methods in Bronchial Mucology. Raven Press, Ltd., pp 3–11Google Scholar
  146. Davis B, Chinn R, Gold J, Popovac D, Widdicombe JG, Nadel JA (1982) Hypoxemia reflexly increases secretion from tracheal submucosal glands in dogs. J Appl Physiol. Resp Environ Exercise Physiol 52: 1416–1419Google Scholar
  147. Engler H, Szelenyi I (1984) Tracheal phenol red secretion, a new method for screening mucosecretolytic compounds. J Pharmacol Meth 11: 151–157Google Scholar
  148. Gallagher JT, Kent PW, Passatore M, Phipps RJ, Richardson PS (1975) The composition of tracheal mucus and the nervous control of its secretion in the cat. Proc Roy Soc London 192: 49–76Google Scholar
  149. Graziani G, Cazzulani P (1981) Su un metodo particolarmente indicato per lo studio dell’attivita espettorante nei piccoli animali. Farmaco/Ed Pr 36: 167–172Google Scholar
  150. Johnson HG, McNee ML (1983) Secretagogue responses of leukotriene C4 D4: comparison of potency in canine trachea in vivo. Prostaglandins 25: 237–243PubMedGoogle Scholar
  151. Johnson HG, McNee ML (1985) Adenosine-induced secretion in the canine trachea:Modification by methylxanthines and adenosine derivatives. Br J Pharmacol 86: 63–67PubMedGoogle Scholar
  152. Leikauf GD, Ueki IF, Nadel JA (1984) Autonomic regulation of viscoelasticity of cat tracheal gland secretions. J Appl Physiol. Respir Environ Exercise Physiol 56: 426–430Google Scholar
  153. Perry WF, Boyd EM (1941) A method for studying expectorant action in animals by direct measurement of the output of respiratory tract fluids. J Pharmacol Exp Ther 73: 65–77Google Scholar
  154. Proctor DF, Aharonson EF, Reasor MJ, Bucklen KR (1973) A method for collecting normal respiratory mucus. Bull Physiopath Respir 9: 351–358Google Scholar
  155. Quevauviller A, Vu-Ngoc-Huyen (1966) Hypersecretion expérimentale du mucus bronchique chez le rat. I. Methode de appreciation anatomopathologique. C R Soc Biol 160: 1845–1849Google Scholar
  156. Ueki I, German V, Nadel J (1980) Direct measurement of tracheal mucus gland secretion with micropipettes in cats. Effects of cholinergic and a-adrenergic stimulation. Clin Res 27: 59AGoogle Scholar
  157. Ueki I, German VF, Nadel JA (1980) Micropipette measurement of airway submucosal gland secretion. Autonomic effects. Am Rev Resp Dis 121: 351–357Google Scholar
  158. Barber WH, Smal Jr PAl (1974) Construction of an improved tracheal pouch in the ferret. Am Rev Respir Dis 115: 165–169Google Scholar
  159. Braga PC (1988) Dynamic methods in viscoelasticity assessment. Sinusoidal oscillation method. In: Braga PC, Allegra L (eds) Methods in Bronchial Mucology. Raven Press, Ltd. pp 63–71Google Scholar
  160. Kim CS, Berkley BB, Abraham WM, Wanner A (1982) A micro double capillary method for rheological measurements of lower airway secretions. Bull Eur Physiopath Resp 18: 915–927Google Scholar
  161. King M (1988) Magnetic microrheometer. In: Braga PC, Allegra L (eds) Methods in Bronchial Mucology. Raven Press, Ltd. pp 73–83Google Scholar
  162. Lopez-Vidriero MT, Das I, Reid LM (1977) Airway secretion:Source, biochemical and rheological properties. In: Brain JD, Proctor DF, Reid LM (eds) Respiratory Defense Mechanisms. Part I, Marcel Dekker, Inc., pp 289–356Google Scholar
  163. Majima Y, Hirata K, Takeuchi K, Hattori K, Sakakura Y (1990) Effects of orally administered drugs on dynamic viscoelasticity of human nasal mucus. Am Rev Respir Dis 141: 79–83PubMedGoogle Scholar
  164. Martin M, Litt M, Marriott (1980) The effect of mucolytic agents on the rheological and transport properties of canine tracheal mucus. Am Rev Resp Dis 121: 495–500Google Scholar
  165. Philippoff W, Han CD, Barnett B, Dulfano MJ (1970) A method for determining the viscoelastic properties of biological fluids. Biorheology 7: 55–67PubMedGoogle Scholar
  166. Scuri R, Frova C, Fantini PL, Mondani G, Riboni R, Alfieri C (1980) Un nuovo metodo per to studio della mucoproduzione nel coniglio. Boll Chim Farm 119: 181–187PubMedGoogle Scholar
  167. Wardell Jr, Chakrin LW, Payne BJ (1970) The canine tracheal pouch. A model for use in respiratory mucus research. Am Rev Resp Dis 101: 741–754Google Scholar
  168. Widdicombe JG (1988) Methods for collecting and measuring mucus from specific sources. In. Braga PC, Allegra L (eds) Methods in Bronchial Mucology. Raven Press, Ltd., pp 2129Google Scholar
  169. Yankell SL, Marshall R, Kavanagh B, DePalma PD, Resnick B (1970) Tracheal fistula in dogs. J Appl Physiol 28: 853–854PubMedGoogle Scholar
  170. Baldetorp L, Huberman D, Hdkanssson CH, Toremalm NG (1976) Effects of ionizing radiation on the activity of the ciliated epithelium of the trachea. Acta Radiol Ther Phys Biol 13: 225–232Google Scholar
  171. Braga PC, Dall’Oglio G, Bossi R, Allegra L (1986) Simple and precise method for counting ciliary beats directly from the TV monitor screen. J Pharmacol Meth 16: 161–169Google Scholar
  172. Cheung ATW (1976) High speed cinemicrographic studies on rabbit tracheal (ciliated) epithelia: Determination of the beat pattern of tracheal cilia. Pediat Res 10: 140–144PubMedGoogle Scholar
  173. Corssen G, Allen CR (1958) A comparison of the toxic effects of various local anesthetic drugs on human ciliated epithelium in vitro. Texas Rep Biol Med 16: 194–202Google Scholar
  174. Dalhamn T (1956) Mucous flow and ciliary activity in the trachea of healthy rats and rats exposed to respiratory irritant gases (SO2, H,N, HCHO). A functional and morphologic (light microscopic and electron microscopic) study, with special reference to technique. Acta Physiol Scand 36, Suppl 123: 1–161Google Scholar
  175. Dalhamn T (1964) Studies on tracheal ciliary activity. Am Rev Respir Dis 89: 870–877PubMedGoogle Scholar
  176. Dalhamn T, Rylander R (1962) Frequency of ciliary beat measured with a photo-sensitive cell. Nature 196: 592–593PubMedGoogle Scholar
  177. Hakansson CH, Toremalm NG (1963) Studies on the physiology of the trachea. I. Ciliary activity indirectly recorded by a new “light beam reflex” method. Ann Otol 74: 954–969Google Scholar
  178. Hesse H, Kasparek R, Mizera W, Unterholzner Ch, Konietzko N (1981) Influence of reproterol on ciliary beat frequency of human bronchial epithelium in vitro. Arzneim Forsch/Drug Res 31: 716–718Google Scholar
  179. Hybbinette JC, Mercke U (182 b) Effects of the parasympathomimetic drug methacholine and its antagonist atropine on mucociliary activity. Acta Otolaryngol 93: 465–473Google Scholar
  180. Hybbinette JC, Mercke U (1982 a) A method for evaluating the effect of pharmacological substances on mucociliary activity in vivo. Acta Otolaryngol 93: 151–159Google Scholar
  181. Hybbinette JC, Mercke U (1982 c) Effects of sympathomimetic agonists and antagonists on mucociliary activity. Acta Otolaryngol 94: 121–130Google Scholar
  182. Iravani J (1967) Flimmerbewegung in den intrapulmonalen Luftwegen der Ratte. Pflügers Arch 207: 221–237Google Scholar
  183. Iravani J (1971) Physiologie and Pathophysiologie der Cilientätigkeit and des Schleimtransports im Tracheobronchialbaum. (Untersuchungen an Ratten). Pneumonologie 144: 93–112PubMedGoogle Scholar
  184. Iravani J, Melville GN (1975) Mucociliary activity in the respiratory tract as influenced by prostaglandin E,. Respiration 32: 305–315PubMedGoogle Scholar
  185. Lee WI, Verdugo P (1976) Laser light-scattering spectroscopy. A new application in the study of ciliary activity. Biophys J 16: 1115–1119Google Scholar
  186. Lierle DM, Moore PM (1935) Further study of the effects of drugs on ciliary activity: a new method of observation in the living animal. Ann Otol 44: 671–684Google Scholar
  187. Lindberg S, Hybbinette JC, Mercke U (1986) Effects of neuropeptides on mucociliary activity. Ann Otol Rhinol Laryngol 95: 94–100PubMedGoogle Scholar
  188. Lindberg S, Mercke U (1986) Bradykinin accelerates mucociliary activity in rabbit maxillary sinus. Acta Otolaryngol (Stockh) 101: 114–121Google Scholar
  189. Lopez-Vidriero MT, Jacobs M, Clarke SW (1985) The effect of isoprenaline on the ciliary activity of an in vitro preparation of rat trachea. Eur J Pharmacol 112: 429–432PubMedGoogle Scholar
  190. Maurer DR, Sielczak M, Oliver Jr W, Abraham WM, Wanner A (1982) Role of ciliary motility in acute allergic mucociliary dysfunction, J Appl Physiol 52: 1018–1023PubMedGoogle Scholar
  191. Mercke U, Häkanson CH, Toremalm NG (1974) A method for standardized studies of mucociliary activity. Acta otolaryng 78: 118–123PubMedGoogle Scholar
  192. Mercke U, Lindbergh S, Dolata J (1987) The role of neurokinin A and calcitonin-related peptide in the mucociliary defense of the rabbit maxillary sinus. Rhinology 25: 89–93PubMedGoogle Scholar
  193. Rutland J, Cole PJ (1980) Non-invasive sampling of nasal cilia for measurement of beat frequency and study of ultrastructure. Lancet ii, 564–565Google Scholar
  194. Suzuki N (1966) Motor control of the ciliary activity in the frog’s palate. J Faculty Sci, Hokkaido Univ Ser VI, 16: 67–71Google Scholar
  195. Van de Donk HJM, Muller-Platema IP, Zuidema J, Merkus FWHM (1980) The effects of preservatives on the ciliary beat frequency of chicken embryo tracheas. Rhinology 18: 119–133PubMedGoogle Scholar
  196. Verdugo P, Johnson NT, Tam PY (1980) I3-Adrenergic stimulation of respiratory ciliary activity. J Appl Physiol 48: 868–871PubMedGoogle Scholar
  197. Ahmed T, Januskiewicz AJ, Landa JF, Brown A, Chapman GA, Kenny PJ, Finn RD, Bondick J, Sackner MA (1979) Effect of local radioactivity on tracheal mucous velocity of sheep. Am Rev Resp Dis 120: 567–575PubMedGoogle Scholar
  198. Battista SP (1971) Agents affecting mucociliary activity. In: Turner RA, Hebborn P (eds) Screening Methods in Pharmacology, Vol II. Academic Press, New York and London. pp 167–202Google Scholar
  199. Carson S, Goldhamer R, Carpenter R (1966). Mucus transport in the respiratory tract. Am Rev Resp Dis 93: 86–92PubMedGoogle Scholar
  200. Dalhamn T (1956) Mucous flow and ciliary activity in the trachea of healthy rats and rats exposed to respiratory irritant gases (SO2, H,N, HCHO). A functional and morphologic (light microscopic and electron microscopic) study, with special reference to technique. Acta Physiol Scand 36, Suppl 123: 1–161Google Scholar
  201. Deitmer Th (1989) Physiology and pathology of the mucociliary system. Special regards to mucociliary transport in malignant lesions of the human larynx. Karger Basel Chapter 5: Methods of investigation of mucociliary transport. pp 26–34Google Scholar
  202. Chapter 9: Pathophysiology and pharmacology of the mucociliary system. pp 47–54Google Scholar
  203. Friedman M, Stott FD, Poole DO, Dougherty R, Chapman GA, Watson H, Sackner MA (1977) A new roentgenographic method for estimating mucus velocity in airways. Am Rev Respir Dis 115: 67–72PubMedGoogle Scholar
  204. Friedman M, Stott FD, Poole DO, Dougherty R, Chapman GA, Watson H, Sackner MA (1977) A new roentgenographic method for estimating mucus velocity in airways. Am Rev Respir Dis 115: 67–72PubMedGoogle Scholar
  205. Giordano A, Shih, CK, Holsclaw DS, Khan MA, Litt M (1977) Mucus clearance: in vivo canine tracheal vs. in vitro bullfrog palate studies. J Appl Physiol 42: 761–766PubMedGoogle Scholar
  206. Giordano AM, Holsclaw D, Litt M (1978) Mucus rheology and mucociliary clearance: normal physiologic state. Am Rev Resp Dis 118: 245–250PubMedGoogle Scholar
  207. Iravani J (1971) Physiologie and Pathophysiologie der Cilientätigkeit and des Schleimtransports im Tracheobronchialbaum. (Untersuchungen an Ratten). Pneumonologie 144: 93–112PubMedGoogle Scholar
  208. Kensler CJ, Battista SP (1966) Chemical and physical factors affecting mammalian ciliary activity. Am Rev Resp Dis 93: 93–102PubMedGoogle Scholar
  209. Kochmann M (1930) Zur Pharmakologie der Expektorantien. Wirkung auf die Flimmerbewegung. Naunyn-Schmiede berg’s Arch Exp Path Pharmakol 150: 23–38Google Scholar
  210. Leitch GJ, Frid LH, Phoenix D (1985) Effects of ethanol on mucociliary clearance. Alcoholism Clin Exp Res 9: 277–280Google Scholar
  211. Sackner MA, Reinhart M, Arkin B (1977) Effects of beclo-methasone diproprionate on tracheal mucus velocity. Am Arch otorhinolaryngol 242: 225–231Google Scholar
  212. Sadé J, Eliezer N, Silberberg A, Nevo AC (1970) The role of mucus in transport by cilia. Am Rev Respir Dis 102: 48–52PubMedGoogle Scholar
  213. Ukai K, Sakakura Y, Saida S (1985) Interaction between mucociliary transport and the ciliary beat of chicken nasal mucosa. Arch otorhinolaryngol 242: 225–231Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  1. 1.Johann Wolfgang Goethe Universität FrankfurtFrankfurt am MainGermany
  2. 2.Philipps Universität MarburgMarburgGermany
  3. 3.Department of Pharmacology Jefferson Medical CollegeThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations