Advertisement

Renal activity

Chapter
  • 205 Downloads

Abstract

Acetazolamide (Diamox®) was one of the first synthetic non-mercurial diuretics. The mode of action was found to be inhibition of carbonic anhydrase. Carbonic anhydrase is a zinc-containing enzyme that catalyzes the reversible hydration (or hydroxylation) of CO2 to form H2CO3 which dissociates non-enzymatically into HCO3 and H+. At least three isoenzymes, designated as I, II and II or A, B and C, are known to exist. The chemistry, physiology and pharmacology of carbonic anhydrase has been extensively reviewed by Maren (1967). In spite of the fact that newer diuretics are based on other modes of action, the test for inhibition of carbonic anhydrase should be performed for evaluation of a new compound. Moreover, the specific use of carbonic anhydrase inhibitors as antiglaucoma drugs has been described (Friedland and Maren 1984, Caprioli 1985). The mechanism by which carbonic anhydrase inhibitors lower intraocular pressure is through a reduction in aqueous humor formation, by affecting electrolyte and water balance in the nonpigmented ciliary epithelium (Friedland and Maren 1984, Caprioli 1985). Although many methods to measure carbonic anhydrase activity have been developed (Philpot and Philpot 1936), the micro method described by Maren (1960) is relatively simple, sensitive and reliable. The enzyme source are red cells, a rich source of the same isoenzymes found in the eye (Maren 1967, Armstrong et al 1966, Wistrand et al 1986, Wistrand and Knuutila 1980).

Keywords

Uric Acid Carbonic Anhydrase Proximal Tubule Carbonic Anhydrase Inhibition Tubule Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong JMcD, Myers DV, Verpoorte JA, Edsall JT (1966) Purification and properties of human erythrocyte carbonic anhydrase. J Biol Chem 241: 5137–5149PubMedGoogle Scholar
  2. Caprioli J (1985) The pathogenesis and medical management of glaucoma. Drug Dev Res 6: 193–215CrossRefGoogle Scholar
  3. Eveloff J, Swenson ER, Maren TH (1979) Carbonic anhydrase activity of brush border and plasma membranes prepared from rat kidney cortex. Biochem Pharmacol 28: 1434–1437PubMedCrossRefGoogle Scholar
  4. Friedland BR, Maren TH (1984) Carbonic anhydrase: Pharmacology of inhibitors and treatment of glaucoma. In: Pharmacology of the Eye. Handbook Exp Pharmacol 69: 279–309Google Scholar
  5. Maren TH (1960) A simplified micromethod for the determination of carbonic anhydrase and its inhibitors. J Pharmacol Exp Ther 130: 26–29PubMedGoogle Scholar
  6. Maren TH (1967) Carbonic anhydrase: Chemistry, physiology, and inhibition. Physiol Rev 47: 595–781PubMedGoogle Scholar
  7. Philpot FJ, Philpot JSL (1936) A modified colorimetric esti- mation of carbonic anhydrase. Biochem J 30: 2191–2193PubMedGoogle Scholar
  8. Wistrand PJ, Knuuttila K-G (1980) Bovine lens carbonic anhydrases: Purification and properties. Exp Eye Res 30: 277–290Google Scholar
  9. Wistrand PJ, Schenholm M, Lönnerholm G (1986) Carbonic anhydrase isoenzymes CA I and CA II in the human eye. Invest Ophthal Visual Sci 27: 419–428Google Scholar
  10. Burg M, Grantham J, Abromow M, Orloff J (1966) Preparation and study of fragments of single rabbit nephrons. Am. J. Physiol. 210: 1293–1298Google Scholar
  11. Gögelein H, Greger R (1984) Single channel recordings from basolateral and apical membranes of renal proximal tubules. Pflügers Arch. 401: 424–426PubMedCrossRefGoogle Scholar
  12. Gögelein H, Greger R (1986a) Na’ selective channels in the apical membrane of rabbit late proximal tubules (pars recta). Pflügers Arch. 406: 198–203PubMedCrossRefGoogle Scholar
  13. Gögelein H, Greger R (1986b) A voltage-dependent ionic channel in the basolateral membrane of late proximal tubules of the rabbit kidney. Pflügers Arch. 407 (Suppl. 2): S142 - S148PubMedCrossRefGoogle Scholar
  14. Gögelein H, Greger R (1987) Properties of single K’ channels in the basolateral membrane of rabbit proximal straight tubules. Pflügers Arch. 410: 288–295PubMedCrossRefGoogle Scholar
  15. Greger R, Hampel W (1981) A modified system for in vitro perfusion of isolated renal tubules. Pflügers Arch. 389: 175–176PubMedCrossRefGoogle Scholar
  16. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391: 85–100PubMedCrossRefGoogle Scholar
  17. Heidrich HG, Dew M (1977) Homogeneous cell populations from rabbit kidney cortex. Proximal, distal tubule, and renin-active cells isolated by free-flow electrophoresis. J. Cell Biol. 74: 780–788Google Scholar
  18. Hoyer J, Gögelein H (1991) Sodium-alanine cotransport in renal proximal tubule cells investigated by whole-cell current recording. J Gen Physiol 97: 1073–1094PubMedCrossRefGoogle Scholar
  19. Merot J, Bidet M, Gachot B, LeMaout S, Tauc M, Poujeol P (1988) Patch clamp study on primary culture of isolated proximal convoluted tubules. Pflügers Arch. 413: 51–61PubMedCrossRefGoogle Scholar
  20. Neher E, Sakmann B (1976) Single channel currents recorded from membranes of denervated frog muscle fibres. Nature 260: 799–802PubMedCrossRefGoogle Scholar
  21. Burg M, Grantham J, Abramow M, Orloff J (1966) Preparation and study of fragments of single rabbit nephrons. Am J Physiol 210: 1293–1298PubMedGoogle Scholar
  22. Burg M, Stoner L (1976) Renal tubular chloride transport and the mode of action of some diuretics. Ann Rev Physiol 38: 37–45CrossRefGoogle Scholar
  23. Burg MB, Green N (1973) Function of the thick ascending limb of Henle’s loop. Am J Physiol 224: 659–668PubMedGoogle Scholar
  24. Burg MB, Orloff J (1980) Perfusion of isolated renal tubules. In: Anonymous. (ed) Handbook of Physiology. pp 145–159Google Scholar
  25. Dillingham MA, Schrier RW, Greger R (1993) Mechanisms of diuretic action. In: Schrier RW, Gottschalk CW. (eds) Clinical Disorders of Fluid, Electrolytes, and Acid Base. Little Brown and Comp, Boston, pp 2435–2452Google Scholar
  26. Frömter E (1984) Viewing the kidney through microelectrodes. Am J Physiol 247: F695 - F705PubMedGoogle Scholar
  27. Greger R (1981) Cation selectivity of the isolated perfused cortical thick ascending limb of Henle’s loop of rabbit kidney. Pfluegers Arch Eur J Physiol 390: 30–37CrossRefGoogle Scholar
  28. Greger R (1985) Application of electrical measurements in the isolated in vitro perfused tubule. Mol Physiol 8: 11–22Google Scholar
  29. Greger R, Hampel W (1981) A modified system for in vitro perfusion of isolated renal tubules. Pfluegers Arch Eur J Physiol 389: 175–176CrossRefGoogle Scholar
  30. Greger R, Schlatter E (1983) Cellular mechanism of the action of loop diuretics on the thick ascending limb of Henle’s loop. Klin Wochenschr 61: 1019–1027PubMedCrossRefGoogle Scholar
  31. Greger R, Schlatter E (1983) Properties of the lumen membrane of the cortical thick ascending limb of Henle’s loop of rabbit kidney. Pfluegers Arch Eur J Physiol 396: 315–324CrossRefGoogle Scholar
  32. Nitschke R, Fröbe U, Greger R (1991) ADH increases cytosolic Ca2+-activity in isolated perfused rabbit thick ascending limb via a V1 receptor. Pfluegers Arch Eur J Physiol 417: 622–632CrossRefGoogle Scholar
  33. Schafer JA, Troutman SL, Andreoli TE (1974) Volume reabsorption, transepithelial potential differences, and ionic permeability properties in mammalian superficial proximal straight tubules. J Gen Physiol 64: 582–607PubMedCrossRefGoogle Scholar
  34. Schlatter E, Greger R, Weidtke C (1983) Effect of “high ceiling” diuretics on active salt transport in the cortical thick ascending limb of Henle’s loop of rabbit kidney. Correlation of chemical structure and inhibitory potency. Pfluegers Arch Eur J Physiol 396: 210–217Google Scholar
  35. Stoner LC, Burg MB, Orloff J (1974) Ion transport in cortical collecting tubule; effect of amiloride. Am J Physiol 227: 453–459PubMedGoogle Scholar
  36. Ullrich KJ, Greger R (1985) Approaches to the study of tubule transport functions. In: Seldin DW, Giebisch G. (eds) Physiology and Pathophysiology. Raven Press, New York, pp 427–469Google Scholar
  37. Wangemann P, Wittner M, Di Stefano A, Englert HC, Lang HJ, Schlatter E, Greger R (1986) Cl-channel blockers in the thick ascending limb of the loop of Henle. Structure activity relationship. Pfluegers Arch Eur J Physiol 407 (Suppl 2): S128 — S141CrossRefGoogle Scholar
  38. Wittner M, Di Stefano A, Wangemann P, Delarge J, Liegeois JF, Greger R (1987) Analogues of torasemide — structure function relationships. Experiments in the thick ascending limb of the loop of Henle of rabbit nephron. Pfluegers Arch Eur J Physiol 408: 54–62Google Scholar
  39. Wittner M, Di Stefano A, Wangemann P, Nitschke R, Greger R, Bailly C, Amiel C, Roinel N, De Rouffignac C (1988) Differential effects of ADH on sodium, chloride, potassium, calcium and magnesium transport in cortical and medullary thick ascending limbs of mouse nephron, Pfluegers Arch Eur J Physiol 412: 516–523CrossRefGoogle Scholar
  40. Maack T (1980) Physiological evaluation of the isolated perfused rat kidney. Am J Physiol 238: F71 - F78PubMedGoogle Scholar
  41. Nizet AH (1978) Methodology for study of isolated perfused dog kidney in vitro. In: Martinez-Maldonado M (ed.) Methods in Pharmacology, Vol 4B, Renal Pharmacology pp 369–383. Plenum Press, New York and LondonCrossRefGoogle Scholar
  42. Ross BD (1972) Perfusion techniques in biochemistry. 4. Kidney. Clarendon Press, Oxford, pp 228–257Google Scholar
  43. Schurek HJ (1980) Application of the isolated perfused rat kidney in nephrology. In: Stolte H, Alt J (eds) Contributions to Nephrology 19: 176–190. S. Karger, BaselGoogle Scholar
  44. Cummings JR, Haynes JD, Lipchuck LM, Ronsberg MA (1960) A sequential probability ratio method for detecting compounds with diuretic activity in rats. J Pharmacol Exp Ther 128: 414–418PubMedGoogle Scholar
  45. Kau ST, Keddie JR, Andrews D (1984) A method for screening diuretic agents in the rat. J Pharmacol Meth 11: 67–75CrossRefGoogle Scholar
  46. Laycock JF, Chatterji U, Seckl JR, Gartside IB (1994) The abnormal quinine drinking aversion in the Brattleboro rat with diabetes insipidus is reversed by the vasopressin agonist DDAVP: a possible role for vasopressin in the motivation to drink. Physiol Behav 55: 407–412PubMedCrossRefGoogle Scholar
  47. Lipschitz WL, Hadidian Z, Kerpcsar A (1943) Bioassay of diuretics. J Pharmacol Exp Ther 79: 97–110Google Scholar
  48. Muschaweck R, Hajdu P (1964) Die saludiuretische Wirksamkeit der Chlor-N-(2-furylmethyl)-5-sulfamyl-anthranilsäure. Arzneim Forsch 14: 44–47Google Scholar
  49. Muschaweck R, Sturm K (1972) Diuretika. In: Ehrhart G, Ruschig H (eds) Arzneimittel—Entwicklung — Wirkung — Darstellung. Vol 2, pp 317–328. Verlag Chemie, Weinheim Bergstrasse, Germany.Google Scholar
  50. Nyunt-Wai V, Laycock JF (1990) The pressor response to vasopressin is not attenuated by hypertonic NaCI in the anaesthetized Brattleboro rat. J Physiol 430: 35 PGoogle Scholar
  51. Schmale H, Ivell M, Breindl D, Darmer D, Richter D (1984) The mutant vasopressin gene from diabetes insipidus ( Brattleboro) rats is transcribed but the message is not efficiently translated. EMBO J 3: 3289–3293Google Scholar
  52. Schmale H, Richter D (1984) Single base deletion in the vasopressin gene is the cause of diabetes insipidus in Brattleboro rats. Nature 308: 705–709PubMedCrossRefGoogle Scholar
  53. Szot P, Dorsa DM (1992) Cytoplasmatic and nuclear vasopressin RNA in hypothalamic and extrahypothalamic neurons of the Brattleboro rat: An in situ hybridization study. Mol Cell Neurosci 3: 224–236Google Scholar
  54. Valtin H, Sawyer WH, Sokol HW (1965) Neurohypophyseal principles in rats homozygous and heterozygous for hyopthalamic diabetes insipidus (Brattleboro strain) Endocrinology 77: 701–706Google Scholar
  55. Bicking JB, Mason JW, Woltersdorf OW, Jones JH, Kwong SF, Robb CM, Cragoe EJ (1965) Pyrazine diuretics. I. Namidino-3-amino-6-halopyrazinecarboxamides. J Med Chem 8: 638–642CrossRefGoogle Scholar
  56. Kagawa CM, Cella JA, Van Arman CG (1957) Action of new steroids in blocking effects of aldosterone and desoxycorticosterone on salt. Science 126: 1015–1016PubMedCrossRefGoogle Scholar
  57. Muschaweck R, Hajdu P (1964) Die saludiuretische Wirksamkeit der Chlor-N-(2-furylmethyl)-5-sulfamyl-anthranilsäure. Arzneim Forsch/Drug Res 14: 44–47Google Scholar
  58. Muschaweck R, Sturm K (1972) Diuretika. In: Ehrhart G, Buschig H (eds) Arzneimittel — Entwicklung — Wirkung — Darstellung. Vol 2, pp 317–328. Verlag Chemie, Weinheim/Bergstrasse, GermanyGoogle Scholar
  59. Baer JE (1965) Animal techniques for evaluating diuretics. In: Nodin HJ, Siegler PE (eds) Animal and Clinical Pharmacologic Techniques in Drug Evaluation. pp 231–236. Year Book Medical Publ. Inc. ChicagoGoogle Scholar
  60. Muschaweck R, Hajdu P (1964) Die saludiuretische Wirksamkeit der Chlor-N-(2-furylmethyl)-5-sulfamyl-anthranilsäure. Arzneim Forsch/Drug Res 14: 44–47Google Scholar
  61. Muschaweck R, Sturm K (1972) Diuretika. In: Ehrhart G, Buschig H (eds) Arzneimittel — Entwicklung — Wirkung — Darstellung. Vol 2, pp 317–328. Verlag Chemie. Weinheim/Bergstrasse, GermanyGoogle Scholar
  62. Suki W, Rector FC, Seldin DW (1965) The site of action of furosemide and other sulfonamide diuretics in the dog. J Clin Invest 44: 1458–1469PubMedCrossRefGoogle Scholar
  63. Hropot M, Klaus E, Knolle J, König W, Scholz W (1986) Effect of rat atriopeptin III on renal function in dogs during water diuresis and hydropenia. Klin Wochenschr 64 (Suppl VI): 58–63PubMedGoogle Scholar
  64. Hropot M, Klaus E, Seuring B, Lang I-IJ (1985) Effects of diu retics on magnesium excretion. Magnesium Bull 7: 20–24Google Scholar
  65. Russel FGM, Wouterse AC, Hekman P, Grutters GJ, van Ginneken CAM (1987) Quantitative urine collection in renal clearance studies in the dog. J Pharmacol Meth 17: 125–136CrossRefGoogle Scholar
  66. Smith HW, Finkelstein N, Aliminosa L, Crawford B, Graber M (1945) The renal clearances of substituted hippuric acid derivatives and other aromatic acids in dog and man. J Clin Invest 24: 388–393PubMedCrossRefGoogle Scholar
  67. Suki W, Rector FC Jr, Seldin DW (1965) The site of action of furosemide and other sulfonamide diuretics in the dog. J Clin Invest 44: 1458–1469PubMedCrossRefGoogle Scholar
  68. Walser M, Davidson DG, Orloff J (1955) The renal clearance of alkali-stable inulin. J Clin Invest 34: 1520–1523PubMedCrossRefGoogle Scholar
  69. Duarte CG, Chomety F, Giebisch G (1971) Effect of amiloride, ouabain and furosemide on distal tubular function in the rat. Am J Physiol 221: 632–640PubMedGoogle Scholar
  70. Hropot M, Fowler Nicole, Karlmark B, Giebisch G (1985) Tubular action of diuretics: Distal effects on electrolyte transport and acidification. Kidney Int 28: 477–489Google Scholar
  71. Knox FG, Marchand GR (1976) Study of renal action of diuretics by micropuncture techniques. In: Martinez-Maldonado M (ed.) Methods in Pharmacology, Vol 4A, Renal Pharmacology pp 73–98, Plenum Press. New York and LondonGoogle Scholar
  72. Malvin RL, Wilde WS, Sullivan LP (1958) Localisation of nephron transport by stop flow analysis. Am J Physiol 194: 135–142PubMedGoogle Scholar
  73. Muschaweck R, Sturm K (1972) Diuretika. In: Ehrhart G, Buschig H (eds) Arzneimittel — Entwicklung — Wirkung — Darstellung. Vol 2, pp 317–328. Verlag Chemie, Weinheim/Bergstrasse, GermanyGoogle Scholar
  74. Acott PD, Ogborn MR, Crocker JFS (1987) Chronic renal failure in the rat. A surgical model for long-term-toxicological studies. J Pharmacol Meth 18: 81–88Google Scholar
  75. Sancho JJ, Duh Qy, Oms L, Sitges-Serra A, Hammond ME, Arnaud CD, Clark OH (1989) A new experimental model for secondary hyperparathyroidism. Surgery 106: 1002–1008PubMedGoogle Scholar
  76. Heinz F, Reckel S (1983) Xanthine oxidase In: Bergmeyer HU (ed) Methods of Enzymatic Analysis, Vol. III, 3rd edition, p 211–216, Verlag Chemie Weinheim, Deerfield Beach, BaselGoogle Scholar
  77. Baker KM, Hook JB, Williamson HE (1965) Saluretic action of ethacrynic acid in the mouse. J Pharm Sci 54: 1830CrossRefGoogle Scholar
  78. Fanelli GM (1976) Drugs affecting the renal handling of uric acid. In. Martinez-Maldonado M (ed) Methods in Pharmacology Vol 4A: Renal Pharmacology Chapter 9, pp 269–292, PLenum Press, New York and LondonGoogle Scholar
  79. Gutman AB, Yü TF (1961) A three-component system for regulation of renal excretion of uric acid in man. Trans Assoc Am Physicians 74: 353–365PubMedGoogle Scholar
  80. Hill TWK, Randall PJ (1976) A method for screening diuretic agents in the mouse: an investigation of sexual differences. J Pharm Pharmacol 28: 552–554PubMedCrossRefGoogle Scholar
  81. Sim MF, Hoperoft RH (1976) Effect of various diuretic agents in the mouse. J Pharm Pharmacol 28: 609–612PubMedCrossRefGoogle Scholar
  82. Hropot M, Sörgel F, v Kerékjlrrt6 B, Lang HJ, Muschaweck R (1980) Pharmacological effects of 1,3,5-triazines and their excretion characteristics in the rat. In: Rapado A, Watts RWE, De Bruyn CHMM (eds) Purine Metabolism in Man — III A, Plenum Publishing Corp., New York, pp 269–276Google Scholar
  83. Hropot M, Muschaweck R, Klaus E (1984) Uricostatic effect of allopurinol in the allantoxanamide-treated rat: A new approach for evaluation antiuricopathic drugs. In: DeBruyn CHMM, Simmonds HA, Muller MM (eds) Purine Metabolism in Man -IV, Part A, Plenum Publishing Corp., New York, pp 175–178CrossRefGoogle Scholar
  84. Johnson WJ, Chartrand A (1978) Allantoxanamide: a potent new uricase inhibitor in vivo. Life Sci 23: 2239–2244PubMedCrossRefGoogle Scholar
  85. Bonardi G, Vidi A (1973) Action of 4-phenyl-1,2-diphenyl3,5-pyrazolidinedione (DA 2370) on an experimental hyperuricosuria in the rat. Pharm Res Comm 5: 125–129CrossRefGoogle Scholar
  86. Hropot M, Muschaweck R, Klaus E (1984) Uricostatic effect of allopurinol in the allantoxanamide-treated rat: A new approach for evaluation antiuricopathic drugs. In: DeBruyn CHMM, Simmonds HA, Muller MM (eds) Purine Metabolism in Man -IV, Part A, Plenum Publishing Corp., New York, pp 175–178CrossRefGoogle Scholar
  87. Hropot M, Sörgel F, v Kerékjartó B, Lang HJ, Muschaweck R (1980) Pharmacological effects of 1,3,5-triazines and their excretion characteristics in the rat. In: Rapado A, Watts RWE, De Bruyn CHMM (eds) Purine Metabolism in Man–III A, Plenum Publishing Corp., New York, pp 269–276Google Scholar
  88. Johnson WJ, Stavric B, Chartrand A (1969) Uricase inhibition in the rat by s-triazines: an animal model for hyperuricemia and hyperuricosuria. Proc Soc Exp Biol Med 131: 8–12PubMedGoogle Scholar
  89. Kageyama N (1971) A direct colorimetric determination of uric acid in serum and urine with uricase-catalase system. Clin Chim Acta 31: 421–426PubMedCrossRefGoogle Scholar
  90. Musil J (1977) Physiological characteristics of various experimental models for the study of disorders in purine metabolism. In: Müller MM, Kaiser E, Seegmiller JE (eds) Purine Metabolism in Man II — Physiology, Pharmacology and Clinical Aspects. Plenum Publishing Corp., New York, pp 179–188Google Scholar
  91. Stavric B, Clayman S, Gadd REA, Hébert D (1975) Some in vivo effects in the rat induced by chlorprothixene and potassium oxonate. Pharm Res Comm 7: 117–124CrossRefGoogle Scholar
  92. Kreppel E (1959) Der Einfluß einiger Phenylbutazonderivate auf den Phenolrotblutspiegel der Ratte. Med Exp 1: 285–289PubMedGoogle Scholar
  93. Scarborough HC, McKinney GR (1962) Potential uricosuric agents derived from 1,3-diphenyl-barbituric acid. J Med Pharm Chem 5: 175–183PubMedCrossRefGoogle Scholar
  94. Turner RA (1965) Uricosuric agents In: Screening Methods in Pharmacology Chapter 39, pp 262–263, Academic Press, New York and LondonGoogle Scholar
  95. Fanelli GM (1976) Drugs affecting the renal handling of uric acid. In: Martinez-Maldonado M (ed) Methods in Pharmacology, Vol 4A, Renal Pharmacology, Chapter 9, pp 269292Google Scholar
  96. Hropot M, Klaus E, Seuring B, Lang HJ (1985) Effects of diu- retics on magnesium excretion. Magnesium Bull 7: 20–24Google Scholar
  97. Muschaweck R, Hajdu P (1964) Die saludiuretische Wirksamkeit der Chlor-N-(2-furylmethyl)-5-sulfamyl-anthranilsäure. Arzneim Forsch/Drug Res 14: 44–47Google Scholar
  98. Yü TF, Gutman AB, Berger L, Kaung C (1971) Low uricase activity in the Dalmatian dog simulated in mongrels given oxonic acid. Am J Physiol 220: 973–979PubMedGoogle Scholar
  99. Fanelli GM, Bohn D, Stafford Sh (1970) Functional characteristics of renal urate transport in the Cebus monkey. Am J Physiol 218: 627–636PubMedGoogle Scholar
  100. Fanelli GM (1976) Drugs affecting the renal handling of uric acid. In: Martinz-Maldonado M (ed) Methods in Pharmacology, Vol 4A, Renal Pharmacology, Chapter 9, pp 269–292 Hropot M (1988) Unpublished dataGoogle Scholar
  101. Yü TF, Gutman AB, Berger L, Kaung C (1971) Low uricase activity in the Dalmatian dog simulated in mongrels given ozonic acid. Am J Physiol 220: 973–979PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  1. 1.Johann Wolfgang Goethe Universität FrankfurtFrankfurt am MainGermany
  2. 2.Philipps Universität MarburgMarburgGermany
  3. 3.Department of Pharmacology Jefferson Medical CollegeThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations