Skip to main content

Renal activity

  • Chapter

Abstract

Acetazolamide (Diamox®) was one of the first synthetic non-mercurial diuretics. The mode of action was found to be inhibition of carbonic anhydrase. Carbonic anhydrase is a zinc-containing enzyme that catalyzes the reversible hydration (or hydroxylation) of CO2 to form H2CO3 which dissociates non-enzymatically into HCO3 and H+. At least three isoenzymes, designated as I, II and II or A, B and C, are known to exist. The chemistry, physiology and pharmacology of carbonic anhydrase has been extensively reviewed by Maren (1967). In spite of the fact that newer diuretics are based on other modes of action, the test for inhibition of carbonic anhydrase should be performed for evaluation of a new compound. Moreover, the specific use of carbonic anhydrase inhibitors as antiglaucoma drugs has been described (Friedland and Maren 1984, Caprioli 1985). The mechanism by which carbonic anhydrase inhibitors lower intraocular pressure is through a reduction in aqueous humor formation, by affecting electrolyte and water balance in the nonpigmented ciliary epithelium (Friedland and Maren 1984, Caprioli 1985). Although many methods to measure carbonic anhydrase activity have been developed (Philpot and Philpot 1936), the micro method described by Maren (1960) is relatively simple, sensitive and reliable. The enzyme source are red cells, a rich source of the same isoenzymes found in the eye (Maren 1967, Armstrong et al 1966, Wistrand et al 1986, Wistrand and Knuutila 1980).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong JMcD, Myers DV, Verpoorte JA, Edsall JT (1966) Purification and properties of human erythrocyte carbonic anhydrase. J Biol Chem 241: 5137–5149

    PubMed  CAS  Google Scholar 

  • Caprioli J (1985) The pathogenesis and medical management of glaucoma. Drug Dev Res 6: 193–215

    Article  CAS  Google Scholar 

  • Eveloff J, Swenson ER, Maren TH (1979) Carbonic anhydrase activity of brush border and plasma membranes prepared from rat kidney cortex. Biochem Pharmacol 28: 1434–1437

    Article  PubMed  CAS  Google Scholar 

  • Friedland BR, Maren TH (1984) Carbonic anhydrase: Pharmacology of inhibitors and treatment of glaucoma. In: Pharmacology of the Eye. Handbook Exp Pharmacol 69: 279–309

    Google Scholar 

  • Maren TH (1960) A simplified micromethod for the determination of carbonic anhydrase and its inhibitors. J Pharmacol Exp Ther 130: 26–29

    PubMed  CAS  Google Scholar 

  • Maren TH (1967) Carbonic anhydrase: Chemistry, physiology, and inhibition. Physiol Rev 47: 595–781

    PubMed  CAS  Google Scholar 

  • Philpot FJ, Philpot JSL (1936) A modified colorimetric esti- mation of carbonic anhydrase. Biochem J 30: 2191–2193

    PubMed  CAS  Google Scholar 

  • Wistrand PJ, Knuuttila K-G (1980) Bovine lens carbonic anhydrases: Purification and properties. Exp Eye Res 30: 277–290

    Google Scholar 

  • Wistrand PJ, Schenholm M, Lönnerholm G (1986) Carbonic anhydrase isoenzymes CA I and CA II in the human eye. Invest Ophthal Visual Sci 27: 419–428

    CAS  Google Scholar 

  • Burg M, Grantham J, Abromow M, Orloff J (1966) Preparation and study of fragments of single rabbit nephrons. Am. J. Physiol. 210: 1293–1298

    Google Scholar 

  • Gögelein H, Greger R (1984) Single channel recordings from basolateral and apical membranes of renal proximal tubules. Pflügers Arch. 401: 424–426

    Article  PubMed  Google Scholar 

  • Gögelein H, Greger R (1986a) Na’ selective channels in the apical membrane of rabbit late proximal tubules (pars recta). Pflügers Arch. 406: 198–203

    Article  PubMed  Google Scholar 

  • Gögelein H, Greger R (1986b) A voltage-dependent ionic channel in the basolateral membrane of late proximal tubules of the rabbit kidney. Pflügers Arch. 407 (Suppl. 2): S142 - S148

    Article  PubMed  Google Scholar 

  • Gögelein H, Greger R (1987) Properties of single K’ channels in the basolateral membrane of rabbit proximal straight tubules. Pflügers Arch. 410: 288–295

    Article  PubMed  Google Scholar 

  • Greger R, Hampel W (1981) A modified system for in vitro perfusion of isolated renal tubules. Pflügers Arch. 389: 175–176

    Article  PubMed  CAS  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391: 85–100

    Article  PubMed  CAS  Google Scholar 

  • Heidrich HG, Dew M (1977) Homogeneous cell populations from rabbit kidney cortex. Proximal, distal tubule, and renin-active cells isolated by free-flow electrophoresis. J. Cell Biol. 74: 780–788

    Google Scholar 

  • Hoyer J, Gögelein H (1991) Sodium-alanine cotransport in renal proximal tubule cells investigated by whole-cell current recording. J Gen Physiol 97: 1073–1094

    Article  PubMed  CAS  Google Scholar 

  • Merot J, Bidet M, Gachot B, LeMaout S, Tauc M, Poujeol P (1988) Patch clamp study on primary culture of isolated proximal convoluted tubules. Pflügers Arch. 413: 51–61

    Article  PubMed  CAS  Google Scholar 

  • Neher E, Sakmann B (1976) Single channel currents recorded from membranes of denervated frog muscle fibres. Nature 260: 799–802

    Article  PubMed  CAS  Google Scholar 

  • Burg M, Grantham J, Abramow M, Orloff J (1966) Preparation and study of fragments of single rabbit nephrons. Am J Physiol 210: 1293–1298

    PubMed  CAS  Google Scholar 

  • Burg M, Stoner L (1976) Renal tubular chloride transport and the mode of action of some diuretics. Ann Rev Physiol 38: 37–45

    Article  CAS  Google Scholar 

  • Burg MB, Green N (1973) Function of the thick ascending limb of Henle’s loop. Am J Physiol 224: 659–668

    PubMed  CAS  Google Scholar 

  • Burg MB, Orloff J (1980) Perfusion of isolated renal tubules. In: Anonymous. (ed) Handbook of Physiology. pp 145–159

    Google Scholar 

  • Dillingham MA, Schrier RW, Greger R (1993) Mechanisms of diuretic action. In: Schrier RW, Gottschalk CW. (eds) Clinical Disorders of Fluid, Electrolytes, and Acid Base. Little Brown and Comp, Boston, pp 2435–2452

    Google Scholar 

  • Frömter E (1984) Viewing the kidney through microelectrodes. Am J Physiol 247: F695 - F705

    PubMed  Google Scholar 

  • Greger R (1981) Cation selectivity of the isolated perfused cortical thick ascending limb of Henle’s loop of rabbit kidney. Pfluegers Arch Eur J Physiol 390: 30–37

    Article  CAS  Google Scholar 

  • Greger R (1985) Application of electrical measurements in the isolated in vitro perfused tubule. Mol Physiol 8: 11–22

    Google Scholar 

  • Greger R, Hampel W (1981) A modified system for in vitro perfusion of isolated renal tubules. Pfluegers Arch Eur J Physiol 389: 175–176

    Article  CAS  Google Scholar 

  • Greger R, Schlatter E (1983) Cellular mechanism of the action of loop diuretics on the thick ascending limb of Henle’s loop. Klin Wochenschr 61: 1019–1027

    Article  PubMed  CAS  Google Scholar 

  • Greger R, Schlatter E (1983) Properties of the lumen membrane of the cortical thick ascending limb of Henle’s loop of rabbit kidney. Pfluegers Arch Eur J Physiol 396: 315–324

    Article  CAS  Google Scholar 

  • Nitschke R, Fröbe U, Greger R (1991) ADH increases cytosolic Ca2+-activity in isolated perfused rabbit thick ascending limb via a V1 receptor. Pfluegers Arch Eur J Physiol 417: 622–632

    Article  CAS  Google Scholar 

  • Schafer JA, Troutman SL, Andreoli TE (1974) Volume reabsorption, transepithelial potential differences, and ionic permeability properties in mammalian superficial proximal straight tubules. J Gen Physiol 64: 582–607

    Article  PubMed  CAS  Google Scholar 

  • Schlatter E, Greger R, Weidtke C (1983) Effect of “high ceiling” diuretics on active salt transport in the cortical thick ascending limb of Henle’s loop of rabbit kidney. Correlation of chemical structure and inhibitory potency. Pfluegers Arch Eur J Physiol 396: 210–217

    Google Scholar 

  • Stoner LC, Burg MB, Orloff J (1974) Ion transport in cortical collecting tubule; effect of amiloride. Am J Physiol 227: 453–459

    PubMed  CAS  Google Scholar 

  • Ullrich KJ, Greger R (1985) Approaches to the study of tubule transport functions. In: Seldin DW, Giebisch G. (eds) Physiology and Pathophysiology. Raven Press, New York, pp 427–469

    Google Scholar 

  • Wangemann P, Wittner M, Di Stefano A, Englert HC, Lang HJ, Schlatter E, Greger R (1986) Cl-channel blockers in the thick ascending limb of the loop of Henle. Structure activity relationship. Pfluegers Arch Eur J Physiol 407 (Suppl 2): S128 — S141

    Article  CAS  Google Scholar 

  • Wittner M, Di Stefano A, Wangemann P, Delarge J, Liegeois JF, Greger R (1987) Analogues of torasemide — structure function relationships. Experiments in the thick ascending limb of the loop of Henle of rabbit nephron. Pfluegers Arch Eur J Physiol 408: 54–62

    Google Scholar 

  • Wittner M, Di Stefano A, Wangemann P, Nitschke R, Greger R, Bailly C, Amiel C, Roinel N, De Rouffignac C (1988) Differential effects of ADH on sodium, chloride, potassium, calcium and magnesium transport in cortical and medullary thick ascending limbs of mouse nephron, Pfluegers Arch Eur J Physiol 412: 516–523

    Article  CAS  Google Scholar 

  • Maack T (1980) Physiological evaluation of the isolated perfused rat kidney. Am J Physiol 238: F71 - F78

    PubMed  CAS  Google Scholar 

  • Nizet AH (1978) Methodology for study of isolated perfused dog kidney in vitro. In: Martinez-Maldonado M (ed.) Methods in Pharmacology, Vol 4B, Renal Pharmacology pp 369–383. Plenum Press, New York and London

    Chapter  Google Scholar 

  • Ross BD (1972) Perfusion techniques in biochemistry. 4. Kidney. Clarendon Press, Oxford, pp 228–257

    Google Scholar 

  • Schurek HJ (1980) Application of the isolated perfused rat kidney in nephrology. In: Stolte H, Alt J (eds) Contributions to Nephrology 19: 176–190. S. Karger, Basel

    Google Scholar 

  • Cummings JR, Haynes JD, Lipchuck LM, Ronsberg MA (1960) A sequential probability ratio method for detecting compounds with diuretic activity in rats. J Pharmacol Exp Ther 128: 414–418

    PubMed  CAS  Google Scholar 

  • Kau ST, Keddie JR, Andrews D (1984) A method for screening diuretic agents in the rat. J Pharmacol Meth 11: 67–75

    Article  CAS  Google Scholar 

  • Laycock JF, Chatterji U, Seckl JR, Gartside IB (1994) The abnormal quinine drinking aversion in the Brattleboro rat with diabetes insipidus is reversed by the vasopressin agonist DDAVP: a possible role for vasopressin in the motivation to drink. Physiol Behav 55: 407–412

    Article  PubMed  CAS  Google Scholar 

  • Lipschitz WL, Hadidian Z, Kerpcsar A (1943) Bioassay of diuretics. J Pharmacol Exp Ther 79: 97–110

    CAS  Google Scholar 

  • Muschaweck R, Hajdu P (1964) Die saludiuretische Wirksamkeit der Chlor-N-(2-furylmethyl)-5-sulfamyl-anthranilsäure. Arzneim Forsch 14: 44–47

    CAS  Google Scholar 

  • Muschaweck R, Sturm K (1972) Diuretika. In: Ehrhart G, Ruschig H (eds) Arzneimittel—Entwicklung — Wirkung — Darstellung. Vol 2, pp 317–328. Verlag Chemie, Weinheim Bergstrasse, Germany.

    Google Scholar 

  • Nyunt-Wai V, Laycock JF (1990) The pressor response to vasopressin is not attenuated by hypertonic NaCI in the anaesthetized Brattleboro rat. J Physiol 430: 35 P

    Google Scholar 

  • Schmale H, Ivell M, Breindl D, Darmer D, Richter D (1984) The mutant vasopressin gene from diabetes insipidus ( Brattleboro) rats is transcribed but the message is not efficiently translated. EMBO J 3: 3289–3293

    Google Scholar 

  • Schmale H, Richter D (1984) Single base deletion in the vasopressin gene is the cause of diabetes insipidus in Brattleboro rats. Nature 308: 705–709

    Article  PubMed  CAS  Google Scholar 

  • Szot P, Dorsa DM (1992) Cytoplasmatic and nuclear vasopressin RNA in hypothalamic and extrahypothalamic neurons of the Brattleboro rat: An in situ hybridization study. Mol Cell Neurosci 3: 224–236

    Google Scholar 

  • Valtin H, Sawyer WH, Sokol HW (1965) Neurohypophyseal principles in rats homozygous and heterozygous for hyopthalamic diabetes insipidus (Brattleboro strain) Endocrinology 77: 701–706

    CAS  Google Scholar 

  • Bicking JB, Mason JW, Woltersdorf OW, Jones JH, Kwong SF, Robb CM, Cragoe EJ (1965) Pyrazine diuretics. I. Namidino-3-amino-6-halopyrazinecarboxamides. J Med Chem 8: 638–642

    Article  CAS  Google Scholar 

  • Kagawa CM, Cella JA, Van Arman CG (1957) Action of new steroids in blocking effects of aldosterone and desoxycorticosterone on salt. Science 126: 1015–1016

    Article  PubMed  CAS  Google Scholar 

  • Muschaweck R, Hajdu P (1964) Die saludiuretische Wirksamkeit der Chlor-N-(2-furylmethyl)-5-sulfamyl-anthranilsäure. Arzneim Forsch/Drug Res 14: 44–47

    CAS  Google Scholar 

  • Muschaweck R, Sturm K (1972) Diuretika. In: Ehrhart G, Buschig H (eds) Arzneimittel — Entwicklung — Wirkung — Darstellung. Vol 2, pp 317–328. Verlag Chemie, Weinheim/Bergstrasse, Germany

    Google Scholar 

  • Baer JE (1965) Animal techniques for evaluating diuretics. In: Nodin HJ, Siegler PE (eds) Animal and Clinical Pharmacologic Techniques in Drug Evaluation. pp 231–236. Year Book Medical Publ. Inc. Chicago

    Google Scholar 

  • Muschaweck R, Hajdu P (1964) Die saludiuretische Wirksamkeit der Chlor-N-(2-furylmethyl)-5-sulfamyl-anthranilsäure. Arzneim Forsch/Drug Res 14: 44–47

    CAS  Google Scholar 

  • Muschaweck R, Sturm K (1972) Diuretika. In: Ehrhart G, Buschig H (eds) Arzneimittel — Entwicklung — Wirkung — Darstellung. Vol 2, pp 317–328. Verlag Chemie. Weinheim/Bergstrasse, Germany

    Google Scholar 

  • Suki W, Rector FC, Seldin DW (1965) The site of action of furosemide and other sulfonamide diuretics in the dog. J Clin Invest 44: 1458–1469

    Article  PubMed  CAS  Google Scholar 

  • Hropot M, Klaus E, Knolle J, König W, Scholz W (1986) Effect of rat atriopeptin III on renal function in dogs during water diuresis and hydropenia. Klin Wochenschr 64 (Suppl VI): 58–63

    PubMed  CAS  Google Scholar 

  • Hropot M, Klaus E, Seuring B, Lang I-IJ (1985) Effects of diu retics on magnesium excretion. Magnesium Bull 7: 20–24

    CAS  Google Scholar 

  • Russel FGM, Wouterse AC, Hekman P, Grutters GJ, van Ginneken CAM (1987) Quantitative urine collection in renal clearance studies in the dog. J Pharmacol Meth 17: 125–136

    Article  CAS  Google Scholar 

  • Smith HW, Finkelstein N, Aliminosa L, Crawford B, Graber M (1945) The renal clearances of substituted hippuric acid derivatives and other aromatic acids in dog and man. J Clin Invest 24: 388–393

    Article  PubMed  CAS  Google Scholar 

  • Suki W, Rector FC Jr, Seldin DW (1965) The site of action of furosemide and other sulfonamide diuretics in the dog. J Clin Invest 44: 1458–1469

    Article  PubMed  CAS  Google Scholar 

  • Walser M, Davidson DG, Orloff J (1955) The renal clearance of alkali-stable inulin. J Clin Invest 34: 1520–1523

    Article  PubMed  CAS  Google Scholar 

  • Duarte CG, Chomety F, Giebisch G (1971) Effect of amiloride, ouabain and furosemide on distal tubular function in the rat. Am J Physiol 221: 632–640

    PubMed  CAS  Google Scholar 

  • Hropot M, Fowler Nicole, Karlmark B, Giebisch G (1985) Tubular action of diuretics: Distal effects on electrolyte transport and acidification. Kidney Int 28: 477–489

    Google Scholar 

  • Knox FG, Marchand GR (1976) Study of renal action of diuretics by micropuncture techniques. In: Martinez-Maldonado M (ed.) Methods in Pharmacology, Vol 4A, Renal Pharmacology pp 73–98, Plenum Press. New York and London

    Google Scholar 

  • Malvin RL, Wilde WS, Sullivan LP (1958) Localisation of nephron transport by stop flow analysis. Am J Physiol 194: 135–142

    PubMed  CAS  Google Scholar 

  • Muschaweck R, Sturm K (1972) Diuretika. In: Ehrhart G, Buschig H (eds) Arzneimittel — Entwicklung — Wirkung — Darstellung. Vol 2, pp 317–328. Verlag Chemie, Weinheim/Bergstrasse, Germany

    Google Scholar 

  • Acott PD, Ogborn MR, Crocker JFS (1987) Chronic renal failure in the rat. A surgical model for long-term-toxicological studies. J Pharmacol Meth 18: 81–88

    Google Scholar 

  • Sancho JJ, Duh Qy, Oms L, Sitges-Serra A, Hammond ME, Arnaud CD, Clark OH (1989) A new experimental model for secondary hyperparathyroidism. Surgery 106: 1002–1008

    PubMed  CAS  Google Scholar 

  • Heinz F, Reckel S (1983) Xanthine oxidase In: Bergmeyer HU (ed) Methods of Enzymatic Analysis, Vol. III, 3rd edition, p 211–216, Verlag Chemie Weinheim, Deerfield Beach, Basel

    Google Scholar 

  • Baker KM, Hook JB, Williamson HE (1965) Saluretic action of ethacrynic acid in the mouse. J Pharm Sci 54: 1830

    Article  CAS  Google Scholar 

  • Fanelli GM (1976) Drugs affecting the renal handling of uric acid. In. Martinez-Maldonado M (ed) Methods in Pharmacology Vol 4A: Renal Pharmacology Chapter 9, pp 269–292, PLenum Press, New York and London

    Google Scholar 

  • Gutman AB, Yü TF (1961) A three-component system for regulation of renal excretion of uric acid in man. Trans Assoc Am Physicians 74: 353–365

    PubMed  CAS  Google Scholar 

  • Hill TWK, Randall PJ (1976) A method for screening diuretic agents in the mouse: an investigation of sexual differences. J Pharm Pharmacol 28: 552–554

    Article  PubMed  CAS  Google Scholar 

  • Sim MF, Hoperoft RH (1976) Effect of various diuretic agents in the mouse. J Pharm Pharmacol 28: 609–612

    Article  PubMed  CAS  Google Scholar 

  • Hropot M, Sörgel F, v Kerékjlrrt6 B, Lang HJ, Muschaweck R (1980) Pharmacological effects of 1,3,5-triazines and their excretion characteristics in the rat. In: Rapado A, Watts RWE, De Bruyn CHMM (eds) Purine Metabolism in Man — III A, Plenum Publishing Corp., New York, pp 269–276

    Google Scholar 

  • Hropot M, Muschaweck R, Klaus E (1984) Uricostatic effect of allopurinol in the allantoxanamide-treated rat: A new approach for evaluation antiuricopathic drugs. In: DeBruyn CHMM, Simmonds HA, Muller MM (eds) Purine Metabolism in Man -IV, Part A, Plenum Publishing Corp., New York, pp 175–178

    Chapter  Google Scholar 

  • Johnson WJ, Chartrand A (1978) Allantoxanamide: a potent new uricase inhibitor in vivo. Life Sci 23: 2239–2244

    Article  PubMed  CAS  Google Scholar 

  • Bonardi G, Vidi A (1973) Action of 4-phenyl-1,2-diphenyl3,5-pyrazolidinedione (DA 2370) on an experimental hyperuricosuria in the rat. Pharm Res Comm 5: 125–129

    Article  CAS  Google Scholar 

  • Hropot M, Muschaweck R, Klaus E (1984) Uricostatic effect of allopurinol in the allantoxanamide-treated rat: A new approach for evaluation antiuricopathic drugs. In: DeBruyn CHMM, Simmonds HA, Muller MM (eds) Purine Metabolism in Man -IV, Part A, Plenum Publishing Corp., New York, pp 175–178

    Chapter  Google Scholar 

  • Hropot M, Sörgel F, v Kerékjartó B, Lang HJ, Muschaweck R (1980) Pharmacological effects of 1,3,5-triazines and their excretion characteristics in the rat. In: Rapado A, Watts RWE, De Bruyn CHMM (eds) Purine Metabolism in Man–III A, Plenum Publishing Corp., New York, pp 269–276

    Google Scholar 

  • Johnson WJ, Stavric B, Chartrand A (1969) Uricase inhibition in the rat by s-triazines: an animal model for hyperuricemia and hyperuricosuria. Proc Soc Exp Biol Med 131: 8–12

    PubMed  CAS  Google Scholar 

  • Kageyama N (1971) A direct colorimetric determination of uric acid in serum and urine with uricase-catalase system. Clin Chim Acta 31: 421–426

    Article  PubMed  CAS  Google Scholar 

  • Musil J (1977) Physiological characteristics of various experimental models for the study of disorders in purine metabolism. In: Müller MM, Kaiser E, Seegmiller JE (eds) Purine Metabolism in Man II — Physiology, Pharmacology and Clinical Aspects. Plenum Publishing Corp., New York, pp 179–188

    Google Scholar 

  • Stavric B, Clayman S, Gadd REA, Hébert D (1975) Some in vivo effects in the rat induced by chlorprothixene and potassium oxonate. Pharm Res Comm 7: 117–124

    Article  CAS  Google Scholar 

  • Kreppel E (1959) Der Einfluß einiger Phenylbutazonderivate auf den Phenolrotblutspiegel der Ratte. Med Exp 1: 285–289

    PubMed  CAS  Google Scholar 

  • Scarborough HC, McKinney GR (1962) Potential uricosuric agents derived from 1,3-diphenyl-barbituric acid. J Med Pharm Chem 5: 175–183

    Article  PubMed  CAS  Google Scholar 

  • Turner RA (1965) Uricosuric agents In: Screening Methods in Pharmacology Chapter 39, pp 262–263, Academic Press, New York and London

    Google Scholar 

  • Fanelli GM (1976) Drugs affecting the renal handling of uric acid. In: Martinez-Maldonado M (ed) Methods in Pharmacology, Vol 4A, Renal Pharmacology, Chapter 9, pp 269292

    Google Scholar 

  • Hropot M, Klaus E, Seuring B, Lang HJ (1985) Effects of diu- retics on magnesium excretion. Magnesium Bull 7: 20–24

    CAS  Google Scholar 

  • Muschaweck R, Hajdu P (1964) Die saludiuretische Wirksamkeit der Chlor-N-(2-furylmethyl)-5-sulfamyl-anthranilsäure. Arzneim Forsch/Drug Res 14: 44–47

    CAS  Google Scholar 

  • Yü TF, Gutman AB, Berger L, Kaung C (1971) Low uricase activity in the Dalmatian dog simulated in mongrels given oxonic acid. Am J Physiol 220: 973–979

    PubMed  Google Scholar 

  • Fanelli GM, Bohn D, Stafford Sh (1970) Functional characteristics of renal urate transport in the Cebus monkey. Am J Physiol 218: 627–636

    PubMed  CAS  Google Scholar 

  • Fanelli GM (1976) Drugs affecting the renal handling of uric acid. In: Martinz-Maldonado M (ed) Methods in Pharmacology, Vol 4A, Renal Pharmacology, Chapter 9, pp 269–292 Hropot M (1988) Unpublished data

    Google Scholar 

  • Yü TF, Gutman AB, Berger L, Kaung C (1971) Low uricase activity in the Dalmatian dog simulated in mongrels given ozonic acid. Am J Physiol 220: 973–979

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vogel, H.G., Vogel, W.H. (1997). Renal activity. In: Vogel, H.G., Vogel, W.H. (eds) Drug Discovery and Evaluation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03333-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03333-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03335-7

  • Online ISBN: 978-3-662-03333-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics