Activity on blood constituents



Platelet aggregation is induced in platelet rich plasma (PRP) by the addition of aggregating agents such as ADP, arachidonic acid, collagen, thrombin or PAF with stirring. The formation of platelet aggregates leads to changes in optical density which are monitored photometrically. The test is used to evaluate quantitatively the effect of test compounds on induced platelet aggregation in vitro or ex vivo.


Platelet Aggregation Test Compound Dosage Group Platelet Rich Plasma Activate Partial Thromboplastin Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ammit AJ, O’Neill C (1991) Rapid and selective measurement of platelet-activating factor using a quantitative bioassay of platelet aggregation. J Pharmacol Meth 26: 7–21CrossRefGoogle Scholar
  2. Billah MN, Chapman RW, Egan RW, Gilchrest H, Piwinski JJ, Sherwood J, Siegel MI, West RE Jr, Kreutner W (1990) Sch 37370: a potent, orally active, dual antagonist of platelet activating factor and histamine. J Pharmacol Exp Ther 252: 1090–1096PubMedGoogle Scholar
  3. Born GVR (1962) Quantitative investigations into the aggregation of blood platelets. J Physiol (London) 162: 67P - 68 PGoogle Scholar
  4. Born GVR (1962). Aggregation of blood platelets by adeno- sine diphosphate and its reversal. Nature 194: 927–929PubMedCrossRefGoogle Scholar
  5. Born GVR (1985) Adenosine diphosphate as a mediator of platelet aggregation in vivo: an editorial view. Circulation 72: 741–746PubMedCrossRefGoogle Scholar
  6. Born GVR, Cross MJ (1963) The aggregation of blood platelets. J Physiol 163: 168–195Google Scholar
  7. Breddin K (1968) Klinische und experimentelle Untersuchungen über die Thrombocyten-aggregation bei Gefäßerkrankungen. Dtsch Med Wschr 93: 1555–1565PubMedCrossRefGoogle Scholar
  8. Breddin K, Grun H, Krzywanek HJ, Schremmer WP (1975). Zur Messung der “spontanen” Thrombocytenaggregation. Plättchenaggregationstest III. Methodik. Klin. Wschr. 53: 81–89Google Scholar
  9. Fears F (1990) Biochemical pharmacology and therapeutic as- pects of thrombolytic agents. Pharmacol Rev 42: 201–222PubMedGoogle Scholar
  10. Gerzer R, Karrenbrock B, Siess W, Heim JM (1988) Direct comparison of the effects of nitroprusside, SIN 1, and various nitrates on platelet aggregation and soluble guanylate cyclase activity. Thromb Res 52: 11–21PubMedCrossRefGoogle Scholar
  11. Handley DA (1990) Preclinical and clinical pharmacology of platelet-activating factor receptor antagonists. Med Res Rev 10: 351–370PubMedCrossRefGoogle Scholar
  12. Klose HJ, Rieger H, Schmid-Schönbein H (1975) A rheological method for the quantification of platelet aggregation ( PA) in vitro and its kinetics under defined flow conditions. Thrombosis Res 7: 261–272Google Scholar
  13. Nunez D, Chignard M, Korth R, Le Cuedic JP, Norel X, Spinnewyn B, Braquet P, Benveniste J (1986) Specific inhibition of PAF-acether-induced platelet activation by BN 52021 and comparison with the PAF-acether inhibitors kadsurenone and CV 3988. Eur J Pharmacol 123: 197–205PubMedCrossRefGoogle Scholar
  14. Marguerie GA, Edgington TS, Plow EF (1980). Interaction of fibrinogen with its platelet receptor as part of a multistep reaction in ADP-induced platelet aggregation. J Biol Chem 255: 154–161PubMedGoogle Scholar
  15. Marguerie GA, Plow EF, Edgington TS (1979). Human platelets possess an inducible and saturable receptor specific for fibrinogen. J Biol Chem 254: 5357–5363PubMedGoogle Scholar
  16. Markell MS, Fernandez J, Naik UP, Ehrlich Y, Kornecki E (1993) Effects of cyclosporine-A and cyclosporine-G on ADP-stimulated aggregation of human platelets. Ann NY Acad Sci 969: 404–407.Google Scholar
  17. Cardinal DC, Flower RI (1980) The electronic aggregometer: a novel device for assessing platelet behavior in blood. J Pharmacol Meth 3: 135–158CrossRefGoogle Scholar
  18. Lumley P, Humphrey PPA (1981). A method for quantitating platelet aggregation and analyzing drug-receptor interactions on platelets in whole blood in vitro. J Pharmacol Meth 6: 153–166CrossRefGoogle Scholar
  19. Bennett JS, Vilaire G. (1979) Exposure of platelet fibrinogen receptors by ADP and epinephrine. J Clin Invest 64: 1393–1401PubMedCrossRefGoogle Scholar
  20. Kornecki E, Niewiarowski S, Morinelli TA, Kloczewiak M (1981) Effects of chymotrypsin and adenosine diphosphate on the exposure of fibrinogen receptors on normal human and Glanzmann’s thrombasthenic platelets. J Biol Chem 256: 5696–5701PubMedGoogle Scholar
  21. Marguerie GA, Edgington TS, Plow EF (1980). Interaction of fibrinogen with its platelet receptor as part of a multistep reaction in ADP-induced platelet aggregation. J Biol Chem 255: 154–161PubMedGoogle Scholar
  22. Marguerie GA, Plow EF, Edgington TS (1979). Human platelets possess an inducible and saturable receptor specific for fibrinogen. J Biol Chem 254: 5357–5363PubMedGoogle Scholar
  23. Mendelsohn ME, O’Neill S, George D, Loscalzo J (1990) Inhibition of fibrinogen binding to human platelets by Snitroso-N-acetylcysteine. J Biol Chem 265: 19028–19034PubMedGoogle Scholar
  24. Hartert H (1948) Blutgerinnungsstudien mit der Thrombelastographie, einem neuen Untersuchungsverfahren. Klin Wschr 26: 577–583PubMedCrossRefGoogle Scholar
  25. Teitel P (1977) Basic principles of the `Filterability test’ (FT) and analysis of erythrocyte flow behavior. Blood Cells 3: 55–70Google Scholar
  26. Kiesewetter H, Dauer M, Teitel P, Schmid-Schoenbein H, Trapp R (1982) The single erythrocyte rigidometer ( SER) as a reference for RBC deformability. Biorheology 19: 737–753Google Scholar
  27. Roggenkamp HG, Jung F, Kiesewetter H (1983) Ein Gerät zur elektrischen Messung der Verformbarkeit von Erythrocyten. A device for the electrical measurement of the deform-ability of red blood cells. Biomed. Techn. 28: 100–104Google Scholar
  28. Seiffge D, Behr S (1986) Passage time of red blood cells in the SER; their distribution and influences of various extrinsic and intrinsic factors. Clin Hemorheol 6: 151–164Google Scholar
  29. Kiesewetter H, Radtke H, Schneider R, Mußler K, Scheffler A, Schmid-Schönbein H (1982) Das Mini-ErythrozytenAggregometer: Ein neues Gerät zur schnellen Quantifizierung des Ausmaßes der Erythrocytenaggregation. Mini Erythrocyte Aggregometer: A new apparatus for rapid quantification of the extent of erythrocyte aggregation. Biomed Tech 27: 209–213Google Scholar
  30. Schmid-Schoenbein H, v.Gosen J, Heinich L, Klose HJ, Volger E (1973) A counter-rotating “Rheoscope chamber” for the study of the microrheology of blood cell aggregation by microscopic observation and microphotometry. Microvasc Res 6: 366–376Google Scholar
  31. Harkness J (1971) The viscosity of human blood plasma; its measurement in health and disease. Biorheology 8: 171–179PubMedGoogle Scholar
  32. Oyekan AO, Botting JH (1986) A minimally invasive technique for the study of intravascular platelet aggregation in anesthetized rats. J Pharmacol Meth 15: 271–277CrossRefGoogle Scholar
  33. Page CP, Paul W, Morley J (1982) An in vivo model for studying platelet aggregation and disaggregation. Thromb Haemostas 47: 210–213Google Scholar
  34. Smith D, Sanjar S, Herd C, Morley J (1989) In vivo method for the assessment of platelet accumulation. J Pharmacol Meth 21: 45–59CrossRefGoogle Scholar
  35. Griffett EM, Kinnon SM, Kumar A, Lecker D, Smith GM, Tomich LEG (1981). Effects of 6-[p-(4-phenylacetylpiperazin-l-yl)phenyll-4,5-dihydro-3(2H)pyridazinone (CCI 17810) and aspirin on platelet aggregation and adhesiveness. Br J Pharmacol 72: 697–705PubMedCrossRefGoogle Scholar
  36. Völkl K-P, Dierichs R (1986). Effect of intravenously injected collagenase on the concentration of circulating platelets in rats. Thromb. Res. 42: 11–20Google Scholar
  37. Arfors KE, Dhall DP, Engeset J, Hint H, Matheson NA, Tangen 0 (1968) Biolaser endothelial trauma as a means of quantifying platelet activity in vivo. Nature 218: 887–888Google Scholar
  38. Herrmann KS (1983) Platelet aggregation induced in the hamster cheek pouch by a photochemical process with excited fluorescein-isothiocyanate-dextran. Microvasc Res 26: 238249Google Scholar
  39. Just M, Tripier D, Seiffge D (1991) Antithrombotic effects of recombinant hirudin in different animal models. Haemostasis 21 (suppl 1): 80–87PubMedGoogle Scholar
  40. Seiffge D, Kremer E (1984) Antithrombotic effects of pentoxifylline on laser-induced thrombi in rat mesenteric arteries. IRCS Med Sci 12: 91–92Google Scholar
  41. Seiffge D, Kremer E (1986) Influence of ADP, blood flow velocity, and vessel diameter on the laser-induced thrombus. Thromb Res 42: 331–341PubMedCrossRefGoogle Scholar
  42. Seiffge D, Weithmann U (1987) Surprising effects of the sequential administration of pentoxifylline and low dose acetylsalicylic acid on thrombus formation. Thromb Res 46: 371–383PubMedCrossRefGoogle Scholar
  43. Weichert W, Pauliks V, Breddin HK (1983) Laser-induced thrombi in rat mesenteric vessels and antithrombotic drugs. Haemostasis 13: 61–71PubMedGoogle Scholar
  44. Just M, Schönafinger K (1991) Antithrombotic properties of a novel sydnonimine derivative. J Cardiovasc Pharmacol 17 (suppl 3): S121 - S126CrossRefGoogle Scholar
  45. Kumada T, Ishihara M, Ogawa H, Abiko Y (1980). Experimental model of venous thrombosis in rats and effect of some agents. Thrombosis Res. 18: 189–203CrossRefGoogle Scholar
  46. Lowry OH, Rosebrough NJ, Fan AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275PubMedGoogle Scholar
  47. Badylak SF, Poehlmann E, Williams C, Klabunde RE, Turek J, Schoenlein W (1988) Simple canine model of arterial thrombosis with endothelial injury suitable for investigation of thrombolytic agents. J Pharmacol Meth 19: 293–304CrossRefGoogle Scholar
  48. Granzer E (1986) Personal communicationGoogle Scholar
  49. Gryglewski RI, Korbut R, Ocetkiewicz A, Stachura J (1978) In vivo method for quantitation of anti-platelet potency of drugs. Naunyn-Schmiedeberg’s Arch Pharmacol 302: 25–30PubMedCrossRefGoogle Scholar
  50. Harbauer G, Hiller W, Hellstem P (1984). Ein experimentelles Modell der venösen Thrombose am Kaninchen; Überprüfung seiner Brauchbarkeit mit Low Dose Heparin. An experimental model of venous thrombosis in the rabbit; test of its usefulness with low-dose heparin. In: Koslowski L (ed.). Chirurgisches Forum ‘84 für experimentelle und klinische Forschung. Springer Verlag, Berlin, Heidelberg, New York, Tokyo. pp 69–72Google Scholar
  51. Just M (1986). Pharmakologische Beeinflussung einer experimentellen Thrombose beim Kaninchen. Influence of various agents on experimental thrombosis in the rabbit. In: Wenzel E, Hellstem P, Morgenstern E, Köhler M, von Blohn G (eds) Rationelle Therapie und Diagnose von hämorrhagischen und thrombophilen Diathesen. Schattauer Verlag, Stuttgart - New York, pp 4.95–4. 98Google Scholar
  52. Just M, Tripier D, Seiffge D (1991) Antithrombotic effects of recombinant hirudin in different animal models. Haemostasis 21 (suppl 1): 80–87PubMedGoogle Scholar
  53. Meng K (1975) Tierexperimentelle Untersuchungen zur antithrombotischen Wirkung von Acetylsalicylsäure. Therap Ber 47: 69. 79Google Scholar
  54. Meng K (1976) Tierexperimentelle Thrombose und Behand- lung mit Acetylsalicylsäure. Med Welt 27: 1359–1362PubMedGoogle Scholar
  55. Meng K, Seuter F (1977) Effect of acetylsalicylic acid on experimentally induced arterial thrombosis in rats. NaunynSchmiedeberg’s Arch Pharmacol 301: 115–119CrossRefGoogle Scholar
  56. Rote WE, Davis JH, Mousa SA, Reilly TM,. Lucchesi BR (1994) Antithrombotic effects of DMP 728, a platelet GPIIb/IIIa receptor antagonist, in a canine model of arterial thrombosis. J Cardiovasc Pharmacol 23: 681–689Google Scholar
  57. Rote WE, Mu DX, Roncinske RA, Freilinger III AL, Lucchesi BR (1993) Prevention of experimental carotid artery thrombosis by Applagin. J Pharm Exp Ther 267: 809–814Google Scholar
  58. Seuter F, Busse WD, Meng K, Hoffmeister F, Möller E, Horstmann H (1979) The antithrombotic activity of BAY g 6575. Arzneim Forsch/Drug Res 29: 54–59Google Scholar
  59. Butler KD, Maguire ED, Smith JR, Turnbull AA, Wallis RB, White AM (1982) Prolongation of rat tail bleeding time caused by oral doses of a thromboxane synthetase inhibitor which have little effect on platelet aggregation. Thromb Haemostasis 47: 46–49Google Scholar
  60. Dejana E, Callioni A, Quintana A, de Gaetano G (1979) Bleeding time in laboratory animals. II - A comparison of different assay conditions in rats. Thromb Res 15: 191–197Google Scholar
  61. Zawilska KM, Born GVR, Begent NA (1982). Effect of ADP-utilizing enzymes on the arterial bleeding time in rats and rabbits. Br J Haematol 50: 317–325PubMedCrossRefGoogle Scholar
  62. Palmer RL (1984). Laboratory diagnosis of bleeding disorders: Basic screening tests. Postgrad. Med 76: 137–148PubMedGoogle Scholar
  63. Gallimore MJ, Tyler HM, Shaw JTB (1971) The measurement of fibrinolysis in the rat. Thromb Diath Haem 26: 295–310Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  1. 1.Johann Wolfgang Goethe Universität FrankfurtFrankfurt am MainGermany
  2. 2.Philipps Universität MarburgMarburgGermany
  3. 3.Department of Pharmacology Jefferson Medical CollegeThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations