Anti-atherosclerotic activity

  • H. Gerhard Vogel
  • Wolfgang H. Vogel

Abstract

Experimental atherosclerosis was first successfully induced in rabbits by Saltykow (1908) and Ignatowski (1909). During the following years, various scientists found that dietary cholesterol was the responsible stimulus for development of atherosclerosis. Other species are also susceptible to diet-induced atherosclerosis (Reviews by Kritchevsky 1964, Hadjiinky et al 1991). A unifying hypothesis of the pathogenesis of atherosclerosis has been proposed by Schwartz et al (1991).

Keywords

NADPH Fructose Gelatin Ileal Lactone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hadjiinky P Bourdillon MC, Grosgogeat Y (1991) Modèles expérimentaux d’athérosclérose. Apports, limites et perspectives. Arch Mal Ceut Vaiss 84: 1593–1603Google Scholar
  2. Ignatowski A (1909) Über die Wirkung des tierischen Eiweißes auf die Aorta und die parenchymatösen Organe der Kaninchen. Virchow’s Arch pathol Anat Physiol 198: 248–270CrossRefGoogle Scholar
  3. Kritchevsky D (1964) Experimental Atherosclerosis. In Paoletti R (ed) Lipid Pharmacology, Academic Press, New York, London, Chapert 2, pp 6–130CrossRefGoogle Scholar
  4. Saltykow S (1908) Die experimentell erzeugten Arterienveränderungen in ihrer Beziehung zu Atherosklerose und verwandten Krankheiten des Menschen. Zentralbl Allgem Pathol Pathol Anat 19: 321–368Google Scholar
  5. Schwartz CJ, Valente Ai, Sprague EA, Kelley JL, Nerem RM (1991) The pathogenesis of atherosclerosis: an overview. Clin Cardiol 14: 1–16CrossRefGoogle Scholar
  6. Baxter A, Fitzgerald BJ, Hutson JL, McCarthy AD, Motteram JM, Ross BC, Sapra M, Snowden MA, Watson NS, Williams RJ, Wright C (1992) Squalestatin 1, a potent inhibitor of squalene synthase, which lowers cholesterol in vivo. J Biol Chem 267: 11705–11708PubMedGoogle Scholar
  7. Beere PA, Glagov S, Zarins ChK (1992) Experimental atherosclerosis at the carotid bifurcation of the cynomolgus monkey. Arterioscl Thrombos 12: 1245–1253CrossRefGoogle Scholar
  8. Beitz J, Mest HJ (1991) A new derivative of tradipil (AR 12456) as a potentially new antiatherosclerotic drug. Cardiovasc Drug Rev 9: 385–397CrossRefGoogle Scholar
  9. Blaton V, Peeters H (1976) The nonhuman primates as models for studying atherosclerosis: Studies on the chimpanzee, the baboon and the rhesus macacus. In: Day CE (ed) Atherosclerosis Drug Discovery, Plenum Press, New York and London, pp 33–64Google Scholar
  10. Bretherton KN, Day AJ, Skinner SL (1977) Hypertension-accelerated atherogenesis in cholesterol-fed rabbits. Atherosclerosis 27: 79–87PubMedCrossRefGoogle Scholar
  11. Caldwell CT, Suydam DE (1959) Quantitative study of estrogen-induced atherosclerosis in cockerels. Proc Soc Exp Biol Med. 101: 299–302PubMedGoogle Scholar
  12. Chapman KP, Stafford WW, Day CE (1976) Produced by selective breeding of Japanese quail animal model for experimental atherosclerosis. In: Day CE (ed) Atherosclerosis Drug Discovery, Plenum Press, New York and London, pp 347–356Google Scholar
  13. Clarkson TB; Lofland HB (1961) Therapeutic studies on spontaneous arteriosclerosis in pigeons. In: Garattini S, Paoletti R (eds) Drugs affecting lipid metabolism. Elsevier Publ Comp., Amsterdam, pp 314–317Google Scholar
  14. Crook D, Weisgraber KH, Rall SC Jr, Mahley RW (1990) Isolation and characterization of several plasma apolipoproteins of common marmoset monkey. Arteriosclerosis 10: 625–632PubMedCrossRefGoogle Scholar
  15. Day CE, Phillips WA, Schurr PE (1979) Animal models for an integrated approach to the pharmacologic control of atherosclerosis. Artery 5: 90–109PubMedGoogle Scholar
  16. Day CE, Stafford WW (1975) New animal model for atherosclerosis research. In: Kritchevsky D, Paoletti R, Holmes WL (eds) Lipids, Lipoproteins, and Drugs. Plenum Press, New York, pp 339–347CrossRefGoogle Scholar
  17. Day CE, Stafford WW, Schurr PE (1977) Utility of a selected line (SEA) of the Japanese quail ( Coturnix coturnix japonica) for the discovery of new anti-atherosclerosis drugs. Lab Anim Sci 27: 817–821Google Scholar
  18. Day ChE (1990) Comparison of hypocholesterolemic activities of the bile acid sequestrants cholestyramine and cholestipol hydrochloride in cholesterol fed sea quail. Artery 17: 281–288PubMedGoogle Scholar
  19. Eggen DA, Bhattacharyya AK, Strong JP, Newman III WP, Guzman MA, Restrepo C (1991) Use of serum lipid and apolipoprotein concentrations to predict extent of diet-induced atherosclerotic lesions in aortas and coronary arteries and to demonstrate regression of lesions in individual Rhesus monkeys. Arterioscl Thrombos 11: 467–475CrossRefGoogle Scholar
  20. Fillios LC, Andrus StB, Mann GV, Stare FJ (1956) Experimental production of gross atherosclerosis in the rat. J Exper Med 104: 539–552CrossRefGoogle Scholar
  21. Fukushima H, Nakatani H (1969) Cholesterol-lowering effects of DL-N-(a-methylbenzyl)-linoleamide and its optically active isomers in cholesterol-fed animals J Atheroscler Res 9: 65–71Google Scholar
  22. Henry PD, Bentley KI (1981) Suppression of atherogenesis in cholesterol-fed rabbit treated with nifedipine. J Clin Invest 68: 1366–1369PubMedCrossRefGoogle Scholar
  23. Hollander W, Prusty S, Nagraj S, Kirkpatrick B, Paddock J, Colombo M (1978) Comparative effects of cetaben (PHB) and dichlormethylene diphosphonate (C12MDP) on the development of atherosclerosis in the cynomolgus monkey. Atherosclerosis 31: 307–325PubMedCrossRefGoogle Scholar
  24. Howard AN (1976) The baboon in atherosclerosis research: Comparison with other species and use in testing drugs affecting lipid metabolism. In: Day CE (ed) Atherosclerosis Drug Discovery, Plenum Press, New York and London, pp 77–87Google Scholar
  25. Inoue Y, Goto H, Horinuki R, Kimura Y, Toda T (1990) Experimental atherosclerosis in the rat carotid artery induced by balloon de-endothelialization and hyperlipemia. A histological and biochemical study. J Jpn Atheroscler Soc 18: 1147–1154Google Scholar
  26. Kritchevsky D (1964) Animal techniques for evaluating hypocholesteremic drugs. In: Nodine JH, Siegler PE (eds) Animal and Clinical Pharmacologic Techniques in Drug Evaluation. Year Book Medical Publishers, Inc., Chicago, pp 193–198Google Scholar
  27. Kritchevsky D, Tepper SA, Davidson LM, Fisher EA, Klurfeld DM (1989) Experimental atherosclerosis in rabbits fed cholesterol-free diets. 13. Interactions of protein and fat. Atherosclerosis 75: 123–127Google Scholar
  28. Kushwaha RS, Lewis DS, Dee Carey K, McGill Jr HC (1991) Effects of estrogen and progesterone on plasma lipoproteins and experimental atherosclerosis in the baboon (Papio sp.) Arterioscl Thrombos 11: 23–31Google Scholar
  29. Lustalot P, Schuler W, Albrecht W (1961) Comparison of drug actions in a spectrum of experimental anti-atherosclerotic test systems. In: Garattini S, Paoletti R (eds) Drugs affecting lipid metabolism. Elsevier Publ Comp., Amsterdam, pp 271–276Google Scholar
  30. Malinow MR, McLaughlin P, Papworth L, Naito HK, Lewis L, McNulty WP (1976) A model for therapeutic intervention on established coronary atherosclerosis in a nonhuman primate. In: Day CE (ed) Atherosclerosis Drug Discovery, Plenum Press, New York and London, pp 3–31Google Scholar
  31. Ming-Peng S, Ren-Yi X, Bi-Fang R, Zong-Li W (1990) High density lipoproteins and prevention of experimental atherosclerosis with special reference to tree shrews. Ann New Acad Sci 598: 339–351CrossRefGoogle Scholar
  32. Moss JN, Dajani EZ (1971) Antihyperlipidemic agents. In: Turner RA, Hebborn P (eds) Screening Methods in Pharmacology. Vol. II, Academic Press, New York and London, pp 121–143Google Scholar
  33. O’Meara NMG, Devery RAM, Owens D, Collins PB, Johnson AH, Tomkin GH (1991) Serum lipoproteins and cholesterol metabolism in two hypercholesterolaemic rabbit models. Diabetologia 34: 139–143PubMedCrossRefGoogle Scholar
  34. Riezebos J, Vleeming W, Beems RB, van Amsterdam JGC, Meijer GW, de Wildt DJ, Porsius AJ, Werner J (1994) Comparison of Israpidine and Ramipril in cholesterol-fed rabbits: effect on progression of atherosclerosis and endothelial dysfunction. J Cardiovasc Pharmacol 23: 415–423PubMedGoogle Scholar
  35. Roberts A, Thompson JS (1976) Inbred mice and their hybrids as an animal model for atherosclerosis research. In: Day CE (ed) Atherosclerosis Drug Discovery, Plenum Press, New York and London, pp 313–327Google Scholar
  36. Scholz W, Albus U, Hropot M, KLaus E, Linz W, Schölkens BA (1990) Zunahme des Na’/H’-Austausches an Kaninchenerythrozyzen unter atherogener Diät. In: Assmann G, Betz E, Heinle H. Schulte H (eds) Arteriosklerose. Neue Aspekte aus Zellbiologie und Molekulargenetik, Epidemiologie und Klinik. Tagung der Deutschen Gesellschaft für Arteriosklerose-Forschung. pp 296–302Google Scholar
  37. Shore B, Shore V (1976) Rabbits as a model for the study of hyperlipoproteinemia and atherosclerosis. In: Day CE (ed) Atherosclerosis Drug Discovery, Plenum Press, New York and London, pp 123–141Google Scholar
  38. Simpson CF, Harms RH (1969) Aortic atherosclerosis of turkeys induced by feeding of cholesterol. J Atheroscler Res 10: 63–75PubMedCrossRefGoogle Scholar
  39. Soret MG, Blanks MC, Gerritsen GC, Day CE, Block EM (1976) Diet-induced hypercholesterinemia in the diabetic and non-diabetic Chinese hamster. In: Day CE (ed) Atherosclerosis Drug Discovery, Plenum Press, New York and London, pp 329–343Google Scholar
  40. Tennent DM, Siegel H, Zanetti ME, Kuron GW, Ott WH, Wolf FJ (1960) Plasma cholesterol lowering action of bile acid binding polymers in experimental animals. J Lipid Res 1: 469–473PubMedGoogle Scholar
  41. Lutton C, Ouguerram K, Sauvage M, Magot T (1990) Turnover of [1°C]sucrose HDL and uptake by organs in the normal or genetically hypercholesterolemic ( RICO) rat using a constant infusion method. Reprod Nutr Dev 30: 97–101Google Scholar
  42. Müller KR, Li JR, Dinh DM, Subbiah MTR (1979) The characteristics and metabolism of a genetically hypercholesterolemic strain of rats ( RICO ). Biochim Biophys Acta 574: 334–343Google Scholar
  43. Ougueram K, Magot T, Lutton C (1991) Alterations in cholesterol metabolism in the genetically hypercholesterolemic RICO rat: an overview. In: Malmedier CL, Alaupovic P, Brewer Jr HB (eds) Hypercholesterolemia, hypocholesterolemia, hypertriglyceridemia, in vivo kinetics. Adv Exp Med Biol 285: 257–274. Plenum Press, New York and LondonCrossRefGoogle Scholar
  44. Ougueram K, Magot T, Lutton C (1992) Metabolism of intestinal triglyceride-rich lipoproteins in the genetically hypercholesterolemic rat ( RICO ). Atherosclerosis 93: 210–208Google Scholar
  45. Riottot M, Olivier Ph, Huet A, Caboche JJ, Parquet M, Khallou J, Lutton C (1993) Hypolipidemic effects of 13cyclodextrin in the hamster and in the genetically hypercholesterolemic RICO rat. Lipids 28: 181–188PubMedCrossRefGoogle Scholar
  46. Bilheimer DW, Watanabe Y, Kita T (1982) Impaired receptor-mediated catabolism of low density lipoprotein in the WHHL rabbit, an animal model of familial hypercholesterolemia. Proc Natl Acad Sci, USA, 79: 3305–3309Google Scholar
  47. Gallagher PJ, Nanjee MN, Richards T, Roche WR, Miller NE (1988) Biochemical and pathological features of a modified strain of Watanabe heritable hyperlipidemic rabbits. Atherosclerosis 71: 173–183PubMedCrossRefGoogle Scholar
  48. Kita T, Brown MS, Bilheimer DW, Goldstein JL (1982) Delayed clearance of very low density and intermediate density lipoproteins with enhanced conversion to low density lipoprotein in WHHL rabbits. Proc Natl Acad Sci, USA, 79: 5693–5697Google Scholar
  49. Kita T, Brown MS, Watanabe Y, Goldstein JL (1981) Deficiency of low density lipoprotein receptors in liver and adrenal gland of the WHHL rabbit, an animal model of familial hypercholesterolemia. Proc Natl Acad Sci, USA, 78: 2268–2272Google Scholar
  50. Makheja AN, Bloom S, Muesing R, Simon T, Bailey JM (1989) Anti-inflammatory drugs in experimental atherosclerosis. 7. Spontaneous atherosclerosis in WHHL rabbits and inhibition by cortisone acetate. Atherosclerosis 76: 155–161Google Scholar
  51. Rosenfeld ME, Tsukada T, Gown AM, Ross R (1987) Fatty streak initiation in Watanabe heritable hyperlipemic and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis 7: 9–23PubMedCrossRefGoogle Scholar
  52. Schneider Wj, Brown MS, Goldstein JL (983) Kinetic defects in the processing of the low density lipoprotein receptor in fibroblasts from WHHL rabbits and a family with familial hypercholesterolemia. Mol Biol Med 1: 353–367Google Scholar
  53. Tagawa H, Tomoike H, Nakamura M (1991) Putative mechanisms of the impairment of endothelium-dependent relaxation of the aorta with atheromatous plaque in heritable hyperlipidemic rabbits. Circ Res 68: 330–337PubMedCrossRefGoogle Scholar
  54. Watanabe Y (1980) Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL)-rabbit). Incidence and development of atherosclerosis and xanthoma. Atherosclerosis 36: 261–268PubMedCrossRefGoogle Scholar
  55. Watanabe Y, Ito T, Kondo T (1977) Breeding of a rabbit strain of hyperlipidemia and characteristic of these strain. Exp Anim 26: 35–42Google Scholar
  56. Watanabe Y, Ito T, Shiomi M (1985) The effect of selective breeding on the development of coronary atherosclerosis in WHHL rabbits. An animal model for familial hypercholesterolemia. Atherosclerosis 56: 71–79Google Scholar
  57. Becker RHA, Wiemer G, Linz W (1991) Preservation of endothelial function by ramipril in rabbits on a long-term atherogenic diet. J Cardiovasc Pharmacol 18 (Suppl 2) S110–5115PubMedGoogle Scholar
  58. Bossaller C, Habib GB, Yamamoto H, Williams C, Wells S, Henry PD (1987) Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine 5’-monophosphate formation in atherosclerotic human coronary artery and rabbit aorta. J Clin Invest 79: 170–174PubMedCrossRefGoogle Scholar
  59. Finta KM, Fischer MJ, Lee L, Gordon D, Pitt B, Webb RC (1993) Ramipril prevents impaired endothelium-dependent relaxation in arteries from rabbits fed an atherogenic diet. Atherosclerosis 100: 149–156PubMedCrossRefGoogle Scholar
  60. Jayakody L, Kappagoda T, Senaratne MPJ, Thomson ABR (1988) Impairment of endothelium-dependent relaxation: an early marker for atherosclerosis in the rabbit. Br J Pharmacol 94: 335–346PubMedCrossRefGoogle Scholar
  61. Rubanyi, GM, Lorenz RR, Vanhoutte PM (1985) Bioassay of endothelium-derived relaxing factor(s): inactivation by catecholamines. Am J Physiol 249: H95 - H110PubMedGoogle Scholar
  62. Tagawa H, Tomoike H, Nakamura M (1991) Putative mechanisms of the impairment of endothelium-dependent relaxation of the aorta with atheromatous plaque in heritable hyperlipidemic rabbits. Circ Res 68: 330–337PubMedCrossRefGoogle Scholar
  63. Verbeuren TJ, Jordaens FH, Van Hove CE, Van Hoydonk AE, Herman AG (1990) Release and vascular activity of endothelium-derived relaxing factor in atherosclerotic rabbit aorta. Eur J Pharmacol 191: 173–184PubMedCrossRefGoogle Scholar
  64. Verbeuren TJ, Jordaens FH, Zonnekeyn LL, Van Hove CE, Coene MC, Herman AG (1986) Effect of hypercholesterolemia on vascular reactivity in the rabbit. I. Endothelium-dependent and endothelium-independent contractions and relaxations in isolated arteries of control and hypercholesterolemic rabbits. Circ Res. 58: 552–564Google Scholar
  65. Berkenboom G, Unger P, Fontaine J (1989) Atherosclerosis and responses of human isolated coronary arteries to endothelium-dependent and -independent vasodilators. J Cardiovasc Pharmacol 14, Suppl 11: S35 - S39CrossRefGoogle Scholar
  66. Bocan TMA, Mueller SB, Uhlendorf PD, Newton RS, Krause BR (1991) Comparison of C1–976, an ACAT inhibitor, and selected lipid-lowering agents for antiatherosclerotic activity in iliac-femoral and thoracic aortic lesions. Arterioscler Thrombosis 11: 1830–1843CrossRefGoogle Scholar
  67. Davies MG, Klyachkin ML, Kim JH, Hagen PO (1993) Endothelin and vein bypass grafts in experimental atherosclerosis. J Cardiovasc Pharmacol 22, Suppl 8: 5348 - S351Google Scholar
  68. DeCampli WM, Kosek JC, Mitchell RS, Handen CE, Miller DC (1988) Effects of aspirin, dipyridamole, and cod liver oil on accelerated myointimal proliferation in canine venoarterial allografts. Ann Surg 208: 746–754PubMedCrossRefGoogle Scholar
  69. Farhy RD, Ho KL, Carretero OA, Scicli AG (1992) Kinins mediate the antiproliferative effect of ramipril in rat carotid artery. Biochem Biophys Res Commun 182: 283–288PubMedCrossRefGoogle Scholar
  70. 604.
    Chapter L Anti-atherosclerotic activityGoogle Scholar
  71. Groves PH, Levis MJ, Cheadle HA, Penny WJ (1993) SIN-1 reduces platelet adhesion and thrombus formation in a porcine model of balloon angioplasty. Circulation 87: 590–597PubMedCrossRefGoogle Scholar
  72. Jackson CL, Bush RC, Bowyer DE (1988) Inhibitory effects of calcium antagonists on balloon catheter-induced arterial smooth muscle cell proliferation and lesion size. Atherosclerosis 69: 115–122PubMedCrossRefGoogle Scholar
  73. Kawata M, Lee KT, Makiat T (1990) Detection of regenerating cells in the aorta after ballooning by immunocytochemical demonstration of the thymidine analogue 5-bromo-2’deoxyuridine (BrUdR). In: Lee KT, Onodera K, Tanaka K (eds) Atherosclerosis II: Recent Progress in Atherosclerosis Research. Ann NY Acad Sci 598: 514–516Google Scholar
  74. Linz W, Schölkens BA (1992) Role of bradykinin in the cardiac effects of angiotensin-converting enzyme inhibitors. J Cardiovasc Pharmacol 20 (Suppl 9): S83 - S90PubMedCrossRefGoogle Scholar
  75. Linz W, Wiemer G, Gohlke P, Unger T, Schölkens BA (1994) The contribution of bradykinin to the cardiovascular actions of ACE inhibitors. In Lindpaintner K, Ganten D (eds) The Cardiac Renin Angiotensin System. Futura Publ Co., Inc., Armonk, NY, pp 253–287Google Scholar
  76. Linz W, Wiemer G, Schölkens BA (1993) Contribution of bradykinin to the cardiovascular effects of ramipril. J Cardiovasc Pharmacol 22 (Suppl 9): S1 - S8PubMedGoogle Scholar
  77. Manderson JA, Cocks TM, Campbell GR (1990) Changes in vascular reactivity following endothelial denudation. In: Lee KT, Onodera K, Tanaka K (eds) Atherosclerosis Il: Recent Progress in Atherosclerosis Research. Ann NY Acad Sci 598: 564–566Google Scholar
  78. Fleckenstein-Grün, Frey M, Thimm F, Fleckenstein A (1992) Protective effects of various calcium antagonists against experimental arteriosclerosis. J Human Hypertens 6, Suppl 1:SI3–S18Google Scholar
  79. Fronek K (1990) Calcium antagonists and experimental atherosclerosis. Cardiovasc Drug Rev 8: 229–237CrossRefGoogle Scholar
  80. Holmes WL (1964) Drugs affecting lipid synthesis. In: Paoletti R (ed) Lipid Pharmacology, Academic Press, New York, London, chapter 3, pp 131–184Google Scholar
  81. Illingworth DR (1987) Lipid-lowering drugs. An overview of indications and optimum therapeutic use. Drugs 33: 259–279PubMedCrossRefGoogle Scholar
  82. Kjeldsen K, Stender S (1989) Calcium antagonists and experimental atherosclerosis. Proc Soc Exp Biol Med 190: 219–228PubMedGoogle Scholar
  83. Knorr AM, Kazda S (1990) Influence of nifedipine on experimental arteriosclerosis. Cardiovasc Drugs Ther 4: 1027–1032PubMedCrossRefGoogle Scholar
  84. McCarthy PA (1993) New approaches to atherosclerosis: An overview. Med Res Rev 13: 139–159PubMedCrossRefGoogle Scholar
  85. Allain CC, Poon LS, Chan CSG, Richmond W, Fu PC (1974) Enzymatic determination of total serum cholesterol. Clin Chem 20: 470–475PubMedGoogle Scholar
  86. Balasubramaniam S, Simons LA, Chang S, Roach PD, Nestel PJ (1990) On the mechanism by which an ACAT inhibitor (CL 277,082) influences plasma lipoproteins in the rat. Atherosclerosis 82: 1–5PubMedCrossRefGoogle Scholar
  87. Cardin AD, Holdsworth G, Jackson RL (1984) Isolation and characterization of plasma lipoproteins and apolipoproteins. In: Schwartz A (ed) Methods in Pharmacology, Vol 5, Plenum Oress, New York and London, pp 141–166Google Scholar
  88. Dole VP, Meinertz H (1960) Microdetermination of long-chain fatty acids in plasma and tissues. J Biol Chem 235: 25952599Google Scholar
  89. Eggstein M, Kreutz FI-1 (1966) Eine neue Bestimmung der Neutralfette im Blutserum und Gewebe.Google Scholar
  90. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497–509PubMedGoogle Scholar
  91. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of low-density lipoprotein cholesterol in plasma, without use of the preparative centrifuge. Clin Chem 18: 499–502PubMedGoogle Scholar
  92. Getz GS (1990) The involvement of lipoproteins in atherogenesis: evolving concepts. In: Lee KT, Onodera K, Tanaka K (eds) Atherosclerosis II: Recent Progress in Atherosclerosis Research. Ann NY Acad Sci 598: 17–28Google Scholar
  93. Hatch FT, Lees RS (1968) Practical methods for plasma lipoprotein analysis. In: Paoletti R, Kritchevsky D (eds) Advances in Lipid Research, Vol 6, pp 1–68, Academic Press, New YorkGoogle Scholar
  94. Havel RJ, Eder HA, Bragdon JH (1955) The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest 34: 1345–1353PubMedCrossRefGoogle Scholar
  95. Holub WR, Galli FA (1972) Automated direct method for measurement of serum cholesterol, with use of primary standards and a stable reagent. Clin Chem 18: 239–243PubMedGoogle Scholar
  96. I. Mitteilung. Prinzip, Durchführung und Besprechung der Methode. KIM Wschr. 44: 262–267Google Scholar
  97. II. Mitteilung. Zuverlässigkeit der Methode, andere Neutralfettbestimmungen, Normalwerte für Triglyceride und Gycerin im menschlichen Blut. Klin Wschr 44: 267–273Google Scholar
  98. Keul J, Linnet N, Eschenbruch E (1968) The photometric autotitration of free fatty acids. Z Klin Chem Klin Biochem 6: 394–398PubMedGoogle Scholar
  99. Kita T, Yokode M, Ishii K, Arai H, Nagano Y (1990) The role of atherogenic low density lipoproteins (LDL) in the pathogenesis of atherosclerosis. In: Lee KT, Onodera K, Tanaka K (eds) Atherosclerosis II: Recent Progress in Atherosclerosis Research. Ann NY Acad Sci 598: 188–193Google Scholar
  100. Koga S, Horwitz DL, Scanu AM (1969) Isolation and properties of lipoproteins from normal rat serum. J Lipid Res 10: 577–588PubMedGoogle Scholar
  101. Lopez A, Vial R, Gremillion L, Bell L (1971) Automated simultaneous turbidimetric determination of cholesterol in [Sand pre-(3-lipoproteins. Clin Chem 17: 994–997PubMedGoogle Scholar
  102. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275PubMedGoogle Scholar
  103. März W, Siekmeier R, Scharnagl H, Seiffert UB, Gross W (1993) Fast lipoprotein chromatography: a new method of analysis for plasma lipoproteins. Clin Chem 39: 2276–2281PubMedGoogle Scholar
  104. Moss JN, Dajani EZ (1971) Antihyperlipidemic agents. In: Turner RA, Hebborn P (eds) Screening Methods in Pharmacology. Vol. II, Academic Press, New York and London, pp 121–143Google Scholar
  105. Schurr PE, Schultz JR, Day CE (1976) High volume screening procedures for hypobetalipoproteinemic activity in rats. In: Day CE (ed) Atherosclerosis Drug Discovery, Plenum Press, New York and London, pp 215–229Google Scholar
  106. Siedel J, Hägele EO, Ziegenhorn J, Wahlefeld AW (1983) Reagent for the enzymatic determination of serum total cholesterol with improved lipolytic efficiency. Clin Chem 29: 1075–1080PubMedGoogle Scholar
  107. Sperry WM (1956) Lipid analysis. In: Glick D (ed) Methods in biochemical analysis, Vol. II, pp 83–111Google Scholar
  108. Wahlefeld AW (1974) Triglyceride. Bestimmung nach enzymatischer Verseifung. In: Bergmeier HU (ed) Methoden der enzymatischen Analyse, 3. Auflage, Band II, Verlag Chemie, pp 1878–1882Google Scholar
  109. Frantz ID, Hinkelman BT (1955) Acceleration of hepatic cholesterol synthesis by Triton WR-1339. J Exper Med 101: 225–232CrossRefGoogle Scholar
  110. Garattini S, Paoletti P, Paoletti R (1958) The effect of diphenylethylacetic acid on cholesterol and fatty acid biosynthesis. Arch Inc Pharmacodyn 117: 114–122Google Scholar
  111. Garattini S, Paoletti R, Bizzi L, Grossi E, Vertua R (1961) A comparative evaluation of hypocholesteremizing drugs on several tests. In: Garattini S, Paoletti R (eds) Drugs affecting lipid metabolism. Elsevier Publ Comp., Amsterdam, pp 144–157Google Scholar
  112. Holmes WL (1964) Drugs affecting lipid synthesis. In: Paoletti R (ed) Lipid Pharmacology, Academic Press, New York, London, chapter 3, pp 131–184Google Scholar
  113. Moss JN, Dajani EZ (1971) Antihyperlipidemic agents. In: Turner RA, Hebborn P (eds) Screening Methods in Pharmacology. Vol. II, Academic Press, New York and London, pp 121–143Google Scholar
  114. Tamasi G, Borsy J, Patthy A (1968) Comparison of the antilipemic effect of nicotinic acid (NA) and 4-methylpyrazole5-carboxylic acid ( MPC) in rats. Biochem Pharmacol 17: 1789–1794Google Scholar
  115. Tubbs PK, Garland PB (1969) Assay of coenzyme A and some acyl derivatives. Meth Enzymol 13: 535–551CrossRefGoogle Scholar
  116. Eggstein M, Kreutz FH (1966) Eine neue Bestimmung der Neutralfette im Blutserum und Gewebe. I. Mitteilung. Prinzip, Durchführung und Besprechung der Methode. Klin Wschr. 44: 262–267Google Scholar
  117. II.Mitteilung. Zuverlässigkeit der Methode, andere Neutralfettbestimmungen, Normalwerte für Triglyceride und Glycerin im menschlichen Blut. Klin Wschr 44: 267–273Google Scholar
  118. Moss JN, Dajani EZ (1971) Antihyperlipidemic agents. In: Turner RA, Hebborn P (eds) Screening Methods in Pharmacology. Vol. II, Academic Press, New York and London, pp 121–143Google Scholar
  119. Richterich R, Lauber K (1962) Bestimmung des Gesamt-Cholesterins im Serum. VIII. Mitteilung über Ultramikromethoden im klinischen Laboratorium. Klin Wschr 40: 1252–1256Google Scholar
  120. Carlson LA, Rössner S (1972) A methodological study of an intravenous fat tolerance test with Intralipid© emulsion. Scand J Clin Lab Invest 29: 271–280PubMedCrossRefGoogle Scholar
  121. D’Costa MA, Smigura FC, Kulhay K, Angel A (1977) Effects of clofibrate on lipid synthesis, storage, and plasma intralipid clearance. J Lab Clin Med 90: 823–836PubMedGoogle Scholar
  122. Gotoda T, Yamada N Kawamura M, Kozaki K, Mori N, Ishibashi S, Shimano H, Takaku F, Yazaki Y, Furuichi Y, Mu-rase T (1991) Heterogeneous mutations in the human lipoprotein lipase gene in patients with familial lipoprotein lipase deficiency. J Clin Invest 88: 1856–1864PubMedCrossRefGoogle Scholar
  123. Murase T, Uchimura H (1980) A selective decline of postheparin plasma hepatic triglyceride lipase in hypothyroid rats. Metabolism 29: 797–801PubMedCrossRefGoogle Scholar
  124. Nilsson-Ehle P, Schotz MC (1976) A stable, radioactive substrate emulsion for assay of lipoprotein lipase. J Lipid Res 17: 536–541PubMedGoogle Scholar
  125. Tsusumi K, Inoue Y, Shima A, Iwasaki K, Kawamura M, Mu-rase T (1993) The novel compound NO-1886 increases lipoprotein lipase activity with resulting elevation of high density lipoprotein cholesterol, and long term administration inhibits atherogenesis in the coronary arteries of rats with experimental atherosclerosis. J Clin Invest 92: 411–417CrossRefGoogle Scholar
  126. Assmann G, Shriewer H, Schmitz G, Hägele EO (1983) Quantification of high-density-lipoprotein cholesterol by precipitation with phosphotungstic acid/MgC12. Clin Chem 29: 2026–2030Google Scholar
  127. Cosgrove PG, Gaynor BJ, Harwood HJ (1992) Quantitation of hepatic low density lipoprotein receptor levels in the hamster. FASEB J 4: A533Google Scholar
  128. Harwood HJ, Chandler CE, Pellarin LD, Bangerter FW, Wilkins RW, Long CA, Cosgrove PG, Malinow MR, Marzetta CA, Pettini JK, Savoy YE, Mayne JT (1993) Pharmacologic consequences of cholesterol absorption inhibition: alteration in cholesterol metabolism and reduction in plasma cholesterol concentration induced by the synthetic saponin a-tigogenin cellobioside (CP-88818; tiqueside). J Lipid Res 34: 377–395PubMedGoogle Scholar
  129. Harwood HJ, Schneider M, Stacpoole PW (1984) Measurement of human leukocyte microsomal HMG-CoA reductase activity. J Lipid Res 25: 967–978PubMedGoogle Scholar
  130. Hylemon PB, Stude EJ, Pandak WM, Heuman DM, Vlahcevic ZR, Chinag JYL (1989) Simultaneous measurement of cholesterol 7a-hydroxylase activity by reverse-phase high-performance liquid chromatography using both endogenous cholesterol and exogenous [4–1 C]cholesterol as substrate. Anal Biochem 182: 212–216PubMedCrossRefGoogle Scholar
  131. Junker LH, Story JA (1985) An improved assay for cholesterol 7a-hydroxylase activity using phospholipid liposomesolubilized substrate. Lipids 20: 712–718PubMedCrossRefGoogle Scholar
  132. Ogishima T, Okuda K (1986) An improved method for assay of cholesterol 7a-hydroylase activity. Analyt Biochem 158: 228–232PubMedCrossRefGoogle Scholar
  133. Princen HMG, Meijer P (1990) Maintenance of bile acid synthesis and cholesterol 7a-hydroxylase activity in cultured rat hepatocytes. Biochem J 272: 273–275PubMedGoogle Scholar
  134. Baxter A, Fitzgerald BJ, Hutson JL, McCarthy AD, Motteram JM, Ross BC, Sapra M, Snowden MA, Watson NS, Williams RJ, Wright C (1992) Squalestatin 1, a potent inhibitor of squalene synthase, which lowers cholesterol in vivo. J Biol Chem 267: 11705–11708PubMedGoogle Scholar
  135. Biller SA, Forster C, Gordon EM, Harrity T, Rich LC, Marretta J, Ciosek CP (1991a) Isoprenyl phosphinylformates: new inhibitors of squalene synthetase. J Med Chem 34: 1912–1914PubMedCrossRefGoogle Scholar
  136. Biller SA, Sofia MJ, DeLange B, Forster C, Gordon EM, Harrity T, Rich LC, Ciosek CP ( 1991 b) The first potent inhibitor of squalene synthase: A profound contribution of an ether oxygen to inhibitor-enzyme interaction. J Am Chem Soc 113: 8522–8524Google Scholar
  137. Clinkenbeard KD, Sugiyama T, Reed WD, Lane MD (1975) Cytoplasmatic 3-hydroxy-3-methylglutaryl coenzyme A synthase from liver. Purification, properties, and role in cholesterol synthesis. J Biol Chem 250: 3124–3135Google Scholar
  138. Goldstein JL, Brown MS (1990) Regulation of mevalonate pathway. Nature 343: 425–430PubMedCrossRefGoogle Scholar
  139. Gotto AM (1990) Pravastatin: A hydrophilic inhibitor of cholesterol synthesis. J Drug Dev 3: 155–161Google Scholar
  140. Grayson NA, Westkaemper RB (1988) Stable analogs of acyl adenylates. Inhibition of acetyl-and acyl-CoA synthetase by adenosine 5’-alkylphosphates. Life Sci 43: 437–444PubMedCrossRefGoogle Scholar
  141. Greenspan MD, Yudkowitz JB, Lo CYL, Chen JS, Alberts AW, Hunt VM, Chang MN, Yang SS, Thompson KL, Chiang YCP, Chabala JC, Monaghan RL, Schwartz RL (1987) Inhibition of hydroxymethylglutaryl-coenzyme A synthase by L-659,699. Proc Natl Acad Sci USA 84: 7488–7492PubMedCrossRefGoogle Scholar
  142. Horie M, Sawasaki Y, Fukuzumi H, Watanabe K, Iuzuka Y, Tsuchiya Y, Kamei T (1991) Hypolipidemic effects of NB-598 in dogs. Atherosclerosis 88: 183–192PubMedCrossRefGoogle Scholar
  143. Horie M, Tsuchiya Y; Hayashi M, Iida Y, Iwasawa Y, Nagata Y, Sawasaki Y, Fukuzumi H, Kitani K, Kamei T (1990) NB-598: a potent competitive inhibitor of squalene epoxidase. J Biol Chem 265: 18075–18078PubMedGoogle Scholar
  144. Jendralla H, Baader E, Bartmann W, Beck G, Bergmann A, Granzer E, v.Kerekjarto B, Kesseler K, Krause R, Schubert W, Wess G (1990) Synthesis and biological activity of new HMG-CoA reductase inhibitors. 2. Derivatives of 7-(1Hpyrrol-3-y1)-substituted-3,5-dihydroxyhept-6(E)-enoic (heptanoic) acids. J Med Chem 33: 61–70Google Scholar
  145. Jungnickel PW, Cantral KA, Maloley PA (1992) Pravastin:A new drug for the treatment of hypercholesterinemia. Clin Pharm 11: 677–689PubMedGoogle Scholar
  146. Krause R, Neubauer H, Leven M, Kesseler K (1990) Inhibition of cholesterol synthesis in target tissues and extrahepatic organs after administration of HMG-CoA reductase inhibitors in normolipidaemic rats: organ selectivity and time course of the inhibition. J Drug Dev 3 (Suppl 1): 255–257Google Scholar
  147. Mauro VF, MacDonald JL (1991) Simvastatin: A review of its pharmacology and clinical use. DICP, Annal Pharmacother 25: 257–264.Google Scholar
  148. Miller LR, Pinkerton FT, Schroepfer GJ (1980) 5a-Cholest8(14)-en-313-o1–15-one, a potent inhibitor or sterol synthesis, reduces the levels of activity of enzymes involved in the synthesis and reduction of 3-hydroxy-3-methylglutaryl coenzyme A in CHO-Kl cells. Biochem Internat 1: 223–228Google Scholar
  149. Moore WR, Schatzman GL, Jarvi ET, Gross RS, McCarthy JR (1992) Terminal difluoro olefin analogues of squalene are time-dependent inhibitors of squalene epoxidase. J Am Chem Soc 114: 360–361CrossRefGoogle Scholar
  150. Oehlschlager AC, Singh SM, Sharma S (1991) Squalene synthetase inhibitors: synthesis of sulfonium ion mimics of the carbocationic intermediates. J Org Chem 56: 3856–3861CrossRefGoogle Scholar
  151. Parish EJ, Nanduri VBB, Kohl HH, Taylor FR (1986) Oxysterols: Chemical synthesis, biosynthesis and biological activities. Lipids 21: 27–30Google Scholar
  152. Rodwell VW, Nordstrom JL, Mitschelen JJ (1976) Regulation of HMG-CoA reductase. In: Paoletti R, Kritchevsky D (eds) Advances in Lipid Research Vol 14: 1–74, Academic Press, New YorkGoogle Scholar
  153. Saito Y, Kitahara MKS, Sakashita MSK, Toyoda KSK, Shibazaki TSK (1993) Novel inhibitors of atherosclerotic intimal thickening. Curr Opin Therap Patents 3: 1241–1242CrossRefGoogle Scholar
  154. Scott WA (1990) Hydrophilicity and the differential pharmacology of pravastin. In. Wood C (ed) Lipid management: Pravastin and the differential pharmacology of HMG-CoA reductase inhibitors. Royal Soc Medi Serv, Round Table Series, No 16: 17–25Google Scholar
  155. Shapiro DJ, Rodwell VW (1969) Diurnal variation and cholesterol regulation of hepatic HMG-CoA reductase activity. Biochem Biophys Res Commun 37: 687–872Google Scholar
  156. Shefer S, Hauser S, Lapar V, Mosbach EH (1972) Diurnal variation of HMG CoA reductase activity in rat intestine. J Lipid Res 13: 571–573PubMedGoogle Scholar
  157. Sirtori CR (1990) Pharmacology and mechanism of action of the new HMG-CoA reductase inhibitors. Pharmacol Res 22: 555–563PubMedCrossRefGoogle Scholar
  158. Soma MR, Corsini A, Paoletti R (1992) Cholesterol and mevalonic acid modulation in cell metabolism and multiplication. Toxicology Letters 64 /65: 1–15PubMedCrossRefGoogle Scholar
  159. Trzaskos JM, Magolda RL, Favata MF, Fischer RT, Johnson PR, Chen HW, Ko SS, Leonard DA, Gaylor JL (1993) Modulation of 3-hydroxy-3-methylglutaryl-CoA reductase by 15a-fluorolanost-7-en-313-ol. A mechanism-based inhibitor of cholesterol biosynthesis. J Biol Chem 268: 22591–22599Google Scholar
  160. Tsujita Y (1990) A potent HMG-CoA reductase inhibitor, pravastatin sodium. Tissue selective inhibition of cholesterogenesis and preventive effect on atherosclerosis in WHHL rabbits. J Drug Dev 3 (Suppl 1): 155–159Google Scholar
  161. Tsujita Y (1990) HMG-CoA reductase inhibitors. J Jpn Atheroscler Soc 18: 165–171Google Scholar
  162. Avigan J, Bhathena SJ, Schreiner ME (1975) Control of sterol synthesis and of hydroxymethylg1utary1 CoA reductase in skin fibroblasts grown from patients with homozygous type II hyperlipoproteinemia. J Lipid Res 16: 151–154PubMedGoogle Scholar
  163. Baker FC, Schooley DA (1979) Analysis and purification of acyl coenzyme A thioesters by reversed-phase ion-pair liquid chromatography. Analyt Biochem 94: 417–424CrossRefGoogle Scholar
  164. Heller RA, Gould RG (1973) Solubilization and partial purification of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase. Biochem Biophys Res Comm 50: 859–865PubMedCrossRefGoogle Scholar
  165. Kramer W, Wess G, Enhsen A, Bock K, Falk E, Hoffmann A, Neckermann G, Gantz D, Schulz S, Nickau B, Petzinger E. Turley S, Dietschy JM (1994) Bile acid derived HMG-CoA reductase inhibitors. Biochim Biophys Acta 1227: 137–154Google Scholar
  166. Kubo M, Strott CA (1987) Differential activity of 3-hydroxy3-methylglutaryl coenzyme A reductase in zones of the adrenal cortex. Endocrinol 120: 214–221CrossRefGoogle Scholar
  167. Philipp BW, Shapiro DJ (1979) Improved methods for the assay and activation of 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Lipid Res 20: 588–593PubMedGoogle Scholar
  168. Wess G, Kramer W, Han XB, Bock K, Enhsen A, Glombik H, Baringhaus KH, Böger G, Urmann M, Hoffmann A, Falk E (1994) Synthesis and biological activity of bile acid-derived HMG-CoA reductase inhibitors, The role of the 21-methyl in recognition of HMG-CoA reductase and the ilea] bile acid transport system. J Med. Chem 37: 3240–3246Google Scholar
  169. Beck G, Kesseler K, Baader E, Bartmann W, Bergmann A, Granzer E, Jendralla H, von Kerekjarto B, Krause R, Paulus E, Schubert W, Wess G (1990) Synthesis and biological activity of new HMG-CoA reductase inhibitors. 1. Lactones of pyridine-and pyrimidine-substituted 3,5-dihydroxy-6heptenoic (heptanoic) acids. J Med Chem 33: 52–60PubMedCrossRefGoogle Scholar
  170. Chen HW, Kandutsch AA (1976) Effects of cholesterol derivatives on sterol biosynthesis. In: Day CE (ed) Atherosclerosis Drug Discovery. Plenum Press. New York and London, pp 405–417Google Scholar
  171. Gebhardt R (1993) Multiple inhibitory effects of garlic extracts on cholesterol biosynthesis in hepatocytes. Lipids 28: 613–619PubMedCrossRefGoogle Scholar
  172. Gotto AM (1990) Pravastatin: A hydrophilic inhibitor of cholesterol synthesis. J Drug Dev 3: 155–161Google Scholar
  173. Greenspan MD, Yudkovitz JB, Chen JS, Hanf DP, Chang MN, Chiang PYC, Chabala JC, Alberts AW (1989) The inhibition of cytoplasmatic acetoacetyl-coA thiolase by a triyne carbonate (L-660,631) Biochem Biophys Res Commun 163: 548–553CrossRefGoogle Scholar
  174. Hidaka Y, Hotta H, Nagata Y, Iwasawa Y, Horie M, Kamei T (1991) Effect of a novel squalene epoxidase inhibitor, NB-598, on the regulation of cholesterol metabolism in HEP G2 cells. J Biol Chem 266: 13171–13177PubMedGoogle Scholar
  175. Parker RA, Clark RW, Sit SY, Lanier TL, Grosso RA, Kim Wright JJ (1990) Selective inhibition of cholesterol synthesis in liver versus extrahepatic tissues by HMG-CoA reductase inhibitors. J Lipid Res 31: 1271–1282PubMedGoogle Scholar
  176. Pearce BC, Parker RA, Deason ME, Qureshi AA, Kim Wright JJ (1992) Hypocholesterolemic activity of synthetic and natural tocotrienols. J Med Chem 35: 3595–3606PubMedCrossRefGoogle Scholar
  177. Scott WA (1990) Hydrophilicity and the differential pharmacology of pravastin. In: Wood C (ed) Lipid management: Pravastin and the differential pharmacology of HMG-CoA reductase inhibitors. Royal Society of Medicine Services, London, pp 17–25Google Scholar
  178. Shaw MK, Newton RS, Sliskovic DR, Roth BD, Ferguson E, Krause BR (1990) HEP-G2 cells and primary rat hepatocytes differ in their response to inhibitors of HMG-CoA reductase. Biochem Biophys Res Commun 170: 726–734PubMedCrossRefGoogle Scholar
  179. Tsujita Y (1990) A potent HMG-CoA reductase inhibitor, pravastatin sodium. Tissue selective inhibition of cholesterogenesis and preventive effect on atherosclerosis in WHHL rabbits. J Drug Dev 3 (Suppl 1): 155–159Google Scholar
  180. Amin D, Gustafson SK, Weinacht JM, Cornell SA, Neuenschwander K, Kosmider B, Scotese AC, Regan JR, Perrone MH (1993) RG 12561 (Dalvastatin): A novel synthetic inhibitor of HMG-CoA reductase and cholesterol-lowering agent. Pharmacology 46: 13–22Google Scholar
  181. Beck G, Kesseler K, Baader E, Bartmann W, Bergmann A, Granzer E, Jendralla H, von Kerekjarto B, Krause R, Paulus E, Schubert W, Wess G (1990) Synthesis and biological activity of new HMG-CoA reductase inhibitors. I. Lactones of pyridine-and pyrimidine-substituted 3,5-dihydroxy-6heptenoic (heptanoic) acids. J Med Chem 33: 52–60PubMedCrossRefGoogle Scholar
  182. Bocan TMA, Ferguson E, McNally W, Uhlendorf PD, Mueller SB, Dehart P, Sliskovic DR, Roth BD, Krause BR, Newton RS (1992) Hepatic and non hepatic sterol synthesis and tissue distribution of a liver selective HMG-CoA reductase inhibitor, CI-981: comparison with selected HMG-CoA reductase inhibitors. Biochim Biophys Acta 1123: 133–144PubMedCrossRefGoogle Scholar
  183. Brown MS, Goldstein JL, Dietschy JM (1979) Active and inactive forms of 3-hydroxyx-3-methylglutaryl coenzyme A reductase in the liver of the rat. J Biol Chem 254: 5144–5149PubMedGoogle Scholar
  184. Koga T, Shimada Y, Kuroda M, Tsujita Y, Hasegawa K, Yamazaki M (1990) Tissue-selective inhibition of cholesterol synthesis in vivo by pravastin sodium, a 3-hydroxy-3methylglutaryl-coenzym A reductase inhibitor. Biochim Biophys Acta 1045: 115–120.PubMedCrossRefGoogle Scholar
  185. Booth RGF, Martin JF, Honey AC, Hassall DG, Beesley JE, Moncada S (1989) Rapid development of atherosclerotic lesions in the rabbit carotid artery induced by perivascular manipulation. Atherosclerosis 76: 257–268PubMedCrossRefGoogle Scholar
  186. Ha YC, Barter PJ (1985) Rapid separation of plasma lipoproteins by gel permeation chromatography on agarose gel Superose 6B. J Chromatogr 341: 154–159PubMedCrossRefGoogle Scholar
  187. Kasim SE, Elovson J, Khilnani S, Almario RU, Jen KLC (1993) The effect of lovastatin on the secretion of very low density lipoprotein lipids and apolipoprotein B in the hypertriglyceridemic Zucker obese rat. Atherosclerosis 104: 147–152PubMedCrossRefGoogle Scholar
  188. Soma MR, Donetti E, Paroline C, Mazzini G, Ferrari C, Fumagalli R, Paoletti R (1993) HMG-CoA reductase inhibitors. In vivo effects on carotid intimai thickening in normocholesterolemic rabbits. Arterioscler Thrombos 13: 571–578Google Scholar
  189. Tsujita Y (1990) A potent HMG-CoA reductase inhibitor, pravastatin sodium. Tissue selective inhibition of cholesterogenesis and preventive effect on atherosclerosis in WHHL rabbits. J Drug Dev 3 (Suppl 1): 155–159Google Scholar
  190. Tsujita Y, Kuroda M, Shimada Y, Tanzawa K, Arai M, Kaneko I, Tanaka M, Masuda H, Tarumi Ch, Watanabe Y, Fujii S (1986) CS-514, a competitive inhibitor of 3hydroxy-3-methylglutaryl coenzyme A reductase: tissue-selective inhibition of sterol synthesis and hypolipidemic effect on various animal species. Biochim Biophys Acta 877: 50–60PubMedCrossRefGoogle Scholar
  191. Watanabe Y (1980) Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL)-rabbit). Incidence and development of atherosclerosis and xanthoma. Atherosclerosis 36: 261–268PubMedCrossRefGoogle Scholar
  192. Watanabe Y, Ito T, Shiomi M (1985) The effect of selective breeding on the development of coronary atherosclerosis in WHHL rabbits. An animal model for familial hypercholesterolemia. Atherosclerosis 56: 71–79Google Scholar
  193. Watanabe Y, Ito T, Shiomi M, Tsujita Y, Kuroda M, Arai M, Fukami M, Tamura A (1988) Preventive effect of pravastatin sodium, a potent inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, on coronary atherosclerosis and xanthoma in WHHL rabbits. Biochim Biophys Acta 960: 294–302PubMedCrossRefGoogle Scholar
  194. Chang CCY, Huh HY, Cadigan KM, Chang TY (1993) Molecular cloning and functional expression of human acylcoenzyme A:cholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells. J Biol Chem 268: 20747–20755PubMedGoogle Scholar
  195. Clark SB, Tercyak AM (1984) Reduced cholesterol transmucosal transport in rats with inhibited mucosal acyl CoA:cholesterol acyltransferase and normal pancreatic function. J Lipid Res 25: 148–159PubMedGoogle Scholar
  196. Field FJ, Albright E, Mathur S (1991) Inhibition of acylcoenzyme A:cholesterol acyltransferase activity by PD 128042: effect on cholesterol metabolism and secretion in CaCo-2 cells. Lipids 26: 1–8PubMedCrossRefGoogle Scholar
  197. Fukushima H, Aono S, Nakamura Y, Endo M, Imai T (1969) The effect of N-(ct-methylbenzyl)linoleamide on cholesterol metabolism in rats. J Atheroscler Res 10: 403–414PubMedCrossRefGoogle Scholar
  198. Harnett KM, Walsh CT, Zhang L (1989) Effects of Bay o 2752, a hypocholesterolemic agent, on intestinal taurocholate absorption and cholesterol esterification. J Pharm Exp Ther 251: 502–509Google Scholar
  199. Heider JG, Pickens CE, Kelly LA (1983) Role of acyl CoA:cholesterol acyltransferase in cholesterol absorption and its inhibition by 57–118 in the rabbit. J Lipid Res 24: 1127–1134PubMedGoogle Scholar
  200. Krause BR, Anderson M, Bisgaier CL, Bocan T, Bousley R, DeHart P, Essenburg A, Hamelehle K, Homan R, Kieft K, McNally W, Stanfield R, Newton RS (1993) In vivo evidence that the lipid-regulating activity of the ACAT inhibitor CI-976 in rats is due to inhibition of both intestinal and liver ACAT. J Lipid Res 34: 279–294PubMedGoogle Scholar
  201. Largis EE, Wang CW, DeVries VG, Schaffer SA (1989) CL 277,082, a novel inhibitor of ACAT-catalyzed cholesterol esterification and cholesterol absorption. J Lipid Res 30: 681–690PubMedGoogle Scholar
  202. Matsuda K (1994) ACAT inhibitors as antiatherosclerotic agents: Compounds and mechanisms. Med Res Rev 14: 271–305PubMedCrossRefGoogle Scholar
  203. Nervi F, Brinfman M, Allal6n W, Depiereux E, Del Pozo R (1984) Regulation of biliary cholesterol secretion in the rat. Role of hepatic esterification. J Clin Invest 74: 2226–2237Google Scholar
  204. O’Brien PM, Sliskovic DR (1992) ACAT inhibitors: A potential new approach to the treatment of hypercholesterolaemia and atherosclerosis. Curr Opin Ther Pat 2: 507–526Google Scholar
  205. Picard JA (1993) ACAT inhibitors. Curr Opin Ther Pat 3: 151–160CrossRefGoogle Scholar
  206. Roark WH, Roth BC (1994) ACAT inhibitors: preclinical profiles of clinical candidates. Expert Opin Invest Drugs 3: 1143–1152Google Scholar
  207. Rodgers JB (1969) Assay of acyl-CoA:monoglyceride acyltransferase from rat small intestine using continuous recording spectroscopy. J Lipid Res 10: 427–432PubMedGoogle Scholar
  208. Sliskovic DR, White AD (1991) Therapeutic potential of ACAT inhibitors as lipid lowering and anti-atherosclerotic agents. Trends Pharmacol Sci 12: 194–199PubMedCrossRefGoogle Scholar
  209. Tanaka H, Kimura T (1994) ACAT inhibitors in development. Expert Opin Invest Drugs 3: 427–436CrossRefGoogle Scholar
  210. Tso P, Morshed KM, Nutting DF (1991) Importance of acyl CoA:cholesterol acyltransferase ( ACAT) on the esterification of cholesterol by enterocytes. FASEB J 5: A709Google Scholar
  211. Windier E, Rucker W. Greeve J, Reimitz H, Greten H (1990) Influence of the acyl-coenzyme A:cholesterol-acyltransferase inhibitor octimibate on cholesterol transport in rat mesenteric lymph. Arzneim Forsch/Drug Res 40: 1108–1111Google Scholar
  212. Bell FP, Gammil RB, John LCS (1992) U-73482: A novel ACAT inhibitor that elevates HDL-cholesterol, lowers plasma triglyceride and facilitates hepatic cholesterol mobilization in the rat. Atherosclerosis 92: 115–122Google Scholar
  213. Einarsson K, Benthin L, Ewerth S, Hellers G, Stahlberg D, Angelin B (1989) Studies on acyl-CoA:cholesterol acyltransferase activity in human liver microsomes. J Lipid Res 30: 739–746PubMedGoogle Scholar
  214. Field FJ, Albright E, Mathur S (1991) Inhibition of acylcoenzyme A:cholesterol acyltransferase by PD 128042: effect on cholesterol metabolism and secretion in CaCo-2 cells. Lipids 26: 1–8PubMedCrossRefGoogle Scholar
  215. Field FJ, Salome RG (1982) Effect of dietary fat saturation, cholesterol and cholestyramine on acyl CoA:cholesterol acyltransferase activity in rabbit intestinal microsomes. Biochim Biophys Acta 712: 557–570PubMedCrossRefGoogle Scholar
  216. Heffron F, Middleton B, White DA (1990) Inhibition of acyl coenzyme A:cholesterol acyl transferase by trimethylcyclohexanylmandelate ( Cyclandelate ). Biochem Pharmacol 39: 575–580Google Scholar
  217. Helgerud P, Saarem K, Norum KR (1981) AcylCoA:cholesterol acyltransferase in human small intestine: its activity and some properties of the enzymic reaction. J Lipid Res 22: 271–277PubMedGoogle Scholar
  218. Krause BR, Anderson M, Bisgaier CL, Bocan T, Bousley R, DeHart P, Essenbug A, Hamelehle K, Homan R, Kieft K, McNally W, Stanfield R, Newton RS (1993) In vivo evidence that the lipid-regulating activity of the ACAT inhibitor CI-976 in rats is due to inhibition of both intestinal and liver ACAT: J Lipid Res 34: 279–294PubMedGoogle Scholar
  219. Largis EE, Wang CH, DeVries VG, Schaffer SA (1989) CL 277,082: a novel inhibitor of ACAT-catalyzed cholesterol esterification and cholesterol absorption. J Lipid Res 30: 681–690PubMedGoogle Scholar
  220. Mathur SN, Armstrong ML, Alber CA, Spector AA (1981) Hepatic acyl-CoA:cholesterol acyltransferase activity during diet-induced hypercholesterolemia in cynomolgus monkeys. J Lipid Res 22: 659–667PubMedGoogle Scholar
  221. Roth BD, Blankley CJ, Hoefle ML, Holmes A, Roark WH, Trivedi BK, Essenburg AD, Kieft A, Krause BR, Stanfield RL (1992) Inhibitors of acyl CoA:cholesterol acyltransferase. 1. Identification and structure-activity relationships of a novel series of fatty acid anilide hypocholesterolemic agents. J Med Chem 35: 1609–1617Google Scholar
  222. Rothblatt GH, Naftulin M, Arbogast LY (1977) Stimulation of acyl-CoA:cholesterol acyltransferase activity by hyperlipemic serum lipoproteins. Proc Soc Exp Biol Med 155: 501–506Google Scholar
  223. Schmitz G, Niemann R, Brennhausen B, Krause R, Assmann G (1985) Regulation of high density lipoprotein receptors in cultured macrophages: role of acyl-CoA:cholesterol acyltransferase. EMBO J 4: 2773–2779Google Scholar
  224. Balasubramaniam S, Simons LA, Chang S, Roach PD, Neste] PJ (1990) On the mechanisms by which an ACAT inhibitor (CL 277,082) influences plasma lipoproteins in the rat. Atherosclerosis 82: 1–5PubMedCrossRefGoogle Scholar
  225. Bocan TMA, Muellers BAK, Uhlendorf PD, Quenby-Brown E, Mazur MJ, Black AE (1993) Inhibition of acyl-CoA:cholesterol O-acyl transferase reduces the cholesterol enrichment of atherosclerotic lesions in the Yucatan micropig. Atherosclerosis 99: 175–186PubMedCrossRefGoogle Scholar
  226. Cayen MN, Dvornik D (1979) Effect of diosgenin on lipid metabolism in rats. J Lipid Res 20: 162–174PubMedGoogle Scholar
  227. Gillies PJ, Robinson CS, Rathgeb KA (1990) Regulation of ACAT activity by a cholesterol substrate pool during the progression and regression phases of atherosclerosis: implications for drug discovery. Atherosclerosis 83: 177–185PubMedCrossRefGoogle Scholar
  228. Harris NV, Smith C, Ashton MJ, Bridge AW, Bush RC, Coffee ECJ, Dron DI, Harper MF, Lythgoe DJ, Newton CG, Riddell D (1992) Acyl-CoA:cholesterol O-acyl transferase (ACAT) inhibitors. 1. 2-(Alkylthio)-4,5-diphenyl-1H-imidazoles as potent inhibitors of ACAT. J Med Chem 35: 4384–4392PubMedCrossRefGoogle Scholar
  229. Heider JG, Pickes CE, Kelly LA (1983) Role of acyl-CoA:cholesterol acyltransferase in cholesterol absorption and its inhibition by 57–118 in the rabbit. J Lipid Res 24: 1127–1134PubMedGoogle Scholar
  230. Krause BR, Anderson M, Bisgaier CL, Bocan T, Bousley R, DeHart P, Essenbug A, Hamelehle K, Homan R, Kieft K, McNally W, Stanfield R, Newton RS (1993) In vivo evidence that the lipid-regulating activity of the ACAT inhibitor C1–976 in rats is due to inhibition of both intestinal and liver ACAT: J Lipid Res 34: 279–294Google Scholar
  231. Krause BR, Black A, Bousley R, Essenburg A, Cornicelli J, Holmes A, Homan R, Kieft K, Sekere C, Shaw-Hes MK, Stanfield R. Trivedi B, Woolf T (1993b) Divergent pharmacological activities of PD 132301–2 and CL 277,082, urea inhibitors of acyl-CoA:cholesterol acyltransferase. J Pharm Exp Ther 267: 734–743Google Scholar
  232. L.4 Inhibition of cholesterol absorption 619Google Scholar
  233. Nagata Y, Yonemoto M, Iwasawa Y, Shimuzi-Nagumo A, Hattori H, Sawazaki Y, Kamei T (1995) N-[2-[N’-Pentyl(6,6-dimethyl-2,4-heptadinyl)amino]ethyl]-(2-methyl-l -naphthylthio)acetamide (FY-087). A new acyl coenzyme A:cholesterol acyltransferase ( ACAT) inhibitor of diet-induced atherosclerosis formation in mice. Biochem Pharmacol 49: 643–651Google Scholar
  234. Tanaka H, Ohtsuka I, Kogushi M, Kimura T, Fujimori T, Saeki T, Hayashi K, Kobayashi H, Yamada T, Hiyoshi H, Saito I (1994) Effect of the acyl-CoA:cholesterol acyltransferase inhibitor, E5324, on experimental atherosclerosis in rabbits. Atherosclerosis 107: 187–210PubMedCrossRefGoogle Scholar
  235. Zilversmit DB (1972) A single blood sample dual isotope method for the measurement of cholesterol absorption in rats. Proc Soc Exp Biol Med 140: 862–865PubMedGoogle Scholar
  236. Akerlund JE, Björkhem I (1990) Studies on the regulation of cholesterol 7a-hydroxylase and HMG-CoA reductase in rat liver: effects of lymphatic drainage and ligation of the lymph duct. J Lipid Res 31: 2159–2166PubMedGoogle Scholar
  237. Björkhem I, Andersson U, Sudjama-Sugiaman E, Eggertsen G, Hylemon Ph (1993) Studies on the link between HMG-CoA reductase and cholesterol 7a-hydroxylase in lymph-fistula rats: evidence for both transcriptional and post-transcriptional mechanisms for down-regulation of the two enzymes by bile acids. J Lipid Res. 34: 1497–1503PubMedGoogle Scholar
  238. Clark SB, Tercyak AM (1984) Reduced cholesterol transmucosal transport in rats with inhibited mucosal acylCoA:cholesterol acyltransferase and normal pancreatic function. J Lipid Res 25: 148–159PubMedGoogle Scholar
  239. Gallo LL, Wadsworth JA, Vahouny GV (1987) Normal cholesterol absorption in rats deficient in intestinal acyl coenzyme A:cholesterol acyltransferase activity. J Lipid Res 28: 381–387PubMedGoogle Scholar
  240. Krause BR, Anderson M, Bisgaier CL, Bocan T, Bousley R, DeHart P, Essenburg A, Hamelehle K, Homan R, Kieft K, McNally W, Stanfield R, Newton RS (1993) In vivo evidence that the lipid-regulating activity of the ACAT inhibitor CI-976 in rats is due to inhibition of both intestinal and liver ACAT. J Lipid Res 34: 279–294PubMedGoogle Scholar
  241. Krause BR, Anderson M, Bisgaier CL, Bocan T, Bousley R, DeHart P, Essenbug A, Hamelehle K, Homan R, Kieft K, McNally W, Stanfield R, Newton RS (1993) In vivo evidence that the lipid-regulating activity of the ACAT inhibitor CI-976 in rats is due to inhibition of both intestinal and liver ACAT: J Lipid Res 34: 279–294PubMedGoogle Scholar
  242. Krause BR, Sloop CH, Castle CK, Roheim PS (1981) Mesenteric lymph apolipoproteins in control and ethinyl estradioltreated rats: a model for studying apolipoproteins from intestinal origin. J Lipid Res 22: 610–619PubMedGoogle Scholar
  243. Slayback JRB, Cheung LWY, Geyer RP (1977) Quantitative extraction of microgram amounts of lipid from cultured human cells. Anal Biochem 83: 372–384PubMedCrossRefGoogle Scholar
  244. Sugiyama Y, Ishikawa E, Odaka H, Miki N, Tawada H, Ikeda H (1995) TMP-153, a novel ACAT inhibitor, inhibits cholesterol absorption and lowers cholesterol in rats and hamsters. Atherosclerosis 113: 71–78PubMedCrossRefGoogle Scholar
  245. Ast M, Frishman WH (1990) Bile acid sequestrants J Clin Pharmacol 30: 99–106CrossRefGoogle Scholar
  246. Curtius HCh, Bürgi W (1966) Gaschromatographische Bestimmung des Serumcholesterins. Z klin Chem klin Biochem 4: 38–42PubMedGoogle Scholar
  247. Day ChE (1990) Comparison of hypocholesterolemic activities of the bile acid sequestrants cholestyramine and cholestipol hydrochloride in cholesterol fed sea quail. Artery 17: 281–288PubMedGoogle Scholar
  248. Fears R, Brown R, Ferres H, Grenier F, Tyrell AWR (1990) Effects of novel bile salts on cholesterol metabolism in rats and guinea-pigs. Biochem Pharmacol 40: 2029–2037PubMedCrossRefGoogle Scholar
  249. Johns W, Bates T (1969) Quantification of the binding tendencies of cholestyramine I: Effect of structure and added electrolytes on the binding of unconjugated and conjugated bile salt anions. J Pharmac Sei 58: 179–183Google Scholar
  250. Kihara K, Toda 11, Mori M, Hashimoto M, Mizogami S (1988) The bile acid binding and hypocholesterolemic activity of anion-exchange resins bearing the imidazolium salt group. Eur J Med Chem 23: 411–415CrossRefGoogle Scholar
  251. Tennent DM, Siegel H, Zanetti ME, Kuron GW, Ott WH, Wolf FJ (1960) Plasma cholesterol lowering action of bile acid binding polymers in experimental animals. J Lipid Res 1: 469–473PubMedGoogle Scholar
  252. Toda H, Kihara K, Hashimoto M, Mizogami S (1988) Bile acid binding and hypocholesterolemic activity of a new anion exchange resin from 2-methylimidazol and epichlorhydrin. J Pharm Sci 77: 531–533PubMedCrossRefGoogle Scholar
  253. Bruckdorfer KR (1990) Free radicals, lipid peroxidation and atherosclerosis. Curr Opin Lipidol 1: 529–535CrossRefGoogle Scholar
  254. Esterbauer H, Rotheneder M, Striegl G, Waeg G, Ashy A, Sattler W, Jürgens G (1989) Vitamin E and other lipophilic antioxidants protect LDL against oxidation. Fat Sci Technol 91: 316–324Google Scholar
  255. Jürgens G (1989) Modified serum lipoproteins and atherosclerosis. Ann Rep Med Chem 25: 169–176CrossRefGoogle Scholar
  256. McCarthy PA (1993) New approaches to atherosclerosis: An overview. Med Res Rev 13: 139–159PubMedCrossRefGoogle Scholar
  257. Parthasarathy S, Wieland E, Steinberg D (1989) A role for endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein. Proc Natl Acad Sci USA 86: 1046–1050PubMedCrossRefGoogle Scholar
  258. Rankin SM, Parthasarathy S, Steinberg D (1991) Evidence for a dominant role of lipoxygenase(s) in the oxidation of LDL by mouse peritoneal macrophages. J Lipid Res 32: 449–456PubMedGoogle Scholar
  259. Steinberg D (1990) Arterial metabolism of lipoproteins in relation to atherogenesis. In: Lee KT, Onodera K, Tanaka K (eds) Atherosclerosis II: Recent Progress in Atherosclerosis Research. Ann NY Acad Sci 598: 188–193Google Scholar
  260. Steinbrecher UP (1987) Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products. J Biol Chem 262: 3603–3608PubMedGoogle Scholar
  261. Steinbrecher UP (1990) Oxidatively modified lipoproteins. Curr Opin Lipidol 1: 411–415CrossRefGoogle Scholar
  262. Steinbrecher UP, Witztum JL, Parthasarathy S, Steinberg D (1987) Decrease in reactive amino groups during oxidation or endothelial cell modification of LDL. Arteriosclerosis 7: 135–143PubMedCrossRefGoogle Scholar
  263. Steinbrecher UP, Zhang H, Lougheed M (1990) Role of oxidatively modified LDL in atherosclerosis. Free Rad Biol Med 9: 155–158PubMedCrossRefGoogle Scholar
  264. Witztum JL, Steinberg D (1991) Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 88: 1785–1792PubMedCrossRefGoogle Scholar
  265. Asakawa T, Matsushita S, (1980) Coloring conditions of thiobarbituric acid test for detecting lipid hydroperoxides. Lipids 15: 137–140CrossRefGoogle Scholar
  266. Barnhart RL, Busch SJ, Jackson RL (1989) Concentration-dependent antioxidant activity of probucol in low density lipoproteins in vitro: probucol degradation precedes lipoprotein oxidation. J Lipid Res 30: 1703–1710PubMedGoogle Scholar
  267. Bernheim F, Bernheim MLC, Wilbur KM (1948) The reaction between thiobarbituric acid and the oxidation products of certain lipids. J Biol Chem 174: 257–264PubMedGoogle Scholar
  268. Braughler JM, Pregenzer JF, Chase RL, Duncan LA, Jacobsen EJ, McCall JM (1987) Novel 21-amino steroids as potent inhibitors of iron-dependent lipid peroxidation. J Biol Chem 262: 10438–10440PubMedGoogle Scholar
  269. Carew TE, Schwenke DC, Steinberg D (1987) Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: Evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci USA 84: 7725–7729Google Scholar
  270. Dresel HA, Deigner HP, Frübis J, Strein K, Schettler G (1990) LDL-metabolism of the arterial wall — new implications for atherogenesis. Z Kardiol 79: Supp1. 3, 9–16Google Scholar
  271. Gallagher PJ, Nanjee MN, Richards T, Roche WR, Miller NE (1988) Biochemical and pathological features of a modified strain of Watanabe heritable hyperlipidemic rabbits. Atherosclerosis 71: 173–183PubMedCrossRefGoogle Scholar
  272. Kita T (1991) Oxidized lipoproteins and probucol. Curr Opin Lipidol 2: 35–38CrossRefGoogle Scholar
  273. Kita T, Nagano Y, Yokode M, Ishii K, Kume N, Ooshima A, Yoshida H, Kawai Ch (1987) Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc Natl Acad Sci USA 84: 5928–5931PubMedCrossRefGoogle Scholar
  274. Mansuy D, Sassi A, Dansette PM, Plat M (1986) A new potent inhibitor of lipid peroxidation in vitro and in vivo, the hepatoprotective drug anisyldithiolthione. Biochem Biophys Res Commun 135: 1015–1021PubMedCrossRefGoogle Scholar
  275. Mao SJT, Patton JG, Badimon JJ, Kottke BA, Alley MC, Cardin AD (1983) Monoclonal antibodies to human plasma low-density lipoproteins. I. Enhanced binding of ‘251-labeled low-density lipoproteins by combined use of two monoclonal antibodies. Clin Chem 29: 1890–1897PubMedGoogle Scholar
  276. Mao SJT, Yates MT, Rechtin AN, Jackson RL, Van Sickle WA (1991) Antioxidant activity of probucol and its analogues in hypercholesterolemic Watanabe rabbits. J Med Chem 34: 298–302PubMedCrossRefGoogle Scholar
  277. McLean LR, Hagaman KA (1989) Effect of probucol on the physical properties of low-density lipoproteins oxidized by copper. Biochemistry 28: 321–327PubMedCrossRefGoogle Scholar
  278. Parthasarathy S, Young SG, Witztum JL, Pittman RC, Steinberg D (1986) Probucol inhibits oxidative modification of low density lipoprotein. J Clin Invest 77: 641–644PubMedCrossRefGoogle Scholar
  279. Steinberg D, Parthasaraty S. Carew TE (1988) In vivo inhibition of foam cell development by probucol in Watanabe rabbits. Am J Cardiol 62: 6B - 12BPubMedCrossRefGoogle Scholar
  280. Yamamoto A, Takaishi S, Hara H, Nishikawa O, Yokoyama S, Yamamura T, Yamaguchi T (1986) Probucol prevents lipid storage in macrophages. Atherosclerosis 62: 209–217PubMedCrossRefGoogle Scholar
  281. Yoshioka T, Fujita T, Kanai T, Aizawa Y, Kurumada T, Hasegawa K, Horikoshi H (1989) Studies with hindered phenols and analogues. 1. Hypolipidemic and hypoglycemic agents with ability to inhibit lipid peroxidation. J Med Chem 32: 421–428Google Scholar
  282. Zhang H, Basra HJK, Steinbrecher UP (1990) Effects of oxidatively modified LDL on cholesterol esterification in cultured macrophages. J Lipid Res 31: 1361–1369PubMedGoogle Scholar
  283. Cosgrove PG, Gaynor BJ, Harwood HJ Jr (1992) Quantitation of hepatic LDL receptor levels in the hamster. FASEB J 4: A533Google Scholar
  284. Goldstein JL, Basu SK, Brown MS (1983) Receptor mediated endocytosis of LDL in cultured cells. Meth Enzymol 98: 241–260PubMedCrossRefGoogle Scholar
  285. Huettinger M, Herrmann M, Goldenberg H, Granzer E, Leineweber M (1993) Hypolipidemic activity of HOE-402 is mediated by stimulation of the LDL receptor pathway. Atheroscl Thromb 13: 1005–1012CrossRefGoogle Scholar
  286. Huettinger M, Schneider WJ, Ho YK, Goldstein JL, Brown M (1984) Use of monoclonal anti-receptor antibodies to probe the expression of the low density lipoprotein receptor in tissues of normal and Watanabe heritable hyperlipidemic rabbits. J Clin Invest 74: 1017–1026PubMedCrossRefGoogle Scholar
  287. Sprague EA, Kothapalli R, Kerbacher JJ, Edwards EH, Schwartz CJ, Elbein AD (1993) Inhibition of scavenger receptor-mediated modified low-density lipoprotein endocytosis in cultured bovine aortic endothelial cells by the glycoprotein processing inhibitor castanospermine. Biochemistry 32: 8888–8895PubMedCrossRefGoogle Scholar
  288. Takano T. Mowri HO (1990) Peroxidized lipoproteins recognized by a new monoclonal antibody (DLR1a/104G) in atherosclerotic lesions. In: Lee KT, Onodera K, Tanaka K (eds) Atherosclerosis I1: Recent Progress in Atherosclerosis Research. Ann NY Acad Sci 598: 136–142PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • H. Gerhard Vogel
    • 1
    • 2
  • Wolfgang H. Vogel
    • 3
  1. 1.Johann Wolfgang Goethe Universität FrankfurtFrankfurt am MainGermany
  2. 2.Philipps Universität MarburgMarburgGermany
  3. 3.Department of Pharmacology Jefferson Medical CollegeThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations