Advertisement

Antidiabetic activity

Chapter
  • 216 Downloads

Abstract

Dysfunction of the visceral tract has been considered for a long time to be the cause of diabetes mellitus. Bomskov (1910) reported severe diabetic symptoms in dogs after cannulation of the ductus lymphaticus. This observation, however, could not be confirmed in later experiments (Vogel 1963). Mehring and Minkowski (1890) noted polyuria, polydipsia, polyphagia, and severe glycosuria following removal of the pancreas in dogs. The final proof for the existence of a hormone in the pancreas was furnished by Banting and Best (1922) who could reduce the elevated blood sugar levels in pancreatectomized dogs by injection of extracts of the pancreatic glands. The role of the pituitary gland in development of diabetes has first been elucidated by Houssay (1930, 1931) in pancreatectomized dogs (Survey by Beyer and Schöffling 1986).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banting FG, Best CH (1922) The internal secretion of the pancreas. J Lab Clin Med 7:251–266Google Scholar
  2. Beyer J, Schöffling K (1968) Die Houssay-Präparation (Methodisches Vorgehen und Auswirkungen der Versuchsanordnung auf Stoffwechsel und endokrines System) in: Pfeiffer EF (ed.) Handbook of Diabetes mellitus, Pathophysiology and Clinical Considerations. Vol. I, Lehmanns Verlag, München. pp 745–761Google Scholar
  3. Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130Google Scholar
  4. Houssay BA (1930) Le diabète pancréatique des chiens hypophysectomisés. Les troubles diabétiques chez les chiens privés d’hypophyse et de pancréas. Compt rend Soc Biol, Paris 105:121–126Google Scholar
  5. Houssay BA, Biasotti A (1931) Pankreasdiabetes und Hypo- physe am Hund. Pflüger’s Arch ges Physiol 227:664–685Google Scholar
  6. Sirek A (1968) Pancreatectomy and diabetes. in: Pfeiffer EF (ed.) Handbook of Diabetes mellitus, Pathophysiology and Clinical Considerations. Vol. I, Lehmanns Verlag, München. pp 727–743Google Scholar
  7. Vogel HG (1963) Unpublished data von Mehring J, Minkowski 0 (1890) Diabetes mellitus nach Pankreasexstirpation. Arch exper Path Pharmakol 26: 371–387Google Scholar
  8. Baily CC, Baily OT (1943) Production of diabetes mellitus in rabbits with alloxan. A preliminary report. J Am Med Ass 122:1165–1166Google Scholar
  9. Bänder A, Pfaff W, Schmidt FH, Stork H, Schröder HG (1969) Zur Pharmakologie von HB 419, einem neuen, stark wirksamen oralen Antidiabeticum. Arzneim Forsch/Drug Res 19:1363–1372Google Scholar
  10. Blum F, Schmid R (1954) Über den Einfluss der Konzentration auf den Ablauf des experimentellen Alloxandiabetes. Helv Physiol Acta 12:181–183Google Scholar
  11. Brunschwig A, Allen JG, Goldner MG, Gomori G (1943) AIloxan. J Am Med Ass 122:966Google Scholar
  12. Dunn JS, McLetchie NGB (1943) Experimental alloxan diabetes in the rat. Lancet 11:384–387Google Scholar
  13. Frerichs H, Creutzfeldt W (1968) Diabetes durch BetaZytotoxine. In: Pfeiffer EF (ed.) Handbook of Diabetes mellitus, Pathophysiology and Clinical Considerations. Vol. I, Lehmanns Verlag, München. pp 811–840Google Scholar
  14. Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130Google Scholar
  15. Goldner MG, Gomori G (1944) Studies on the mechanism of alloxan diabetes. Endocrinology 35:241–248Google Scholar
  16. Heikkila RE, Barden H, Cohen G (1974) Prevention of alloxan-induced diabetes by ethanol administration. J Pharm Exp Ther 190:501–506Google Scholar
  17. Katsumata K, Katsumata Y (1990) Effect of single administration of tolbutamide on the occurrence of alloxan diabetes in rats. Horm Metabol Res 22:192–193Google Scholar
  18. Katsumata K, Katsumata Y, Ozawa T, Katsumata Jr (1993) Potentiating effect of combined usage of three sulfonylurea drugs on the occurrence of alloxan diabetes in rats. Horm Metab Res 25:125–126PubMedGoogle Scholar
  19. Kodoma T, Iwase M, Nunoi K, Maki Y, Yoshinari M, Fujishima M (1993) A new diabetes model induced by neonatal alloxan treatment in rats. Diab Res Clin Pract 20: 183–189Google Scholar
  20. Pincus IJ, Hurwitz JJ, Scott ME (1954) Effect of rate of injection of alloxan on development of diabetes in rabbits. Proc Soc Exp Biol Med 86:553–558PubMedGoogle Scholar
  21. Tasaka Y, Inoue Y, Matsumoto H, Hirata Y (1988) Changes in plasma glucagon, pancreatic polypeptide and insulin during development of alloxan diabetes mellitus in dog. Endocrinol Japon 35:399–404Google Scholar
  22. Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130Google Scholar
  23. Iwakiri R, Nagafuchi S, Kounoue E, Nakano S, Koga T, Nakayama M, Nakamura M. Niho Y (1987). Cyclosporin A enhances streptozocin induced diabetes in CD-1 mice. Experientia 43:324–327PubMedGoogle Scholar
  24. Katsumata K, Katsumata K Jr, Katsumata Y (1992) Protective effect of diltiazem hydrochloride on the occurrence of alloxan-or streptozotocin-induced diabetes in rats. Horm Met Res 24:508–510Google Scholar
  25. Like AA, Rossini AA (1976) Streptozotocin-induced pancreatic insulitis: A new model of diabetes mellitus. Science 133:415–417Google Scholar
  26. Miller DL (1990) Experimental diabetes: Effect of streptozotocin on the golden Syrian hamster. Lab Anim Sci 40: 539–540PubMedGoogle Scholar
  27. Rakieten N, Rakieten ML, Nadkarni MV (1963) Studies on the diabetogenic action of streptozotocin NSC-37917). Cancer Chemother Rep 29:91–102Google Scholar
  28. Rossini AA, Like AA, Chick A, Appel MC, Cahill GF (1977) Studies of streptozotocin-induced insulitis and diabetes. Proc Natl Acad Sci, USA, 74:2485–2489Google Scholar
  29. Tancrède G, Rousseau-Migneron S, Nadeau A (1983) Longterm changes in the diabetic state induced by different doses of streptozotocin in rats. Br J Exp Path 64:117–123Google Scholar
  30. Bavelsky ZE, Zavyazkina TV, Moisev YS, Medvedev VI (1992) Zinc content in pancreatic islets in experimental diabetes induced by chelating agents. Patol Fiziol Eksp Ter 36:29–32Google Scholar
  31. Caterson ID, Cooney GJ, Vanner MA, Nicks JL, Williams PF (1988) The activities of the pyruvate dehydrogenase complex and of acetyl-CoA carboxylase in various tissues in experimental obesity: tissue differences and insulin resistance. Diab Nutr Metab 1:65–70Google Scholar
  32. Goldberg ED, Eshchenko VA, Bovt VD (1991) The diabetogenic and acidotropic effects of chelators. Exp Pathol 42: 59–64PubMedGoogle Scholar
  33. Hansen WA, Christie MR, Kahn R, Norgard A, Abel I, Petersen AM, Jorgensen DW, Baekkeskov S, Nielsen JH, Lernmark A, Egeberg J, Richter-Olesen H, Grainger T, Kristensen JK, Brynitz S, Bilde T (1989) Supravital dithizone staining in the isolation of human and rat pancreatic islets. Diabetes Res 10:53–57PubMedGoogle Scholar
  34. Maske H, Weinges K (1957) Untersuchungen über das Verhalten der Meerschweinchen gegenüber verschiedenen diabetogenen Noxen. Alloxan and Dithizon. Naunyn-Schmiedeerg’s Arch exper Path Pharmakol 230:406–420Google Scholar
  35. Silva E, Hernandez L (1989) Goldthioglucose causes brain and serotonin depletion correlated with increased body weight. Brain Res 490:192–195Google Scholar
  36. Stauffacher W, Lambert AE; Vecchio D, Renold AE (1967) Measurement of insulin activities in pancreas and serum of mice with spontaneous (“obese” and “New Zealand obese”) and induced (goldthioglucose) obesity and hyperglycemia, with considerations on the pathogenesis of the spontaneous syndrome. Diabetologia 3:230–237PubMedGoogle Scholar
  37. Martin TE, Young FG (1968) Experimental diabetes following growth hormone. In: Pfeiffer EF (ed.) Handbook of Diabetes mellitus, Pathophysiology and Clinical Considerations. Vol. I, Lehmanns Verlag, München. pp 763–770Google Scholar
  38. Young FG (1945) Growth and diabetes in normal animals treated with pituitary (anterior lobe) diabetogenic extract. Biochem J 39:515–536PubMedGoogle Scholar
  39. Abelove WA, Paschkis KE (1954) Comparison of the diabetogenic action of cortisone and growth hormone in different species. Endocrinology 55:637–654PubMedGoogle Scholar
  40. Bellens R, Bastenie PA (1968) Experimental steroid diabetes. In: Pfeiffer EF (ed.) Handbook of Diabetes mellitus, Pathophysiology and Clinical Considerations. Vol. I, Lehmanns Verlag, München. pp 797–810Google Scholar
  41. Hausberger FX, Ramsay AJ (1953) Steroid diabetes in guinea pigs. Effect of cortisone administration on blood-and urinary glucose, nitrogen excretion, fat deposition, and the islets of Langerhans. Endocrinology 53:423–435PubMedGoogle Scholar
  42. Ingle DJ (1941) The production of glycosuria in the normal rat by means of 17-hydroxy-l1-dehydrocorticosterone. Endocrinology 29:649–652Google Scholar
  43. Ingle DJ, Li CH, Evans HM (1946) The effect of adrenocorticotropic hormone on the urinary excretion of sodium, chloride, potassium, nitrogen and glucose in normal rats. Endocrinology 39:32–39PubMedGoogle Scholar
  44. Arnim J, Grant RT, Wright PH (1960) Acute insulin deficiency provoked by single injections of anti-insulin serum. J Physiol (London) 153:131–145Google Scholar
  45. Moloney PJ, Coval M (1955) Antigenicity of insulin: diabetes induced by specific antibodies. Biochem J 59:179–185PubMedGoogle Scholar
  46. Wright PH (1968) Experimental insulin-deficiency due to insulin antibodies. In: 841–865. Pfeiffer EF (ed.) Handbook of Diabetes mellitus, Pathophysiology and Clinical Considerations. Vol. I, Lehmanns Verlag, München. pp 841–865Google Scholar
  47. Craighead J (1978) Current views on the etiology of insulin-dependent diabetes mellitus. New Engl J Med 299:1439–1445PubMedGoogle Scholar
  48. Giron DJ, Patterson RR (1982) Effect of steroid hormones on virus-induced diabetes mellitus. Infect Immun 37:820–822PubMedGoogle Scholar
  49. Giron DJ, Cohen SJ, Lyons SP, Trombley ML, Gould CL (1983) Virus-induced diabetes mellitus in ICR Swiss mice is age dependent. Infect Immun 41:834–836PubMedGoogle Scholar
  50. Gould CL, McMannama KG, Bigley NJ, Giron DJ (1985) Virus-induced murine diabetes. Enhancement by immunosuppression. Diabetes 34:1217–1221PubMedGoogle Scholar
  51. Vialettes B, Baume D, Charpin C, De Maeyer-Guignard J, Vague P (1983) Assessment of viral and immune factors in EMC virus-induced diabetes: effects of cyclosporin A and interferon. J Lab Clin Immunol 10:35–40Google Scholar
  52. Yoon JW, McClintock PR, Onodera T, Notkins AL (1980) Virus-induced diabetes mellitus. XVII. Inhibition by a nondiabetogenic variant of encephalomyocarditis virus. J Exp Med 152:878–892PubMedGoogle Scholar
  53. Ellerman K, Wroblewski M, Rabinovitch A, Like A (1993) Natural killer cell depletion and diabetes mellitus in the BB/Wor rat. Diabetologia 36:596–601PubMedGoogle Scholar
  54. Gottlieb PA, Berrios JP, Mariani G, Handler ES, Greiner D, Mordes JP, Rossini AA (1990) Autoimmune destruction of islets transplanted into RT6-depleted diabetes-resistant BB/Wor rats. Diabetes 39:643–645PubMedGoogle Scholar
  55. Hao L, Chan SM, Lafferty KJ (1993) Mycophenolate mofetil can prevent the development of diabetes in BB rats. Ann NY Acad Sci 969:328–332Google Scholar
  56. Kolb H, Burkart V, Appels B, Hanenberg H, Kantwerk-Funke G, Kiesel U, Funda J, Schraermeyer U, Kolb-Bachofen V (1990) Essential contribution of macrophages to islet cell destruction in vivo and in vitro. J Autoimmun 3 Suppl): 117–120Google Scholar
  57. Lee KU, Pak CY, Amano K, Yoon JW (1988) Prevention of lymphocytic thyroiditis and insulitis in diabetes-prone BB rats by the depletion of macrophages. Diabetologia 31: 400–402PubMedGoogle Scholar
  58. Lefkowith J, Schreiner G, Cormier J, Handler ES, Driscoll HK, Greiner D, Mordes JP, Rossini AA (1990) Prevention of diabetes in the BB rat by essential fatty acid deficiency. J Exp Med 171:729–743PubMedGoogle Scholar
  59. Like AA, Butler L, Williams RM, Appel MC, Weringer EJ, Rossini AA (1982) Spontaneous autoimmune diabetes mellitus in the BB rat. Diabetes 31 (Suppl 1):7–11PubMedGoogle Scholar
  60. Nakhooda AF, Like AA, Chappel CI, Murray FT, Marliss EB (1977) The spontaneously diabetic Wistar rat; metabolic and morphologic studies. Diabetes 26:100–112PubMedGoogle Scholar
  61. Nakhooda AF, Like AA, Chappel CI, Wei CN, Marliss EB (1978) The spontaneously diabetic Wistar rat (the `BB“ rat). Studies prior to and during development of the overt syndrome. Diabetologia 14:199–207PubMedGoogle Scholar
  62. Papaccio G, Mezzogiorno V (1989) Morphological aspects of glucagon and somatostatin islet cells in diabetic Bio Breeding and low-dose streptozotocin-treated Wistar rats. Pancreas 4:289–294Google Scholar
  63. Pipeleers D, Pipeleers-Marichal M, Markholst H, Hoorens A, Klöppel G (1991) Transplantation of purified islet cells in diabetic BB rats. Diabetologia 34:390–396PubMedGoogle Scholar
  64. Sima AAF (1984) Neuropathic and ocular complications in the BB-Wistar rat. In: Shafrir R, Reynold A (eds) Lesson from Diabetes, London, pp 447–453Google Scholar
  65. Solomon SS, Deaton J, Harris G, Smoake JA (1989) Studies of insulin resistance in the streptozotocin diabetic and BB rat: Activation of low Km cAMP phosphodiesterase by insulin. Am J Med Sci 297:372–376PubMedGoogle Scholar
  66. Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4: 2850–2859Google Scholar
  67. Koizumi M, Shimoda I, Sato K, Shishido T, Ono T, Ishizuka J, Toyota T, Goto Y (1989) Effects of CAMOSTAT on development of spontaneous diabetes in the WBN/Kob rats. Biomed Res 10, Suppl 1:45–50Google Scholar
  68. Nakama K, Shichinohe K, Kobayashi K, Naito K, Ushida O, Yasuhara K, Zobe M (1985) Spontaneous diabetes-like syndrome in WBN/Kob rats. Acta Diabetol Lat. 122: 335–342Google Scholar
  69. Tsichitani M Saegusa T, Narama I, Nishikawa T, Gonda T (1985) A new diabetic strain of rat (WBN/Kob) Laboratory Animals 19:200–207Google Scholar
  70. Cohen AM, Teitelbaum A, Saliternik R (1972) Genetics and diet as factors in the development of diabetes mellitus. Metabolism 21:235–240Google Scholar
  71. Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4: 2850–2859Google Scholar
  72. Abadie JM, Wright B, Correa G, Browne ES, Porter JR, Svec F (1993) Effect of dihydro-epiandrosterone on neurotransmitter levels and appetite regulation of the obese Zucker rat. Diabetes 42:662–669PubMedGoogle Scholar
  73. Alamzadeh R, Slonim AE, Zdanowicz MM (1993) Modification of insulin resistance by diazoxide in obese Zucker rats. Endocrinology 133:705–712Google Scholar
  74. Bray GA (1977) The Zucker-fatty rat: A review. Fed Proc 36: 148–153PubMedGoogle Scholar
  75. Clark JB, Palmer CJ, Shaw WN (1983) The diabetic Zucker fatty rat. Proc Soc Exp Biol Med 173:68–75PubMedGoogle Scholar
  76. Fujiwara T, Yoshioka S, Yoshioka T, Ushiyama I, Horikoshi H (1988) Characterization of new oral antidiabetic agent CS-045. Studies in KK and ob/ob mice and Zucker fatty rats. Diabetes 37:1549–1558PubMedGoogle Scholar
  77. Galante P, Maerker E, Scholz R, Rett K, Herberg L, Mosthaf L, Häring HU (1994) Insulin-induced translocation of GLUT 4 in skeletal muscle of insulin-resistant Zucker rats. Diabetologia 37:3–9PubMedGoogle Scholar
  78. Kasim SE, Elovson J, Khilnani S, Almario RU, Jen KLC (1993) Effect of lovostatin on the secretion of very low density lipoproteins and apolipoprotein B in the hypertriglyceridemic Zucker obese rat. Atherosclerosis 104: 147–152PubMedGoogle Scholar
  79. Kava R, Greenwoof MRC, Johnson PR (1990) Zucker (fa/fa) rat. Ilar News 32:4–8Google Scholar
  80. McCaleb ML, Sredy J (1992) Metabolic abnormalities of the hyperglycemic obese Zucker rat. Metabolism 41:522–525PubMedGoogle Scholar
  81. Shafrir E (1992) Animal models of non-insulin-dependent diabetes. Diabetes/Metab Rev 8:179–208Google Scholar
  82. Vasselli JR, Flory T, Fried KS (1987) Insulin binding and glucose transport in adipocytes of acarbose-treated Zucker lean and obese rats. Int J Obesity 11:71–75Google Scholar
  83. Yoshioka S, Nishino H, Shiraki T, Ikeda K, Koike H, Okuno A, Wada M, Fujiwara T, Horikoshi H (1993) Antihypertensive effects of CS-045 treatment in obese Zucker rats. Metabolism 42:75–80PubMedGoogle Scholar
  84. Zucker LM (1965) Hereditary obesity in the rat associated with hyperlipidemia. Ann NY Acad Sci 131:447–458PubMedGoogle Scholar
  85. Ikeda H, Shino A, Matsuo T, Iwatsuka H, Suzuoki Z (1981) A new genetically obese-hyperglycemic rat (Wistar fatty). Diabetes 30:1045–1050PubMedGoogle Scholar
  86. Kava R, Peterson RG, West DB, Greenwood MRC (1990) Ilar News 32:9–13Google Scholar
  87. Kava RA, West DB, Lukasik VA, Greenwood MRC (1989) Sexual dimorphism of hyperglycemia and glucose tolerance in Wistar fatty rats. Diabetes 38:159–163PubMedGoogle Scholar
  88. Kobayashi M, Iwanshi M, Egawa K, Shigeta Y (1992) Pioglitazone increases insulin sensitivity by activating insulin receptor kinase. Diabetes 41:476–483PubMedGoogle Scholar
  89. Madar Z, Omusky Z (1991) Inhibition of intestinal aglucosidase activity and postprandial hyperglycemia by aglucosidase inhibitors in fa/fa rats. Nutrit Res 11:10351046Google Scholar
  90. Peterson RG, Little LA, Neel MA (1990) WKY fatty rat as a model of obesity and non-insulin dependent diabetes mellitus. Ilar News 32:13–15Google Scholar
  91. Velasquez MT, Kimmel PL, Michaelis OE, IV (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4: 2850–2859Google Scholar
  92. Dumm CLAG, Semino MC, Gagliardino JJ (1990) Sequential changes in pancreatic islets of spontaneously diabetic rats. Pancreas 5:533–539Google Scholar
  93. Herberg L, Coleman DL (1977) Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 26:59–99Google Scholar
  94. Tarrés MC, Martinez SM, Liborio MM, Rabasa SL (1981) Diabetes mellitus en una Linea endocrinada de rata. Mende-liana 5:39–48Google Scholar
  95. Koletsky S (1973) Obese spontaneous hypertensive rats — a model for study of arteriosclerosis. Exp Mol Pathol 19: 53–60PubMedGoogle Scholar
  96. Koletsky S (1975) Pathologic findings and laboratory data in a new strain of obese hypertensive rats. Am J Pathol 80: 129–142PubMedGoogle Scholar
  97. Velasquez MT, Kimmel PL, Michaelis OE,IV (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859Google Scholar
  98. Adamo M, Shemer J, Aridor M, Dixon J, Carswell N, Bhathena SJ, Michaelis OE,IV, LeRoith D (1989) Liver insulin receptor tyrosine kinase activity in a model of type II diabetes mellitus and obesity. J Nutr 119:484–489Google Scholar
  99. Hansen CT (1983) Two new congenic rat strains for nutrition and obesity research. Fed Proc 42:573Google Scholar
  100. Hansen CT (1988) The development of the SRH/N- and LA/Ncp (corpulent) congenic rat strains. In: Hansen CT, Michaelis OE,IV (eds) New models of genetically obese rats for studies in diabetes, heart disease, and complications of obesity. Summaries of Workshop Papers and Current Bibliography. National Institutes of Health, Bethesda, MD, pp 7–10Google Scholar
  101. McCune SA, Baker PB, Stills HF (1990) SHHF/Mcc-cp rat: a model of obesity, non-insulin-dependent diabetes, and congestive heart failure. Ilar News 32:23–27Google Scholar
  102. Michaelis 0E, Hansen CT (1990) The spontaneous hypertensive/NIH corpulent rat: a new rodent model for the study of non-insulin dependent diabetes mellitus and its complications. Ilar News 32:19–22Google Scholar
  103. Michaelis 0E, Patrick DH, Hansen A, Canry JJ, Werner RM, Carswell N (1986) Spontaneous hypertensive/NIH-corpulent rat. An animal model for insulin-independent diabetes mellitus (type II).Am J Pathol 123:398–400Google Scholar
  104. Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4: 2850–2859Google Scholar
  105. Berdanier CD (1974) Metabolic abnormalities in BHE rats. Diabetologia 10:691–695PubMedGoogle Scholar
  106. Durand AMA, Fisher M, Adams M (1964) Histology in rats as influenced by age and diet. Arch Pathol 77. 268–277PubMedGoogle Scholar
  107. Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859Google Scholar
  108. Fujiwara T, Yoshioka S, Yoshioka T, Ushiyama I, Horikoshi H (1988) Characterization of new oral antidiabetic agent CS-045. Studies in KK and ob/ob mice and Zucker fatty rats. Diabetes 37:1549–1558PubMedGoogle Scholar
  109. Herberg L, Coleman DL (1977) Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 26:59–99Google Scholar
  110. Nakamura M (1962) A diabetic strain of the mouse. Proc Jap Acad 38:348–352Google Scholar
  111. Nakamura M, Yamada K (1967) Studies on a diabetic (KK) strain of the mouse. Diabetologia 3:212–221PubMedGoogle Scholar
  112. Diani AR, Sawada GA, Zhang NY, Wyse BM, Connell CL, Vidmar TJ, Connell MA (1987) The KKAY mouse: a model for the rapid development of glomerular capillary basement membrane thickening. Blood Vessels 24:297–303PubMedGoogle Scholar
  113. Hofmann CA, Edwards CW, Hillman RM, Colca JR (1992) Treatment of insulin-resistant mice with the oral antidiabetic agent pioglitazone: evaluation of liver GLUT2 and phosphoenolpyruvate carboxykinase expression. Endocrinol 130:735–740Google Scholar
  114. Iwatsuka H, Shino A, Suzouki Z (1970) General survey of diabetic features of yellow KK mice. Endocrinol Japon 17:23–35Google Scholar
  115. Shafrir E (1992) Animal models of non-insulin-dependent diabetes. Diabetes/Metab Rev 8:179–208Google Scholar
  116. Sohda T, Momose Y, Meguro K, Kawamatsu Y, Sugiyama Y, Ikeda H (1990) Studies on antidiabetic agents. Synthesis and hypoglycemic activity of 5-[4-(pyridylalkoxy)benzyl]2,4-thiazolidinediones. Arzneim Forsch/Drug Res 40:37–42Google Scholar
  117. Baeder WL, Sredy J, Sehgal SN, Chang JY, Adams LM (1992) Rapamycin prevents the onset of insulin dependent diabetes mellitus (IDDM) in NOD mice. Clin Exp Immunol 89:174–178PubMedGoogle Scholar
  118. Charlton B, Bacelj A, Mandel TE (1988) Administration of silica particles or anti-Lyt2 antibody prevents 13-cell destruction in NOD mice given cyclophosphamide. Diabetes 37:930–935PubMedGoogle Scholar
  119. Geisen K, Deutschländer H, Gorbach S, Klenke C, Zimmermann U (1990) Function of barium alginate-microencapsulated xenogenic islets in different diabetic mouse models. In: Shafrir E (ed) Frontiers in Diabetes Research. Lessons from Animal Diabetes III. Smith-Gordon, pp 142–148Google Scholar
  120. Lee KU, Amano K, Yoon JW (1988) Evidence for initial involvement of macrophage in development of insulitis in NOD mice. Diabetes 37:989–991PubMedGoogle Scholar
  121. Matsuba H, Jitsukawa T, Yamagata N, Uchida S, Watanabe H (1994) Establishment of rat glutamic acid decarboxylase (GAD)-reactive T-cell clones from NOD mice. Immunol Lett 42:101–103PubMedGoogle Scholar
  122. Nicoletti F, Di Marco R, Barcellini W, Magro G, Schorlemmer HU, Kurrle R, Lunetta M, Grasso S, Zaccone P, Meroni PL (1994) Protection from experimental autoimmune diabetes in the non-obese diabetic mouse with soluble interleukin-1 receptor. Eur J Immunol 24:1843–1847PubMedGoogle Scholar
  123. Tochino Y (1984) Breeding and characteristics of a spontaneously diabetic non obese strain (NOD mouse) of mice. In: Shafrir E, Renold AE (eds) Lessons from Animal Diabetes. John Libbey, London, pp 93–98Google Scholar
  124. Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859Google Scholar
  125. Bleisch VR, Mayer J, Dickie MM (1952) Familial diabetes mellitus in mice associated with insulin resistance, obesity and hyperplasia of the islands of Langerhans. Am J Pathol 28:369–385PubMedGoogle Scholar
  126. Coleman DL, Hummel KP (1973) The influence of genetic background on the expression of obese (ob) gene in the mouse. Diabetologia 9:287–293PubMedGoogle Scholar
  127. Dickie MM (1962) New mutations. Mouse News Letter 27:37Google Scholar
  128. Gill AM, Yen TI’ (1991) Effects of ciglitazone on endogenous plasma islet amyloid polypeptide and insulin sensitivity in obese-diabetic viable yellow mice. Life Sci 48:703–710PubMedGoogle Scholar
  129. Hellman B (1967) Some metabolic aspects of the obesehyperglycemic syndrome in mice. Diabetologia 3:222–229PubMedGoogle Scholar
  130. Herberg L, Coleman DL (1977) Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 26:59–99Google Scholar
  131. Ingalls AM, Dickie MM, Snell GT (1950) Obese, a new mutation in the house mouse. J Hered 14:317–318Google Scholar
  132. Mayer J, Bates MW, Dickie MM (1951) Hereditary diabetes in genetically obese mice. Science 113:746–747PubMedGoogle Scholar
  133. Sirek A (1968) Spontaneous hereditary diabetes in laboratory animals. in: Pfeiffer EF (ed.) Handbook of Diabetes mellitus, Pathophysiology and Clinical Considerations. Vol. I, Lehmanns Verlag, München. pp 715–726Google Scholar
  134. Stauffacher W, Lambert AE; Vecchio D, Renold AE (1967) Measurement of insulin activities in pancreas and serum of mice with spontaneous (“obese” and “New Zealand obese”) and induced (goldthioglucose) obesity and hyperglycemia, with considerations on the pathogenesis of the spontaneous syndrome. Diabetologia 3:230–237PubMedGoogle Scholar
  135. Stein JM, Bewsher PD, Stowers JN (1970) The metabolism of ketones, triglyceride and monoglyceride in livers of obese hyperglycaemic mice. Diabetologia 6:570–574PubMedGoogle Scholar
  136. Westman S (1968) Development of the obese-hyperglycaemic syndrome in mice. Diabetologia 4:141–149PubMedGoogle Scholar
  137. Berglund O, Frankel BJ, Hellman B (1980) Development of the insulin secretory defect in genetically diabetic (db/db) mouse. Acta Endocrinol 87:543–551Google Scholar
  138. Coleman DL, Hummel KP (1967) Studies with the mutation diabetes in the mouse. Diabetologia 3:238–248PubMedGoogle Scholar
  139. Gardner K (1978) Glomerular hyperfiltration during the onset of diabetes mellitus in two strains of diabetic mice (C57BL/6J db/db and C57BL/KsJ db/db) Diabetologia 15: 59–63Google Scholar
  140. Herberg L, Coleman DL (1977) Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 26:59–99Google Scholar
  141. Lee SM (1982) The effect of chronic a-glycosidase inhibition on diabetic nephropathy in the db/db mouse. Diabetes 13: 249–254Google Scholar
  142. Leiter EH, Coleman DL, Ingram DK, Reynold MA (1983) Influence of dietary carbohydrate on the induction of diabetes in C5BL/KsJ-db/db diabetes mice. J Nutr 113:184–195PubMedGoogle Scholar
  143. Like AA, Lavine RL, Poffenbarger PL, Chick WI (1972) Studies on the diabetic mutant mouse. VI Evolution of glomerular lesions and associated proteinuria. Am J Pathol 66:193–224PubMedGoogle Scholar
  144. Stearns SB, Benz CA (1978) Glucagon and insulin relationships in genetically diabetic (db/db) and streptozotocininduced diabetic mice. Horm Metab Res 10:20–33PubMedGoogle Scholar
  145. Cahill GF, Jones EE, Lauris V, Steinke J, Soeldner JS (1967) Studies on experimental diabetes in the Wellesley hybrid mouse. II. Serum insulin levels and response of peripheral tissues. Diabetologia 3:171–174PubMedGoogle Scholar
  146. Gleason RE, Lauris V, Soeldner JS (1967) Studies on experimental diabetes in the Wellesley hybrid mouse. III. Dietary effects and similar changes in a commercial Swiss-Hauschke strain. Diabetologia 3:175–178PubMedGoogle Scholar
  147. Jones E (1964) Spontaneous hyperplasia of the pancreatic islets associated with glycosuria in hybrid mice. In: Brolin SE, Hellman B, Knutson H (eds) The structure and metabolism of pancreatic islets. Pergamon Press, Oxford, pp 189–191Google Scholar
  148. Like AA, Jones EE (1967) Studies on experimental diabetes in the Wellesley hybrid mouse. IV. Morphologic changes in islet tissue. Diabetologia 3:179–187PubMedGoogle Scholar
  149. Cofford OB, Davis CK (1965) Growth characteristics, glucose tolerance and insulin sensitivity of New Zealand obese mice. Metabolism 14:271–280Google Scholar
  150. Melez KA; Harrison LC, Gilliam JN, Steinberg AD (1980) Diabetes is associated with autoimmunity in the New Zealand obese (NZO) mouse. Diabetes 29:835–840PubMedGoogle Scholar
  151. Seemayer TA, Colle E (1980) Pancreatic cellular infiltrates in autoimmune-prone New Zealand black mice. Diabetologia 19:216–221Google Scholar
  152. Shafrir E (1992) Animal models of non-insulin-dependent diabetes. Diabetes/Metab Rev 8:179–208Google Scholar
  153. Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4: 2850–2859Google Scholar
  154. Veroni MC, Proietto J, Larkins RG (1991) Insulin resistance in New Zealand obese mice. Diabetes 40:1480PubMedGoogle Scholar
  155. Butler L (1967) The inheritance of diabetes in the Chinese hamster. Diabetologia 3:124–129PubMedGoogle Scholar
  156. Gerritsen CG, Dulin WE (1967) Characterization of diabetes in the Chinese hamster. Diabetologia 3:74–78PubMedGoogle Scholar
  157. Gerritsen GC (1982) The Chinese hamster as a model for the study of diabetes mellitus. Diabetes 31 (Suppl 1) 14–23PubMedGoogle Scholar
  158. Gundersen K, Yerganian G, Lin BJ, Gagnon H, Bell F, McRae W, Onsberg T (1967) Diabetes in the Chinese hamster. Some clinical and metabolic aspects. Diabetologia 3:85–91PubMedGoogle Scholar
  159. Luse SA, Caramia F, Gerritsen G, Dulin WE (1967) Spontaneous diabetes mellitus in the Chinese hamster: An electron microscopic study of the islets of Langerhans. Diabetologia 3:97–108PubMedGoogle Scholar
  160. Malaisse W, Malaisse-Lagae F, Gerritsen GC, Dulin WE, Wright PH (1967) Insulin secretion in vitro by the pancreas of the Chinese hamster. Diabetologia 3:109–114PubMedGoogle Scholar
  161. Meier H, Yerganian G (1961) Spontaneous diabetes mellitus in the Chinese hamster (Cricetulus griseus). II. Findings in the offspring of diabetic parents. Diabetes 10:12–18PubMedGoogle Scholar
  162. Meier H, Yerganian G (1961) Spontaneous hereditary diabetes mellitus in the Chinese hamster (Cricetulus griseus). III. Maintenance of a diabetic hamster colony with the aid of hypoglycemic therapy. Diabetes 10:19–21PubMedGoogle Scholar
  163. Meier H, Yerganian GA (1959) Spontaneous hereditary diabetes mellitus in Chinese hamster (Cricetulus griseus). I. Pathological findings. Proc Soc Exper Biol Med 100: 810–815Google Scholar
  164. Shirai T, Welsh GW, Sims EAH (1967) Diabetes mellitus in the Chinese hamster. II. The evolution of renal glomerulopathy. Diabetologia 3:266–286PubMedGoogle Scholar
  165. Sims EAH, Landau BR (1967) Diabetes mellitus in the Chinese hamster. I. Metabolic and morphologic studies. Diabetologia 3:115–123PubMedGoogle Scholar
  166. Sirek A (1968) Spontaneous hereditary diabetes in laboratory animals. in: Pfeiffer EF (ed) Handbook of Diabetes mellitus, Pathophysiology and Clinical Considerations. Vol. I, Lehmanns Verlag, München. pp 715–726Google Scholar
  167. Sirek OV, Sirek A (1967) The colony of Chinese hamsters of the C.H. Best institute. A review of experimental work. Diabetologia 3:65–73PubMedGoogle Scholar
  168. Soret MG, Dulin WE, Matthew’s J, Gerritsen GC (1974) Morphologic abnormalities observed in retina, pancreas and kidney of diabetic Chinese hamsters. Diabetologia 10: 567–579PubMedGoogle Scholar
  169. Brodoff BN, Penhos JC, Levine R, White R (1967) The effect of feeding and various hormones on the glucose tolerance of the sand rat (Psammomys obesus) Diabetologia 3:167–170Google Scholar
  170. DeFronzo R, Miki E, Steinke J (1967) Diabetic syndrome in sand rats. Diabetologia 3:140–142Google Scholar
  171. Hackel DB, Mikat E, Lebovitz HE, Schmidt-Nielsen K, Horton ES, Kinney TD (1967) The sand rat (Psammomys obesus) as an experimental animal in studies of diabetes mellitus. Diabetologia 3:130–134PubMedGoogle Scholar
  172. Hackel DB, Schmidt-Nielson K, Haines HB, Miai E (1965) Diabetes mellitus in the sand rat (Psammomys obesus) - pathologic studies. Lab Invest 14:200–207PubMedGoogle Scholar
  173. Kalderon B, Gutman A, Levy E, Shafrir E, Adler JH (1986) Characterization of stages in the development of obesity-diabetes syndrome in the sand rat (Psammomys obesus). Diabetes 35:717–724PubMedGoogle Scholar
  174. Marquie G, Duhault J, Jacotot B (1984) Diabetes mellitus in sand rats (Psammomys obesus). Metabolic pattern during development of the diabetic syndrome. Diabetes 33: 438–443PubMedGoogle Scholar
  175. Miki E, Like AA, Steinke J, Soeldner JS (1967) Diabetic syndrome in sand rats. Diabetologia 3:135–139PubMedGoogle Scholar
  176. Shafrir E (1992) Animal models of non-insulin-dependent diabetes. Diabetes/Metab Rev 8:179–208Google Scholar
  177. Pictet R, Orci L, Gonet AE, Rouiller Ch, Renold AE (1967) Ultrastructural studies of the hyperplastic islets of Langerhans of spiny mice (Acomys Cahirinus) before and during the development of hyperglycemia. Diabetologia 3: 188–211PubMedGoogle Scholar
  178. Renold AE, Dulin WE (1967) Spontaneous diabetes in laboratory animals. Diabetologia 3:63–64Google Scholar
  179. Shafrir E, Teitelbaum A, Cohen AM (1972) Hyperlipidemia and impaired glucose tolerance in Acomys cahirinus maintained on synthetic carbohydrate diets. Isr J Med Sci 8: 990–992PubMedGoogle Scholar
  180. Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4: 2850–2859Google Scholar
  181. Wise PH, Weir BJ, Hirne JM, Forrest E (1972) The diabetic syndrome in the Tuco-Tuco (Ctenomis talarum). Diabetologia 8:165–172PubMedGoogle Scholar
  182. Schaefer EM, Viard V, Morin J, Ferré P, Pénicaud L, Ramos P, Maika SD, Ellis L, Hammer RE (1994) A new transgenic mouse model of chronic hyperglycemia. Diabetes 43: 143–153PubMedGoogle Scholar
  183. Biological Assay of Insulin. British Pharmacopoeia 1988, Vol. II, London, Her Majesty’s Stationary Office, pp A168—A170Google Scholar
  184. Insulin assay. Rabbit blood-sugar method. United States Pharmacopoeia XXII. The National Formulary XVII, 1990. United States Pharmacopoeia) Convention, Inc., Rockville, MD, pp 1513–1514Google Scholar
  185. Underhill LA, Dabbah R, Grady LT, Rhodes CT (1994) Alternatives to animal testing in the USP-NF: Present and future. Drug Devel Industr Pharmacy 20:165–216Google Scholar
  186. USP 23 (1995) Design and analysis of biological assays. The United States Pharmacopeia. pp 1705–1715Google Scholar
  187. USP 23 (1995) Insulin assay. The United States Pharmacopeia. pp 1716–1717Google Scholar
  188. Wertbestimmung von Insulin. Deutsches Arzneibuch, 9. Aus- gabe 1986, Deutscher Apotheker Verlag Stuttgart, pp 50–52Google Scholar
  189. Biological Assay of Insulin. British Pharmacopoeia 1988, Vol. II, London, Her Majesty’s Stationary Office, pp A168–A170Google Scholar
  190. Eneroth G, Ahlund K (1970) A twin crossover method for bioassay of insulin using blood glucose levels in mice — a comparison with the rabbit method. Acta Pharm Suec 7: 457–462PubMedGoogle Scholar
  191. Trethewey J (1989) Bio-assays for the analysis of insulin. J Pharm Biomed Anal 7:189–197PubMedGoogle Scholar
  192. Wertbestimmung von Insulin. Deutsches Arzneibuch, 9. Aus- gabe 1986, Deutscher Apotheker Verlag Stuttgart, pp 50–52Google Scholar
  193. Ball EG, Merrill MA (1961) A manometric assay of insulin and some results of the application of the method to sera and islet-containing tissue. Endocrinology 69:596–607PubMedGoogle Scholar
  194. Basi NS, Thomaskutti KG, Pointer RH (1992) Regulation of glucose transport in isolated adipocytes by levamisole. Can J Physiol Pharmacol 70:1190–1194PubMedGoogle Scholar
  195. Clancy BM, Czech MP (1990) Hexose transport stimulation and membrane redistribution of glucose transporter isoforms in response to cholera toxin, dibutyryl cyclic AMP, and insulin in 3T3–L1 adipocytes. J Biol Chem 265:12434–12443PubMedGoogle Scholar
  196. Ditschuneit H, Chang SA, Pfeiffer M, Pfeiffer EF (1959) Über die Bestimmung von Insulin im Blute am epididymalen Fettanhang der Ratte mit Hilfe markierter Glukose. Klin Wschr. 37:1234–1239PubMedGoogle Scholar
  197. Foley JE, Cushman SW, Salans LB (1978) Glucose transport in isolated rat adipocytes with measurement of L-arabinose uptake. Am J Physiol 234:E112–E119PubMedGoogle Scholar
  198. Foley JE, Gliemann J (1981) Accumulation of 2-deoxyglucose against its concentration gradient in rat adipocytes. Biochim Biophys Acta 648:100–106PubMedGoogle Scholar
  199. Frost SC, Lane MD (1985) Evidence for the involvement of vicinal sulfhydryl groups in insulin-activated hexose transport by 3T3–L1 adipocytes. J Biol Chem 260:2646–2652PubMedGoogle Scholar
  200. Gliemann J (1965) Insulin-like activity of dilute human serum assayed by an isolated adipose cell method. Diabetes 14: 643–649PubMedGoogle Scholar
  201. Gliemann J (1967) Assay of insulin-like activity by the isolated fat cell method. II. The suppressible and non-suppressible insulin-like activity of serum. Diabetologia 3: 389–394PubMedGoogle Scholar
  202. Gliemann J (1967) Insulin assay by the isolated fat cell method. I. Factors influencing the response to crystalline insulin. Diabetologia 3:382–388PubMedGoogle Scholar
  203. Gliemann J, osterlind K, Vinten J. Gammeltoft S (1972) A procedure for measurement of distribution spaces in isolated fat cells. Biochim Biophys Acta 286:1–9PubMedGoogle Scholar
  204. Green H, Kehinde 0 (1974) Sublines of mouse 3T3 cells that accumulate lipid. Cell 1:113–116Google Scholar
  205. Humbel RE (1959) Messung der Serum — Insulin — Aktivität mit epididymalem Fettgewebe in vitro. Experientia (Basel) 15:256–258Google Scholar
  206. Jacobs DB, Hayer GR, Lockwood DH (1987) Effect of chlorpropamide on glucose transport in rat adipocytes in the absence of changes in insulin binding and receptor-associated tyrosine kinase activity. Metabolism 36:548–554PubMedGoogle Scholar
  207. Karnieli E, Zarnowski MJ, Hissin PJ, Simpson IA, Salans LB, Cushman SW (1981) Insulin-stimulated translocation of glucose transport systems in the isolated rat adipose cell. J Biol Chem 256:4772–3777PubMedGoogle Scholar
  208. Kletzien RF, Foellmi LA, Harris PKW, Wyse BM, Clarke SD (1992) Adipocyte fatty acid-binding protein: Regulation of gene expression in vivo and in vitro by an insulin-sensitizing agent. Mol Pharmacol 42:558–562PubMedGoogle Scholar
  209. Lamer AC, Fleming JW (1984) Hormone-sensitive adenylate cyclase. In: Lamer J, Pohl SL (eds) Methods in Diabetes Research Vol I: Laboratory Methods. Part B. John Wiley and Sons, New York, pp 23–36Google Scholar
  210. Lingsoe J (1961) Determination of the insulin-like activity in serum using rat epididymal adipose tissue. Scand J Clin Lab Invest 13:628–636Google Scholar
  211. Maloff BL, Lockwood DH (1981) In vitro effects of a sulfonylurea on insulin action in adipocytes. J Clin Invest 68:85–90PubMedGoogle Scholar
  212. Marshall S, Garvey WT, Geller M (1984) Primary culture of adipocytes. J Biol Chem 259:6376–6384PubMedGoogle Scholar
  213. Martin DB, Renold AE, Dagenais YM (1958) An assay for in- sulin-like activity using rat adipose tissue. Lancet 11: 76–77Google Scholar
  214. McKee] DW, Jarett L (1970) Preparation and characterization of a plasma membrane fraction from isolated fat cells. J Cell Biol 44:417–432Google Scholar
  215. Moody AJ, Stan MA, Stan M (1974) A simple free fat cell bioassay for insulin. Horm Metab Res 6:12–16PubMedGoogle Scholar
  216. Müller G, Korndörfer A, Saar K, Karbe-Thönges B, Fasold H, Müllner S (1994) 4’-Amino-benzamido-taurocholic acid selectively solubilizes glycosyl-phophatidylinositol-anchored membrane proteins and improves lipolytic cleavage of their membrane anchors by specific phospholipases. Arch Biochem Biophys 309:329–340Google Scholar
  217. Müller G, Wied S (1993) The sulfonylurea drug, glimepiride, stimulates glucose transport, glucose transporter translocation, and dephosphorylation in insulin-resistant rat adipocytes in vitro. Diabetes 42:1852–1867PubMedGoogle Scholar
  218. Pillion DJ (1985) Differential effects of insulin, antibodies against rat adipocyte plasma membranes, and other agents that mimic insulin action in rat adipocytes. Metabolism 34: 1012–1019PubMedGoogle Scholar
  219. Renold AE, Martin DB, Dagenais YM, Steinke J, Nickerson RJ, Lauris V (1960) Measurement of small quantities of insulin-like activity using rat adipose tissue. I. A proposed procedure. J Clin Invest 39:1487–1498PubMedGoogle Scholar
  220. Rodbell M (1964) Metabolism of isolated fat cells. I. Effect of hormones on glucose metabolism and lipolysis. J Biol Chem 239:375–380PubMedGoogle Scholar
  221. Siess E, Teinzer A, Wieland 0 (1965) Eine vereinfachte Methode zur Insulinbestimmung im Serum. Diabetologia 1:201–207Google Scholar
  222. Slater JDH, Samaan N, Fraser R, Stillman D (1961) Immunological studies with circulating insulin. Br Med J 1:1712–1715PubMedGoogle Scholar
  223. Sönksen PH, Ellis JP, Lowy C, Rutherford A, Nabarro JDN (1965) Plasma insulin: a correlation between bioassay and immunoassay. Br Med J (1965 II):209–210Google Scholar
  224. Spooner PM, Chernick SS, Garrison MM, Scow RO (1979) Insulin regulation of lipoprotein lipase activity and release in 3T3–L1 adipocytes. J Biol Chem 254:10021–10029PubMedGoogle Scholar
  225. Steinke J, Miki E, Cahill GF (1965) Assay of crystalline insulin and of serum insulin-like activity of different species on adipose tissue of the rat, mouse and guinea pig. New Engl J Med. 273:1464–1467PubMedGoogle Scholar
  226. Steinke J, Sirek A, Lauris V, Lukens FDW, Renold AE (1962) Measurement of small quantities of insulin-like activity with rat adipose tissue. III. Persistence of serum insulin-like activity after pancreatectomy. J Clin Invest 41:1699–1707PubMedGoogle Scholar
  227. Towbin H, Staehelin T, Gordon, J. (1979) Electrophoretic transfer from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354PubMedGoogle Scholar
  228. Traxinger RR; Marshall S (1989) Role of amino acids in modulating glucose induced desensitization of the glucose transport system. J Biol Chem 264:20910–20916PubMedGoogle Scholar
  229. Van Putten JPM, Krans HMJ (1986) Characterization of the sulfonylurea-induced potentiation of the insulin response in cultured 3T3 adipocytes. Biochem Pharmacol 35:2141–2144PubMedGoogle Scholar
  230. Whitesell RR, Gliemann J (1979) Kinetic parameters of 3–0methylglucose and glucose in adipocytes. J Biol Chem 254: 5276–5283PubMedGoogle Scholar
  231. Wieland M, Brandenburg C, Brandenburg D, Joost HG (1990) Antagonistic effect of a covalently dimerized insulin derivative on insulin receptors in 3T3–L1 adipocytes. Proc Natl Acad Sci USA 87:1154–1158Google Scholar
  232. Zuber MX, Wang SM, Thammavaram KV, Reed DK, Reed BC (1985) Elevation of the number of cell-surface insulin receptors and the rate of 2-deoxyglucose uptake by exposure of 3T3–L1 adipocytes to tolbutamide. J Biol Chem 260: 14045–14052PubMedGoogle Scholar
  233. Assimacopoulos-Jeannet F, Cusin I, Greco-Perotto RM, Terrettaz J, Rohner-Jeanrenaud F, Zarjevski N, Jeanrenaud B (1991) Glucose transporters: structure, function, and regulation. Biochimie 73:76–70Google Scholar
  234. Bahr M, von Holtey M, Müller G, Eckel J (1995) Direct stimulation of myocardial glucose transport and glucose transporter-1 (GLU1) and GLUT4 protein expression by the sulfonylurea glimepiride. Endocrinology 136:2547–2553PubMedGoogle Scholar
  235. Baldwin JM, Gorga JC, Lienhard GE (1981) The monosaccharide transporter of the human erythrocyte. J Biol Chem 256:3685–3689PubMedGoogle Scholar
  236. Begum N, Draznin B (1992).The effect of streptozotocininduced diabetes on GLUT-4 phosphorylation in rat adipocytes. J Clin Invest 90:1254–1262PubMedGoogle Scholar
  237. Cusin I, Terrettaz J, Rohner-Jeanrenaud F, Zarjevski N, Assimacopoulos-Jeannet F, Jeanrenaud B (1990) Hyperinsulinemia increases the amount of GLUT4 mRNA in white adipose tissue and decreases that of muscles: a clue for increased fat depot and insulin resistance. Endocrinology 127:3246–3248PubMedGoogle Scholar
  238. Ezaki O, Kasuga M, Akanuma Y, Takata K, Hirano H, FujitaYamaguchi Y, Kasahara M (1986) Recycling of the glucose transporter, the insulin receptor, and insulin in rat adipocytes. J Biol Chem 261:3295–3305PubMedGoogle Scholar
  239. Galante P, Maerker E, Scholz R, Rett K, Herberg L, Mosthaf L, Häring HU (1994) Insulin-induced translocation of GLUT4 in skeletal muscle of insulin-resistant Zucker rats. Diabetologia 37:3–9PubMedGoogle Scholar
  240. Gould GW, Holman GD (1993) The glucose transporter family: structure, function and tissue-specific expression. Biochem J 295:329–341PubMedGoogle Scholar
  241. Hofmann C, Lorenz K, Colca JR (1991) Glucose transport deficiency in diabetic animals is corrected by treatment with the oral antihyperglycemic agent pioglitazone. Endocrinol 129:1915–1925Google Scholar
  242. Jacobs DB, Hayes GR, Lockwood DHl (1989) In vitro effect of sulfonylurea on glucose transport and translocation of glucose transporters in adipocytes from streptozocininduced diabetic rats. Diabetes 38:205–211PubMedGoogle Scholar
  243. Jacobs DB, Jung CY (1985) Sulfonylurea potentiates insulin-induced recruitment of glucose transport carrier in rat adipocytes. J Biol Chem 260:2593–2596PubMedGoogle Scholar
  244. James DE, Strube M, Mueckler M (1989). Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature 338:83–87PubMedGoogle Scholar
  245. Klip A, Marette A (1992) Acute and chronic signals controlling glucose transport in skeletal muscle. J Cell Biochem 48:51–60PubMedGoogle Scholar
  246. Klip A, Paquet MR (1990) Glucose transport and glucose transporters in muscle and their metabolic regulation. Diabetes Care 13:228–243PubMedGoogle Scholar
  247. Klip A, Ramlal T, Young DA, Holloszy JO (1987) Insulin-induced translocation of glucose transporters in rat hind-limb muscles. FEBS Lett 224:224–230PubMedGoogle Scholar
  248. Laurie SM, Cain CC, Lienhard GE, Castle JD (1993) The glucose transporter GLUT4 and secretory membrane proteins (SCAMPs) colocalize in rat adipocytes and partially segregate during insulin stimulation. J Biol Chem 268:1911019117Google Scholar
  249. Matthei S, Hamann A, Klein HH, Benecke H, Kreymann G, Flier JS, Greten H (1991) Association of metformin’s effect to increase insulin-stimulated glucose transport with potentiation of insulin-induced translocation of glucose transporters from intracellular pool to plasma membrane in rat adipocytes. Diabetes 40:850–857Google Scholar
  250. Matthei S, Trost B, Hammann A, Kausch C, Benecke H, Greten H, Höppner W, Klein HH (1995) The effect of in vivo thyroid hormone status on insulin signalling and GLUT1 and GLUT4 glucose transport systems in rat adipocytes. J Endocrinol 144:347–357Google Scholar
  251. Mühlbacher C, Karnieli E, Schaff P, Obermaier B, Mushack J, Rattenhuber E, Häring HU (1988) Phorbol esters imitate in rat fat-cells the full effect of insulin on glucose-carrier translocation, but not on 3-O-methylglucose-transport activity. Biochem J 249:865–870PubMedGoogle Scholar
  252. Müller G, Wied S (1993) The sulfonylurea drug, glimepiride, stimulates glucose transport, glucose transporter translocation, and dephosphorylation in insulin-resistant rat adipocytes in vitro. Diabetes 42:1852–1867PubMedGoogle Scholar
  253. Rampal AL, Jhun BH, Kim S, Liu H, Manka M, Lachaal M, Spangler RA, Jung CY (1995) Okadaic acid stimulates glucose transport in rat adipocytes by increasing the externalization rate constant of GLUT4 recycling. J Biol Chem 270: 3938–3943PubMedGoogle Scholar
  254. Reusch JEB, Sussman KE, Draznin B (1993) Inverse relationship between GLUT-4 phosphorylation and its intrinsic activity. J Biol Chem 268:3348–3351PubMedGoogle Scholar
  255. Simpson IA, Yver DR, Hissin PJ, Wardzala LJ, Karnieli E, Salans LB, Cushman SW (1983) Insulin-stimulated translocation of glucose transporters in the isolated rat adipose tissue cells: characterization of subcellular fractions. Biochim Biophys Acta 763:393–407PubMedGoogle Scholar
  256. Towbin H, Staehelin T, Gordon, J. (1979) Electrophoretic transfer from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354PubMedGoogle Scholar
  257. Honnor RC, Dhillon GS, Londos C (1985) cAMP dependent protein kinase and rat adipocytes. J Biol Chem 260:15122–15129Google Scholar
  258. Kono T, Robinson FW, Sarver JA (1975) Insulin-sensitive phosphodiesterase. Its localization, hormonal stimulation, and oxidative stabilization. J Biol Chem 250:7826–7835PubMedGoogle Scholar
  259. Müller G, Wied S, Wetekam EM, Crecelius A, Punter J (1994) Stimulation of glucose utilization in 3T3 adipocytes and rat diaphragm in vitro by the sulfonylureas glimiperide and glibenclamide, is correlated with modulations of the cAMP regulatory cycle. Biochem Pharmacol 48:985–996PubMedGoogle Scholar
  260. Müller HK, Kellerer M, Ermel B, Mühlhöfer A, ObermaierKusser B, Vogt B, Häring HU (1991) Prevention by protein kinase C inhibitors of glucose-induced insulin-receptor tyrosine kinase in rat fat cells. Diabetes 40:1440–1448PubMedGoogle Scholar
  261. Okuno S, Inaba M, Nishizawa Y, Inoue A, Morii H (1988) Effect of tolbutamide and glyburide on cAMP-dependent protein kinase activity in rat liver cytosol. Diabetes 37:857–861PubMedGoogle Scholar
  262. Osegawa M, Makino H, Kanatsuka A, Kumagai A (1982) Effects of sulfonylureas on membrane-bound low Km cyclic AMP phosphodiesterase in rat fat cells. Biochim Biophys Acta 721:289–296PubMedGoogle Scholar
  263. Roskoski R (1983) Assays of protein kinase. Meth Enzymol 99:3–6PubMedGoogle Scholar
  264. Saltiel AR, Steigerwalt RW (1985) Purification of putative insulin-sensitive cAMP phosphodiesterase or its catalytic domain from adipose tissue. Diabetes 35:698–704Google Scholar
  265. Solomon SS, Deaton J, Shankar TP, Palazzolo M (1986) Cyclic AMP phosphodiesterase in diabetes. Effect of glyburide. Diabetes 35:1233–1236PubMedGoogle Scholar
  266. Sooranna SR, Saggerson ED (1976) Interactions of insulin and adrenaline with glycerol phosphate acylation processes in fat cells from rat. FEBS Lett 64:36–39PubMedGoogle Scholar
  267. Vila MDC, Milligan G, Standaert ML, Farese RV (1990) Insulin activates glycerol-3-phosphate-acyltransferase (de novo phosphatidic acid synthesis) through a phospholipidderived mediator. Apparent involvement of Gia and activation of a phospholipase C. Biochem 29:8735–8740Google Scholar
  268. Wieland 0 (1974) Glycerin UV-Methode. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse. Verlag Chemie Weinheim, pp 1448–1453Google Scholar
  269. Araki E, Lipes MA, Patti ME, Brüning JC, Haag III B, Johnson RS, Kahn CR (1994) Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 372:186–190PubMedGoogle Scholar
  270. Berti L, Mosthaf L, Kroder GF, Kellerer M, Tippmer S, Mushack J, Seffer E, Seedorf K, Häring H (1994) Glucose-induced translocation of protein kinase C isoforms in rat-1 fibroblasts is paralleled by inhibition of the insulin receptor tyrosine kinase. J Biol Chem 269:3381–3386PubMedGoogle Scholar
  271. DeMeyts P, Christoffersen CT, Ursks B, Ish-Shalom D, Sacerdote-Sierra N, Drejer K, Schäffer L, Shymko RM, Naor D (1993) Insulin’s potency as a mitogen is determined by the half-life of the insulin-receptor complex. Exp Clin Endocrinol 101:22–23Google Scholar
  272. Myers MG, Sun XJ, White MF (1994) The IRS-1 signaling system. Trends Biochem Sci 19:289–293PubMedGoogle Scholar
  273. Pelicci G, Lanfrancone L, Grignani F, McGlade J, Cavallo F, Forni G, Nicoletti I, Grignani F, Pawson T, Pelicci PG (1992) A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell 70:93–104PubMedGoogle Scholar
  274. Pronk GJ, McGlade J, Pelicci G, Pawson T, Bos JL (1993) Insulin-induced phosphorylation of the 46- and 52-kDA Shc proteins. J Biol Chem 268:5748–5753PubMedGoogle Scholar
  275. Quon MJ, Butte AT, Zarnowski MI, Sesti G, Cushman SW, Taylor SI (1994) Insulin receptor substrate 1 mediates the stimulatory effect of insulin on GLUT4 translocation in transfected rat adipose cells. J Biol Chem 269:27920–27924PubMedGoogle Scholar
  276. Sasaoka T, Draznin B, Leitner JW, Langlois WJ, Olefsky JM (1994) Shc is the predominant signaling molecule coupling insulin receptors to activation of guanine nucleotide releasing factor and p21’°s-GPT formation. J Biol Chem 269: 10734–10738PubMedGoogle Scholar
  277. Sun XJ, Miralpeix M, Myers MG, Glasheen EM, Backer JM, Kahn CR, White MF (1992) Expression and function of IRS-1 in insulin signal transmission. J Biol Chem 267:22662–22672PubMedGoogle Scholar
  278. Tamemoto H, Kadowaki T, Tobe K, Yagi T, Sakura H, Hayakawa T, Terauchi Y, Ueki K, Kaburagi Y, Satoh S, Sekihara H, Yoshioka S, Horokoshi H, Furuta Y, Ikawa Y, Kasuga M, Yazaki Y, Aizawa S (1994) Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372:182–186PubMedGoogle Scholar
  279. Tanti JF, Grémeaux T, Van Obberghen E, Le MarchandBrustel Y (1994) Serine/threonine phosphorylation of insulin substrate 1 modulates insulin receptor signaling. J Biol Chem 269:6051–6057PubMedGoogle Scholar
  280. White MF, Maron R, Kahn RC (1985) Insulin rapidly stimulates tyrosine phosphorylation of a Mr-185,000 protein in intact cells. Nature 318:183–186PubMedGoogle Scholar
  281. Yonazawa K, Ando A, Kaburagi Y, Yamamoto-Honda R, Kitamura T, Hara K, Nakafuku M, Okabayashi Y, Kadowaki T, Kaziro Y, Kasuga M (1994) Signal transduction pathways from insulin receptor to ras. Analysis by mutant insulin receptors. J Biol Chem 269:4634–4640Google Scholar
  282. Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256:1604–1607PubMedGoogle Scholar
  283. Chan BL, Lisanti MP, Rodriguez-Boulan E, Saltiel AR (1988) Insulin-stimulated release of lipoprotein lipase by metabolism of its phosphatidinylinositol anchor. Science 241: 1670–1672PubMedGoogle Scholar
  284. Cross GAM (1990) Glycolipid anchoring of plasma membrane proteins. Ann Rev Cell Biol 6:1–39PubMedGoogle Scholar
  285. Ferguson MAJ (1991) Lipid anchors on membrane proteins. Curr Opin Struct Biol 1:522–529Google Scholar
  286. Ferguson MAJ, Williams AF (1988) Cell-surface anchoring of proteins via glycosyl-phophatidylinositol structures. Ann Rev Biochem 57:285–320PubMedGoogle Scholar
  287. Lamer J (1988) Insulin-signaling mechanisms. Lessons from the old testament of glycogen metabolism and the new testament of molecular biology. Diabetes 37:262–275Google Scholar
  288. Lawrence JC, Hiken JF, Inkster M, Scott CW, Mumby MC (1986) Insulin stimulates the generation of an adipocyte phosphoprotein that is isolated with a monoclonal antibody against the regulatory subunit of bovine heart cAMPdependent protein kinase. Proc Nat1 Acad Sci USA 83: 3649–3653Google Scholar
  289. Lewis KA, Garigapati VR, Zhou C, Roberts MF (1993) Substrate requirements of bacterial phosphatidinylinositolspecific phospholipase C. Biochem 32:8836–8841Google Scholar
  290. Lisanti MP, Darnell JC, Chan BL, Rodriguez-Boulan E, Saltiel AR (1989) The distribution of glycosyl-phophatidylinositol anchored proteins is differentially regulated by serum and insulin. Biochem Biophys Res Comm 164:824–832PubMedGoogle Scholar
  291. Low MG (1989) The glycosyl-phophatidylinositol anchor of membrane proteins. Biochim Biophys Acta 988:427–454PubMedGoogle Scholar
  292. Low MG (1990) Degradation of glycosyl-phophatidylinositol anchors by specific phospholipases. In: Turner AJ (ed) Molecular and Cell Biology of Membrane Proteins. Glycolipid Anchors of Cell-surface Proteins. Ellis Horwood, New York, pp 35–63Google Scholar
  293. Low MG, Saltiel AR (1988) Structural and functional roles of glycosyl-phophatidylinositol in membranes. Science 239: 268–275PubMedGoogle Scholar
  294. Low MG, Stiernberg J, Waneck GL, Flavell RA, Kincade PW (1988) Cell-specific heterogeneity in sensitivity of phosphatidinylinositol-anchored membrane antigens to release by phopsholipase C. J Immunol Meth 113:101–111Google Scholar
  295. Marshall S, Garvey WT, Geller M (1984) Primary culture of adipocytes. J Biol Chem 259:6376–6384PubMedGoogle Scholar
  296. Muller G, Bandlow W (1991) A cAMP binding ectoprotein in the yeast Saccharomyces cerevisiae. Biochemistry 30: 10181–10190PubMedGoogle Scholar
  297. Muller G, Dearey EA, Punter J (1993) The sulfonylurea drug, glimepiride, stimulates release of glycosylphophatidylinositol-anchored plasma membrane proteins from 3T3 adipocytes. Biochem J 289:509–521PubMedGoogle Scholar
  298. Muller G, Korndörfer A, Saar K, Karbe-Thönges B, Fasold H, Milliner S (1994) 4’-Amino-benzamido-taurocholic acid selectively solubilizes glycosyl-phophatidylinositol-anchored membrane proteins and improves lipolytic cleavage of their membrane anchors by specific phospholipases. Arch Biochem Biophys 309:329–340Google Scholar
  299. Muller G, Wied S, Wetekam EM, Crecelius A, Punter J (1994) Stimulation of glucose utilization in 3T3 adipocytes and rat diaphragm in vitro by the sulfonylureas glimiperide and glibenclamide, is correlated with modulations of the cAMP regulatory cycle. Biochem Pharmacol 48:985–996PubMedGoogle Scholar
  300. Pryde JG, Phillips JH (1986) Fractionation of membrane proteins by temperature-induced phase separation in Triton X114. Biochem J (1986) 233.525–533PubMedGoogle Scholar
  301. Romero G, Luttrell L, Rogol A, Zeller K, Hewlett E, Larner J (1988) Phophatidylinositol-glycan anchors of membrane proteins: Potential precursors of insulin mediators. Science 240:509–512PubMedGoogle Scholar
  302. Saltiel AR, Cuatrecasas P (1986) Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid. Proc Natl Acad Sci USA 83:5793–5797PubMedGoogle Scholar
  303. Satiel AR (1990) Second messengers of insulin action. Trends Endocrinol Metab 1:158–163Google Scholar
  304. Thomas JR, Dwek RA, Rademacher TW (1990) Structure, biosynthesis and function of gylcosylphosphatidinylinositols. Biochem 29:5413–5422Google Scholar
  305. Altan N, Altan VM, Mikolay L, Lamer J, Schwartz CFW (1985) Insulin-like and insulin-enhancing effects of the sulfonylurea glyburide on rat adipose tissue glycogen synthase. Diabetes 34:281–286PubMedGoogle Scholar
  306. Antoniades HN (1961) Studies on the state of insulin in blood: The state and transport of insulin in blood. Endocrinology 68:7–16PubMedGoogle Scholar
  307. Chen-Zion M, Bassukevitz Y, Beitner R (1992) Sequence of insulin effects on cytoskeletal and cytosolic phosphofructokinase, glucose 1,6-biphosphate and fructose 2,6-biphosphate levels, and the antagonistic action of calmodulin inhibitors, in diaphragm muscle. Int J Biochem 24:1661–1667PubMedGoogle Scholar
  308. Geiger R, Geisen K, Summ HD (1982) Austausch von A1Glycin in Rinderinsulin gegen L- und D-Tryptophan. Hoppe Seyler’s Z Physiol Chem 363:1231–1239PubMedGoogle Scholar
  309. Groen J, Kamminga CE, Willebrands AF, Blickman JR (1952) Evidence for the presence of insulin in blood serum. A method for the approximate determination of the insulin content of blood. J Clin Invest 31:97–106PubMedGoogle Scholar
  310. Guinovart JJ, Salavert A, Massagué J, Ciudad CJ, Salsas E, Itarte E (1979) Glycogen synthase: A new activity ratio assay expressing a high sensitivity to the phosphorylation state. FEBS Lett 106:284–288PubMedGoogle Scholar
  311. Hothersall JS, Muirhead RP, Wimalawansa S (1990) The effect of amylin and calcitonin gene-related peptide on insulin-stimulated glucose transport in the diaphragm. Biochem Biophys Res Commun 169:451–454PubMedGoogle Scholar
  312. Ishizuka T, Cooper DR, Hernandez H, Buckley D, Standaert M, Farese RV (1990) Effects of insulin on diacylglycerolprotein kinase C signaling in rat diaphragm and soleus muscle and relationship to glucose transport. Diabetes 39: 181–190PubMedGoogle Scholar
  313. Lowry OH, Passonneau JV (1972) A flexible system of enzymatic analysis. Chapter 9: A collection of metabolite assays. Academic Press, New York, pp 174–177Google Scholar
  314. Moody Ai, Felber JP (1964) A diaphragm bioassay for the measurement of total `insulin-like activity’ and of ‘antigenic insulin’ in serum. Experientia 20:105–108PubMedGoogle Scholar
  315. Müller G, Wied S, Wetekam EM, Crecelius A, Punter J (1994) Stimulation of glucose utilization in 3T3 adipocytes and rat diaphragm in vitro by the sulfonylureas glimiperide and glibenclamide, is correlated with modulations of the cAMP regulatory cycle. Biochem Pharmacol 48:985–996PubMedGoogle Scholar
  316. Oron Y, Lamer J (1979) A modified rapid filtration assay of glycogen synthase. Anal Biochem 94:409–410PubMedGoogle Scholar
  317. Pletscher A, Gey KF (1957) Über die Wirkung blutzuckersenkender Sulfonylharnstoffe auf das isolierte Rattenzwerchfell. Experientia 13:447–449PubMedGoogle Scholar
  318. Randle PJ (1954) Assay of plasma insulin activity by the rat diaphragm method. Br Med J 1: 1237–1240PubMedGoogle Scholar
  319. Robinson KA, Boggs KP, Buse MG (1993) Okadaic acid, insulin, and denervation effects on glucose and amino acid transport and glycogen synthesis in muscle. Am J Physiol; Endocrinol Metab 265:E36–E43Google Scholar
  320. Smith RL, Lawrence JC (1984) Insulin action in denervated rat hemidiaphragm. J Biol Chem 259:2201–2207PubMedGoogle Scholar
  321. Standing VF, Foy JM (1970) The effect of glibenclamide on glucose uptake in the isolated rat diaphragm. Postgrad Med J, Dec Suppl 16–20Google Scholar
  322. Vallance-Owen J, Hurlock B (1954) Estimation of plasma insulin by the rat diaphragm method. Lancet 268:68–70Google Scholar
  323. Valiance-Owen J, Wright PH (1960) Assay of insulin in blood. Physiol Rev 40:219–244Google Scholar
  324. Willebrands AF, v.d. Geld H, Groen J (1958) Determination of serum insulin using the isolated rat diaphragm. The effect of serum dilution. Diabetes 7:119–124PubMedGoogle Scholar
  325. Wright PH (1957) Plasma-insulin estimation by the rat diaphragm method. Lancet 11, 621–624Google Scholar
  326. Freedlender AE, Vandenhoff GE, Macleod MS, Malcolm RR (1984) Radioimmunoassay of insulin. In: Lamer J, Pohl SL (eds) Methods in Diabetes Research, Vol I: Laboratory Methods, Part B., John Wiley and Sons, New York, pp 295–305Google Scholar
  327. Grodsky GM, Forsham PH (1960) An immunochemical assay of total extractable insulin in man. J Clin Invest 39:1070–1079Google Scholar
  328. Hales CN, Randle PJ (1963) Immunoassay of insulin with insulin-antibody precipitate. Biochem J 88:137–146PubMedGoogle Scholar
  329. Melani F, Lawecki J, Bartelt KM, Pfeiffer EF (1967) Immunologisch nachweisbares Insulin (IMI) bei Stoffwechselgesunden, Fettsüchtigen und adipösen Diabetikern nach intravenöser Gabe von Glukose, Tolbutamid und Glucagon. Diabetologia 3:422–426PubMedGoogle Scholar
  330. Morgan CR, Lazarow A (1963) Immunoassay of insulin: Two antibody system. Plasma insulin levels of normal, subdiabetic and diabetic rats. Diabetes 12:115–126Google Scholar
  331. Starr JI, Horwitz DL, Rubenstein AH, Mako ME (1979) Insulin, proinsulin and C-peptide. In: Jaffe BM, Behrman HR (eds) Methods of Hormone Radioimmunoassay, 2nd ed., Academic Press, New York, pp 613–642Google Scholar
  332. Yalow R, Black H, Villazon M, Berson SA (1960) Comparison of plasma insulin levels following administration of tolbutamide and glucose. Diabetes 9:356–362PubMedGoogle Scholar
  333. Yalow RS, Berson SA (1960) Immunoassay of endogenous plasma insulin in man. J Clin Invest 39:1157–1175PubMedGoogle Scholar
  334. Bornfeldt KE, Gidlöf RA, Wasteson A, Lake M, Skottner A, Amqvist JH (1991) Binding and biological effects of insulin, insulin analogues and insulin-like growth factors in rat aortic smooth muscle cells. Comparison of maximal growth promoting activities. Diabetologia 34:307–313PubMedGoogle Scholar
  335. Bremner M, Weiland M, Becker W, Müller-Wieland D, Streicher R, Fabry M, Joost HG (1993) Heterogeneity of insulin receptors in rat tissues as detected with the partial agonist B29,B29’-suberoyl-insulin. Molec Pharmacol 44: 271–276Google Scholar
  336. Burke GT, Chantey JD, Okada Y, Cosmatos A, Ferderigos N, Katsoyannis PG (1980) Divergence of the in vitro biological activity and receptor binding affinity of a synthetic insulin analogue, [21-asparaginamide-Alnsulin. Biochemistry 19:4547–4556PubMedGoogle Scholar
  337. DeMeyts P (1976) Insulin and growth hormone receptors in human cultured lymphocytes and peripheral blood monocytes. In: Blecher M (ed) Methods in Receptor Research. Part I, Marcel Dekker Inc., New York and Basel, pp 301–383Google Scholar
  338. DeMeyts P, Bianco AR, Roth J (1976) Site-site interactions among insulin receptors. Characterization of the negative cooperativity. J Biol Chem 251:1877–1888PubMedGoogle Scholar
  339. Drejer K, Kruse V, Larsen UD, Hougaard P, Bjorn S, Gammeltoft S (1991) Receptor binding and tyrosine kinase activation by insulin analogues with extreme affinities studied in human hepatoma HepG2 cells. Diabetes 40:1488–1495PubMedGoogle Scholar
  340. Freychet P (1976) Insulin receptors. In: Blecher M (ed) Methods in Receptor Research, Part II, Marcel Dekker, Inc., New York and Basel, pp 385–428Google Scholar
  341. Gammeltoft S (1984) Insulin receptors: binding kinetics and structure-function relationship of insulin. Physiol Rev 64: 1321–1378PubMedGoogle Scholar
  342. Gammeltoft S (1988) Binding properties of insulin receptors in different tissues. In: Insulin Receptors, Part A: Methods for the Study of Structure and Function. Alan R. Liss, Inc., pp 15–27Google Scholar
  343. Gavin III JR, Kahn CR, Gorden P, Roth J, Neville DM (1975) Radioreceptor assay of insulin: Comparison of plasma and pancreatic insulins and proinsulins. J Clin Endocr Metab 41:438–445PubMedGoogle Scholar
  344. Häring HU (1991) The insulin receptor: signalling mechanisms and contribution to the pathogenesis of insulin resistance. Diabetologia 34:848–861PubMedGoogle Scholar
  345. Hjollund E (1991) Insulin receptor binding and action in human adipocytes. Dan Med Bull 38:252–270PubMedGoogle Scholar
  346. Hollenberg MD, Cuatrecasas P (1976) Methods for the biochemical identification of insulin receptors. In: Blecher M (ed) Methods in Receptor Research, Part II, Marcel Dekker, Inc., New York and Basel, pp 429–477Google Scholar
  347. Hurrell DG, Pedersen O, Kahn CR (1989) Alteration in the hepatic insulin receptor kinase in genetic and acquired obesity in rats. Endocrinology 125:2454–2462PubMedGoogle Scholar
  348. Kellerer M, Kroder G, Tippmer S, Berti L, Kiehn R, Mosthaf L, Häring H (1994) Troglitazone prevents glucose-induced insulin resistance of insulin receptor in rat-1 fibroblasts. Diabetes 43:447–453PubMedGoogle Scholar
  349. Klein HH, Freidenberg GR, Kladde M, Olefsky JM (1986) Insulin activation of insulin receptor tyrosine kinase in intact rat adipocytes. J Biol Chem 261:4691–4697PubMedGoogle Scholar
  350. Koch R, Weber U (1981) Partial purification of the solubilized insulin receptor from rat liver membranes by precipitation with concanavalin A. Hoppe-Seyler’s Z Physiol Chem 362:347–351PubMedGoogle Scholar
  351. Kurose T, Pashmforoush M, Yoshimasa Y, Carroll R, Schwartz GP, Thompson Burke G, Katsoyannis PG, Steiner DF (1994) Cross-linking of a B25 azidophenylalanine insulin derivative to the carboxy-terminal region of the a-subunit of the insulin receptor. J Biol Chem 269:29190–29197PubMedGoogle Scholar
  352. Levy JR, Belsky M (1990) Down-regulated insulin receptors in HepG2 cells have an altered intracellular itinerary. Am J Med Sci 299:302–308PubMedGoogle Scholar
  353. Markussen J, Halstram, Wiberg FC, Schaffer L (1991) Immobilized insulin for high capacity affinity chromatography of insulin receptors. J Biol Chem 266:18814–18818PubMedGoogle Scholar
  354. Müller HK, Kellerer M, Ermel B, Mühldorfer A, ObermaierKusser B, Vogt B, Häring HU (1991) Prevention by protein kinase C inhibitors of glucose-induced insulin-receptor tyrosine kinase resistance in rat fat cells. Diabetes 40:1440–1447PubMedGoogle Scholar
  355. Nenoff P, Remke H, Müller F, Arndt T, Mothes T (1993) In vivo assessment of insulin binding in different organs of growing and adult glutamate-induced obese rats. Exp Clin Endocrinol 101:215–221PubMedGoogle Scholar
  356. Olefsky JM (1976) Decreased insulin binding to adipocytes and circulating monocytes from obese subjects. J Clin Invest 57:1165–1172PubMedGoogle Scholar
  357. Olichon-Berthe C, Hauguel-De Mouzon S, Péraldi P, Van Obberghen E, Le Marchand-Brustel Y (1994) Insulin receptor dephosphorylation by phosphotyrosine phosphatases obtained from insulin-resistant obese mice. Diabetologia 37: 56–60PubMedGoogle Scholar
  358. Pedersen O, Hjollund E, Beck-Nielsen H, Lindskov HO, Sonne O, Gliemann J (1981) Insulin receptor binding and receptor-mediated insulin degradation in human adipocytes. Diabetologia 20:636–641PubMedGoogle Scholar
  359. Pedersen O, Hjollund E, Linkskov HO (1982) Insulin binding and action on fat cells from young healthy females and males. Am J Physiol 243:E158—E167Google Scholar
  360. Podlecki DA, Frank BH, Olefsky JM (1984) In vitro characterization of human proinsulin. Diabetes 33:111–118PubMedGoogle Scholar
  361. Podskalny JM, Takeda S, Silverman RE, Tran D, Carpentier JL, Orci L, Gorden P (1985) Insulin receptors and bioresponses in a human liver cell line (Hep G-2) Eur J Biochem 150:401–407Google Scholar
  362. Ribel U, Hougaard P, Drejer K, Sorensen AR (1990) Equivalent in vivo biological activity of insulin analogues and human insulin despite different in vitro potencies. Diabetes 39:1033–1039PubMedGoogle Scholar
  363. Robertson DA, Singh BM, Hale PJ, Jensen I, Nattrass M (1992) Metabolic effects of monomeric insulin analogues of different receptor affinity. Diabet Med 9:240–246PubMedGoogle Scholar
  364. Schäffer L, Kjeldsen T, Andersen AS, Wiberg FC, Larsen UD, Cara JF, Mirmira RG, Nakagawa SH, Tager HS (1993) Interaction of a hybrid insulin/insulin-like growth factor-I analog with chimeric insulin/type I insulin-like growth factor receptors. J Biol Chem 268:3044–3047PubMedGoogle Scholar
  365. Schumacher R, Soos MA, Schlessinger J, Brandenburg D, Siddle K, Ullrich A (1993) Signaling-competent receptor chimeras allow mapping of major insulin receptor binding domain determinants. J Biol Chem 268:1087–1094PubMedGoogle Scholar
  366. Schwartz GP, Burke GT, Katsoyannis PG (1987) A superactive insulin: [B 10-aspartic acid]insulin(human). Proc Natl Acad Sci USA 84:6408–6411PubMedGoogle Scholar
  367. Standaert ML, Schimmel SD, Pollet RI (1984) The development of insulin receptors and responses in the differentiating nonfusing muscle cell line BC3H-1. J Biol Chem 259:2337–2345PubMedGoogle Scholar
  368. Volund A, Brange J, Drejer K, Jensen I, Markussen J, Ribel U, Sorensen AR (1991) In vitro and in vivo potency of insulin analogues designed for clinical use. Diabet Med 8:839–847PubMedGoogle Scholar
  369. Weiland M, Brandenburg C, Brandenburg D, Joost HG (1990) Antagonistic effects of a covalently dimerized insulin derivative on insulin receptors in 3T3–L1 adipocytes. Proc Natl Acad Sci USA 87:1154–1158PubMedGoogle Scholar
  370. Whitcomb DC, O’Dorisio TM, Cataland S, Nishikawara MT (1985 a) Theoretical basis for a new in vivo radioreceptor assay for polypeptide hormones. Am J Physiol 249 (Endocrinol Metab 12) E555–E560Google Scholar
  371. Whitcomb DC, O’Dorisio TM, Cataland S, Shetzline MA, Nishikawara MT (1985 b) Identification of tissue insulin receptors. Am J Physiol 249 (Endocrinol Metab 12) E61–E567Google Scholar
  372. Zeuzem S, Stahl E, Jungmann E, Zoltobrocki M, Schöffling K, Caspary WF (1990) In vitro activity of biosynthetic human diarginylinsulin. Diabetologia 33:65–71PubMedGoogle Scholar
  373. Zeuzem S, Taylor R, Agius L, Albisser AM, Alberti KGMM (1984) Differential binding of sulphated insulin to adipocytes and hepatocytes. Diabetologia 27:184–188PubMedGoogle Scholar
  374. Biological assay of glucagon. British Pharmacopoeia 1988, Vol II, London, Her Majesty’s Stationary Office, pp A70–A171Google Scholar
  375. Harris V, Faloona GR, Unger RH (1978) Glucagon. In: Jaffe BM, Behrman HR (eds) Methods of Hormone Radioimmunoassay. Second edition, Academic Press New York, San Francisco, London, pp 643–656Google Scholar
  376. Unger RH, Eisentraut AM, McCall MS, Keller S, Lanz HC, Madison LL (1959) Glucagon antibodies and their use for immunoassay for glucagon. Proc Soc Exp Biol Med 102:621–623PubMedGoogle Scholar
  377. von Schenk H (1984) Radioimmunoassay of glucagon. In: Lamer J, Pohl SL (eds) Methods in Diabetes Research, Vol I: Laboratory Methods, Part A, John Wiley and Sons, New York, pp 327–345Google Scholar
  378. Goldstein St, Blecher M (1976) Isolation of glucagon receptor proteins from rat liver plasma membranes. In: Blecher M (ed) Methods in Receptor Research, Part I, Marcel Decker, Inc., New York and Basel, pp 119–142Google Scholar
  379. Hagopian WA, Tager HS (1983) Receptor binding and cell-mediated metabolism of [’25I]monoiodoglucagon by isolated hepatocytes. J Biol Chem 259:8986–8993Google Scholar
  380. Hruby VJ, Gysin B, Trivedi D, Johnson DG (1993) New glucagon analogues with conformational constrictions and altered amphiphilicity: Effects on binding, adenylate cyclase and glycogenolytic activities. Life Sci 52:845–855PubMedGoogle Scholar
  381. Ishibashi H, Cottam GL (1978) Glucagon-stimulation of pyru- vate kinase in hepatocytes. J Biol Chem 253:8767–8771PubMedGoogle Scholar
  382. Jorgensen KH, Larsen UD (1972) Purification of 1251-glucagon by ion exchange chromatography. Horm Metab Res 4: 223–224PubMedGoogle Scholar
  383. Lin ME, Wright DE, Hruby VL, Rodbell M (1985) Structure-function relationships in glucagon: properties of highly purified des-his’-monoiodo-, and [des-asn2,thr29](homoserine lactone) glucagon. Biochemistry 14:1559–1563Google Scholar
  384. McVittie LD, Gurd RS (1989) Stabilization of soluble active rat liver glucagon receptor. Arch Biochem Biophys 273:254–263PubMedGoogle Scholar
  385. Neville DM (1968) Isolation of an organ specific protein antigen from cell-surface membrane of rat liver. Biochim Biophys Acta 154:540–552PubMedGoogle Scholar
  386. Pohl SL (1976) The glucagon receptor in plasma membranes prepared from rat liver. In: Blecher M (ed) Methods in Receptor Research, Part I, Marcel Decker, Inc., New York and Basel, pp 159–174Google Scholar
  387. Pohl SL, Birnbaumer L, Rodbell M (1971) The glucagonsensitive adenyl cyclase system in plasma membranes of rat liver. J Biol Chem 246:1849–1856PubMedGoogle Scholar
  388. Sato N, Irie M, Kajinuma H, Suzuki K (1990) Glucagon inhibits insulin activation of glucose transport in rat adipocytes mainly through a postbinding process. Endocrinol 127: 1072–1077Google Scholar
  389. Unson CG, McDonald D, Ray K, Durrah TL, Merrifield RB (1991) Position 9 replacement analogs of glucagon uncouple biological activity and receptor binding. J Biol Chem 266:2763–2766PubMedGoogle Scholar
  390. Wright DE, Rodbell M (1979) Glucagon,.6binds to the glucagon receptor and activates hepatic adenylate cyclase. J Biol Chem 254:268–269PubMedGoogle Scholar
  391. Zechel Ch, Trivedi D, Hruby VJ (1991) Synthetic glucagon agonists and antagonists. Int J Peptide Protein Res 38: 131–138Google Scholar
  392. Creutzfeldt W, Ebert R (1985) New developments in the in-cretin concept. Diabetologia 28:565–573PubMedGoogle Scholar
  393. Dillon JS, Tanizawa Y, Wheeler MB, Leng XH, Ligon BB, Rabin DU, Yoo-Warren H, Permutt MA, Boyd III AE (1993) Cloning and functional expression of the human glucagon-like peptidel (GLP-1) receptor. Endocrinology 133:1907–1910PubMedGoogle Scholar
  394. Fehmann HC, Göke R, Göke B (1992) Glucagon-like peptide1(7–37)/(7–36)amide is a new incretin. Mol Cell Endocrin 85:C39–C44Google Scholar
  395. Fehmann HC, Habener JF (1991) Homologous desensitization of the insulinotropic glucagon-like peptide-1(7–37) receptor in insulinoma (HIT-T15) cells. Endocrinology 128:2880–2888PubMedGoogle Scholar
  396. Fehmann HC, Habener JF (1992) Insulinotropic hormone glucagon-like peptide-1(7–37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma 3TC1 cells. Endocrinology 130:159–166PubMedGoogle Scholar
  397. Gazdar AF, Chick WL, Oie HK, Sims HL, King DL, Weir GC, Lauris V (1980) Continuous, clonal insulin-and somatostatin-secreting cell line established from a transplantable rat islet cell tumor. Proc Natl Acad Sci, USA 77:3519–3523Google Scholar
  398. Göke R, Conlon JM (1988) Receptors for glucagon-like peptide-l(7–36)amide on rat insulinoma-derived cells. J Endocrinol 116:357–362PubMedGoogle Scholar
  399. Göke R, Fehmann HC, Linn Th, Schmidt H, Krause M, Eng J, Göke B (1993b) Exendin-4 is a high potency agonist and truncated exendin-(9–39)-amide an antagonist at the glucagon-like peptide-1(7–36)amide receptor of insulin-secreting ß cells. J Biol Chem 268:19650–19655Google Scholar
  400. Göke R, Oltmer B, Sheikh SP, Göke B (1992) Solubilization of active GLP-1(7–36)amide receptors from RINm5F plasma membranes. FEBS Lett 300:232–236PubMedGoogle Scholar
  401. Göke R, Wagner B, Fehmann HC, Göke B (1993a) Glucosedependency of the insulin stimulatory effect of glucagonlike peptide-1(7–36)amide on the rat pancreas. Res Exp Med 193:97–103Google Scholar
  402. Komatsu R, Matsuyama T, Namba M, Watanabe N, Itoh H, Kono N, Tarui S (1989) Glucagonostatic and insulinotropic action of glucagon-like peptide 1(7–36)-amide. Diabetes 38:902–905PubMedGoogle Scholar
  403. Lankat-Buttgereit B, Göke R, Fehmann HC, Richter G, Göke B (1994) Molecular cloning of a eDNA encoding for the GLP-1 receptor expressed in rat lung. Exp Clin Endocrinol 102:341–347PubMedGoogle Scholar
  404. Nathan DM, Schreiber E, Fogel H, Mojsov S, Habener JF (1992) Insulinotropic action of glucagon-like peptide-1-(737) in diabetic and nondiabetic subjects. Diabet Care 15:270–276Google Scholar
  405. Nauck MA, Heimesaat MM, Q rskov C, Holst JJ, Ebert R, Creutzfeldt W (1993) Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory peptide in patients with type-2 diabetes mellitus. J Clin Invest 91:301–307PubMedGoogle Scholar
  406. Praz GA, Halban PA, Wollheim CB, Blondel B, Strauss JA. Reynold AE (1983) Regulation of immunoreactive insulin release from a rat cell line (RINm5F) Biochem J 210:345–352Google Scholar
  407. Watanabe Y, Kawai K, Ohashi S, Yokota C, Suzuki S, Yamashita K (1994) Structure-activity of glucagon-like peptide-1(7–36)amide: insulinotropic activities in perfused rat pancreas, and receptor binding and cyclic AMP production in RINm5F cells. J Endocrinol 140:45–52PubMedGoogle Scholar
  408. Cascieri MA, Saperstein R, Hayes NS, Green BG, Chicchi GG, Applebaum J, Bayne ML (1988) Serum half-live and biological activity of mutants of human insulin-like growth factor I which do not bind to serum binding proteins. Endocrinol 123:373–381Google Scholar
  409. DeMeyts P (1994) The structural basis of insulin and insulin-like growth factor-I receptor binding and negative cooperativity, and its relevance to mitogenic versus metabolic signalling. Diabetologia 37 [Suppl 21:S135–S148Google Scholar
  410. Dideriksen LH, Jorgensen LN, Drejer K (1992) Carcinogenic effect on female rats after 12 months administration of the insulin analogue B10 Asp. Diabetes 41 (Suppl I):143AGoogle Scholar
  411. Drejer K (1992) The bioactivity of insulin analogues from in vitro receptor binding to in vivo glucose uptake. Diabetes/ Metab Rev 8:259–286Google Scholar
  412. Fantl WJ, Johnson DE, Williams LT (1993) Signalling by re- ceptor tyrosine kinases. Annu Rev Biochem 62:453–481PubMedGoogle Scholar
  413. Froesch ER, Schmid C, Schwander J, Zapf J (1985) Actions of insulin-like growth factors. Ann Rev Physiol 47:443–467Google Scholar
  414. Gammeltoft S, Drejer K (1991) Increased mitogenic potency of high affinity insulin analogues in mouse NIH 3T3 fibroblasts. J Cell Biol (Suppl 15B):54Google Scholar
  415. Heinze E, Vetter U, Holl RW, Brenner RE (1995) Glibenclamide stimulates growth of human chondrocytes by IGF 1 dependent mechanisms. Exp Clin Endocrinol 103: 260–265Google Scholar
  416. Moxley RT, Amer P, Moss A, Skottner A, Fox M, James D, Livingston JN (1990) Acute effects of insulin-like growth factor I and insulin on glucose metabolism in vivo. Am J Physiol; Endocrinol Metab 259:E561–E567Google Scholar
  417. Nielsen FC, Haselbacher G, Christiansen J, Lake M, Gronborg M, Gammeltoft S (1993) Biosynthesis of 10 kDa and 7.5 kDa insulin-like growth factor II in a human rhabdomyosarcoma cell line. Mol Cell Endocrinol 93:87–95PubMedGoogle Scholar
  418. Pierson RW, Temin HM (1972) The partial purification from calf serum of a fraction with multiplication-stimulating activity for chicken fibroblasts in the cell culture and with non-suppressible insulin-like activity. J Cell Physiol 79: 319–330PubMedGoogle Scholar
  419. Rechler MM (1985) The nature and regulation of the receptors for insulin-like growth factors. Ann Rev Physiol 47: 425–442Google Scholar
  420. Rinderknecht E, Humbel RE (1978 a) The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem 253: 2769–2776Google Scholar
  421. Rinderknecht E, Humbel RE (1978 b) Primary structure of human insulin-like growth factor II. FEBS Lett 89:283–286Google Scholar
  422. Roth RA (1988) Structure of the receptor for insulin-like growth factor II: the puzzle amplified. Science 239: 1269–1271PubMedGoogle Scholar
  423. Salamon EA, Luo J, Murphy LJ (1989) The effect of acute and chronic insulin administration on insulin-like growth factor expression in the pituitary-intact and hypophysectomized rat. Diabetologia 32:348–353PubMedGoogle Scholar
  424. Salmon WD, Daughaday WH (1957) A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vivo. J Lab Clin Med 49:825–836PubMedGoogle Scholar
  425. Schäffer L, Kjeldsen T, Andersen AS, Wiberg FC, Larsen UD, Cara JF, Mirmira RG, Nakagawa SH, Tager HS (1993) Interaction of a hybrid insulin/insulin-like growth factor-I analog with chimeric insulin/type I insulin-like growth factor receptors. J Biol Chem 268:3044–3047PubMedGoogle Scholar
  426. Schlessinger J, Ullrich A (1992) Growth factor signaling by receptor tyrosine kinases. Neuron 9:383–391PubMedGoogle Scholar
  427. Schmitz F, Hartmann H, Stiimpel F, Creutzfeldt W (1991) In vivo metabolic action of insulin-like growth factor I in adult rats. Diabetologie 34:144–149Google Scholar
  428. Schoenle E, Zapf J, Humbel RE, Froesch ER (1982) Insulin-like growth factor I stimulates growth in hypophysectomized rats. Nature 296:252–253PubMedGoogle Scholar
  429. Schwander J, Hauri C, Zapf J, Froesch ER (1983) Synthesis and secretion of insulin-like growth factor and its binding protein by the perfused rat liver: Dependence on growth hormone status. Endocrinol 113:297–305Google Scholar
  430. Steinke J, Sirek A, Lauris V, Lukens FDW, Renold AE (1962) Measurement of small quantities of insulin-like activity with rat adipose tissue. III. Persistence of serum insulin-like activity after pancreatectomy. J Clin Invest 41: 1699–1707PubMedGoogle Scholar
  431. Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61:203–212PubMedGoogle Scholar
  432. Verspohl EJ, Maddux BA, Goldfine ID (1988) Insulin and insulin-like growth factor I regulate the same biological functions in HEP-G2 cells via their own specific receptors. J Clin Endocr Metab 67:169–174PubMedGoogle Scholar
  433. Vikman K, Isgaard J, Edén S (1991) Growth hormone regulation of insulin-like growth factor-I mRNA in rat adipose tissue and isolated rat adipocytes. J Endocrinol 131: 139–145PubMedGoogle Scholar
  434. Zapf J, Hauri C, Waldvogel M. Froesch ER (1986) Acute metabolic effects and half-lives of intravenously administered insulinlike growth factors I and II in normal and hypophysectomized rats. J Clin Invest 77:1768–1775PubMedGoogle Scholar
  435. Zapf J, Waldvogel M, Froesch ER (1975) Binding of non-suppressible insulin-like activity to human serum: Evidence for a carrier protein. Arch Biochem Biophys 168:638–645PubMedGoogle Scholar
  436. Bänder A, Pfaff W, Schmidt FH, Stork H, Schröder HG (1969) Zur Pharmakologie von HB 419, einem neuen, stark wirksamen oralen Antidiabeticum. Arzneim Forsch/Drug Res 19:1363–1372Google Scholar
  437. Fieller EC (1944) A fundamental formula in the statistics of biological assay, and some applications. Quart J Pharm Pharmacol 17:117–123Google Scholar
  438. Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130Google Scholar
  439. Levene H (1960) Robust tests for equality of variances. In Olkin I, Ghury SG, Hoeffding W, Madow WG, Mann HB (eds.) Contributions to probability and statistics. Essays in honor of Harold Hotteling. Stanford University Press, Stanford, CA., pp 278–292Google Scholar
  440. Miller RG (1966) Simultaneous statistical inference. McGraw-Hill Book Company, New YorkGoogle Scholar
  441. Scheffé H (1959) The analysis of variance. J Wiley and Sons, Inc., New YorkGoogle Scholar
  442. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (Complete samples) Biometrika 52:591–611Google Scholar
  443. Sidak Z (1967) Rectangular confidence regions for the means of multivariate normal distributions. J Am Statist Assoc 62:626–631Google Scholar
  444. Bänder A, Pfaff W, Schmidt FH, Stork H, Schröder HG (1969) Zur Pharmakologie von HB 419, einem neuen, stark wirksamen oralen Antidiabeticum. Arzneim Forsch/Drug Res 19:1363–1372Google Scholar
  445. Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130Google Scholar
  446. Gill AM, Yen TT (1991) Effects of ciglitazone on endogenous plasma islet amyloid polypeptide and insulin sensitivity in obese-diabetic viable yellow mice. Life Sci 48:703–710PubMedGoogle Scholar
  447. Root MA, Sigal MV, Anderson RC (1959) Pharmacology of 1(p-chlorobenzenesulfonyl)-3-n-propylurea (Chlorpropamide). Diabetes 8:7–13PubMedGoogle Scholar
  448. Sohda T, Momose Y, Meguro K, Kawamatsu Y, Sugiyama Y, Ikeda H (1990) Studies on antidiabetic agents. Synthesis and hypoglycemic activity of 5-[4-(pyridylalkoxy)benzyll2,4-thiazolidinediones. Arzneim Forsch/Drug Res 40:37–42Google Scholar
  449. Bänder A, Pfaff W, Schmidt FH, Stork H, Schröder HG (1969) Zur Pharmakologie von HB 419, einem neuen, stark wirksamen oralen Antidiabeticum. Arzneim Forsch/Drug Res 19:1363–1372Google Scholar
  450. Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130Google Scholar
  451. Geisen K, Reisig E, Härtel D (1981) Kontinuierliche Blutglucosemessung und Infusion bei wachen, frei beweglichen Hunden. Continuous blood glucose monitoring and infusion in freely mobile dogs. Res Exp Med (Berl) 179: 103–111Google Scholar
  452. DeFronzo RA, Tobin JD, Andres R (1979) Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 237:E214–223PubMedGoogle Scholar
  453. Finegood DT, Bergman RN, Vranic A (1987) Estimation of endogenous glucose production during hyperinsulinemiceuglycemic glucose clamps. Comparison of unlabeled and labeled glucose infusates. Diabetes 36:914–924PubMedGoogle Scholar
  454. Hirshman MF, Horton ES (1990) Glyburide increases insulin sensitivity and responsiveness in peripheral tissues of the rat as determined by the glucose clamp technique. Endocrinol 126:2407–2412Google Scholar
  455. Kraegen EW, James DE, Bennett SP, Chishol DJ (1983) In vivo insulin sensitivity in the rat determined by euglycemic clamp. Am J Physiol 245:E1–E7PubMedGoogle Scholar
  456. Kraegen EW, James DE, Jenkins AB, Chisholm DJ (1985) Dose-response curves for in vivo sensitivity in individual tissues in rats. Am J Physiol; Endocrin Metab 11:E353–E362Google Scholar
  457. Lang CH (1992) Rates and tissue sites of noninsulin-and insulin-mediated glucose uptake in diabetic rats. Proc Soc Exp Biol Med 199:81–87PubMedGoogle Scholar
  458. Lee MK, Miles PDG, Khoursheed M, Gao KM, Moossa AR, Olefsky JM (1994) Metabolic effects of troglitazone on fructose-induced insulin resistance in rats. Diabetes 43: 1435–1439PubMedGoogle Scholar
  459. Marfaing P, Ktorza A, Berthault MF, Predine J, Picon L, Penicaud L (1991). Effects of counterregulatory hormones on insulin-induced glucose utilization by individual tissues in rats. Diabete and Metabolisme (Paris) 17:55–60Google Scholar
  460. Ohsawa I; Sato J, Oshida Y, Sato Y, Sakamoto N (1991) Effect of glimepiride on insulin action in peripheral tissues of the rat determined by the euglycemic clamp technique. J Japan Diab Soc 34:873–874Google Scholar
  461. Smith D, Rossetti L, Ferrannini E, Johnson CM, Cobelli C, Toffolo G, Katz LD, DeFronzo RA (1987) In vivo glucose metabolism in the awake rat: Tracer and insulin clamp studies. Metabolism 36:1167–1174PubMedGoogle Scholar
  462. Tominaga M, Igarashi M, Daimon M, Eguchi H, Matsumoto M, Sekikawa A, Yamatani K, Sasaki H (1993) Thiazolidin- ediones (AD-4833 and CS-045) improve hepatic insulin resistance in streptozotocin-induced diabetic rats. Endocr J 40:343–349PubMedGoogle Scholar
  463. Ciaraldi TP, Gilmore A, Olefsky JM, Goldberg M, Heidenreich KA (1990) In vitro studies on the action of CS-045, a new antidiabetic agent. Metabolism 39:1056–1062PubMedGoogle Scholar
  464. Colca JR (1995) Insulin sensitiser drugs in development for the treatment in diabetes. Expert Opin Invest Drugs 4: 27–29Google Scholar
  465. Fujiwara T, Yoshioka S, Yoshioka T, Ushiyama I, Horikoshi H (1988) Characterization of new oral antidiabetic agent CS-045. Studies in KK and ob/ob mice and Zucker fatty rats. Diabetes 37:1549–1558PubMedGoogle Scholar
  466. Gill AM, Yen TT (1991) Effects of ciglitazone on endogenous plasma islet amyloid polypeptide and insulin sensitivity in obese-diabetic viable yellow mice. Life Sci 48:703–710PubMedGoogle Scholar
  467. Hofmann C, Lorenz K, Colca JR (1991) Glucose transport deficiency in diabetic animals is corrected by treatment with the oral antihyperglycemic agent pioglitazone. Endocrinol 129:1915–1925Google Scholar
  468. Hofmann CA. Edwards CW, Hillman RM, Colca JR (1992) Treatment of insulin-resistant mice with the oral antidiabetic agent pioglitazone: evaluation of liver GLUT2 and phosphoenolpyruvate carboxykinase expression. Endocrinol 130:735–740Google Scholar
  469. Ikeda H, Taketomi S, Sugiyama Y, Shimura Y, Sohda T Meguro K, Fujita T (1990) Effects of pioglitazone on glucose and lipid metabolism in normal and insulin resistant animals. Arzneim Forsch/Drug Res 40:156–162Google Scholar
  470. Kellerer M, Kroder G, Tippmer S, Berti L, Kiehn R, Mosthaf L, Häring H (1994) Troglitazone prevents glucose-induced insulin resistance of insulin receptor in rat-1 fibroblasts. Diabetes 43:447–453PubMedGoogle Scholar
  471. Kirsch DM, Bachmann W, Häring HU (1984) Ciglitazone reverses cAMP-induced post-insulin receptor resistance in rat adipocytes in vitro. FEBS Lett 176:49–54PubMedGoogle Scholar
  472. Kobayashi M, Iwanshi M, Egawa K, Shigeta Y (1992) Pioglitazone increases insulin sensitivity by activating insulin receptor kinase. Diabetes 41:476–483PubMedGoogle Scholar
  473. Lee MK, Miles PDG, Khoursheed M, Gao KM, Moossa AR, Olefsky JM (1994) Metabolic effects of troglitazone on fructose-induced insulin resistance in rats. Diabetes 43: 1435–1439PubMedGoogle Scholar
  474. Masuda K, Okamoto Y, Tuura Y, Kato S, Miura T, Tsuda K, Horikoshi H, Ishida H, Seino Y (1995) Effects of troglitazone (CS-045) on insulin secretion in isolated rat pancreatic islets and HIT cells: an insulinotropic mechanism distinct from glibenclamide. Diabetologia 38:24–30PubMedGoogle Scholar
  475. Murano K, Inoue Y, Emoto M, Kaku K, Kaneko T (1994) CS-045, a new oral antidiabetic agent, stimulates fructose-2,6bisphosphate production in rat hepatocytes. Eur J Pharmacol 254:257–262PubMedGoogle Scholar
  476. Murano K, Inoue Y, Emoto M, Kaku K, Kaneko T (1994) CS-045, a new oral antidiabetic agent, stimulates fructose-2,6bisphosphate production in rat hepatocytes. Eur J Pharmacol 254:257–262PubMedGoogle Scholar
  477. Sohda T, Momose Y, Meguro K, Kawamatsu Y, Sugiyama Y, Ikeda H (1990) Studies on antidiabetic agents. Synthesis and hypoglycemic activity of 5-[4-(pyridylalkoxy)benzyll- 2,4-thiazolidinediones. Arzneim Forsch/Drug Res 40:37–42 Tominaga M, Igarashi M, Daimon M, Eguchi H, MatsumotoGoogle Scholar
  478. M, Sekikawa A, Yamatani K, Sasaki H (1993) Thiazolidinediones (AD-4833 and CS-045) improve hepatic insulin resistance in streptozotocin-induced diabetic rats. Endocr J 40:343–349Google Scholar
  479. Yoshioka S, Nishino H, Shiraki T, Ikeda K, Koike H, Okuno A, Wada M, Fujiwara T, Horikoshi H (1993) Antihypertensive effects of CS-045 treatment in obese Zucker rats. Metabolism 42:75–80PubMedGoogle Scholar
  480. Anderson E, Long JA (1947) The effect of hyperglycemia on insulin secretion as determined with the isolated rat pancreas in a perfusion apparatus. Endocrinology 40:92–97PubMedGoogle Scholar
  481. Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130Google Scholar
  482. Grodsky GM, Batts AA, Bennett LL, Vicella C, McWilliams NB, Smith DF (1963) Effects of carbohydrates on secretion of insulin from isolated rat pancreas. Am J Physiol 205:638–644PubMedGoogle Scholar
  483. Grodsky GM, Heldt A (1984) Method for the in vitro perfusion of the pancreas. In: Lamer J, Pohl SL (eds) Methods in Diabetes Research. Vol. I.: Laboratory Methods, Part B, John Wiley and Sons, New York, pp 137–146Google Scholar
  484. Ross BD (1972) Endocrine organs: Pancreas. In Ross BD: Perfusion Techniques in Biochemistry. A Laboratory Manual in the Use of Isolated Perfused Organs in Biochemical Experimentation. Clarendon Press, Oxford, pp 321–355Google Scholar
  485. Fletcher DJ, Weir G (1984) Tissue culture of dispersed islet cells. In: Lamer J, Pohl StL (eds) Methods in Diabetes Research. Vol I: Laboratory Methods. Part A, John Wiley and Sons, New York, pp 167–173Google Scholar
  486. Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130Google Scholar
  487. Idahl L4 (1972) A microperifusion device for pancreatic islets allowing concomitant recordings of intermediate metabolites and insulin release. Analyt Biochem 50:386–398PubMedGoogle Scholar
  488. Kaiser N, Cerasi E (1991) Long term monolayer culture of adult rat islet of Langerhans. In: Greenstein B (ed) Neuroendocrine Research Methods. Vol I, Chapter 6, pp 131–147. Harwood Academic PublGoogle Scholar
  489. Lernmark A (1974) The preparation of, and studies on, free cell suspensions from mouse pancreatic islets. Diabetologia 10:431–438PubMedGoogle Scholar
  490. Malaisse-Lagae F, Malaisse WJ (1984) Insulin release by pancreatic islets. In: Lamer J, Pohl StL (eds) Methods in Diabetes Research. Vol. I.: Laboratory Methods, Part B, John Wiley and Sons, New York, pp 147–152Google Scholar
  491. McDaniel ML, Colca JR, Kotagal N (1984) Islet cell membrane isolation and characterization. In: Lamer J, Pohl StL (eds) Methods in Diabetes Research. Vol I: Laboratory Methods. Part A, John Wiley and Sons, New York, pp 153–166Google Scholar
  492. Panten U, Ishida H, Schauder P, Frerichs H, Hasselblatt A (1977) A versatile microperifusion system. Anal Biochem 82:317–326Google Scholar
  493. Pipeleers DG (1984) Islet cell purification. In: Lamer J, Pohl StL (eds) Methods in Diabetes Research. Vol. I.: Laboratory Methods, Part B, John Wiley and Sons, New York, pp 185–211Google Scholar
  494. Schatz H, Maier V, Hinz M, Nierle C, Pfeiffer EF (1972) The effect of tolbutamide and glibenclamide on the incorporation of [’H] leucine and on the conversion of proinsulin to insulin in isolated pancreatic islets. FEBS Lett 26:237–240PubMedGoogle Scholar
  495. Yoon JW, Bachurski CJ, Shin SY, Srinivasappa J, Rayfield EJ (1984) Simple method for human pancreatic ß cell cultures. In: Lamer J, Pohl StL (eds) Methods in Diabetes Research. Vol. 1.: Laboratory Methods, Part B, John Wiley and Sons, New York, pp 167–171Google Scholar
  496. Bhatena SJ, Oie HK, Gazdar AF, Voyles NR, Wilkins SD, Recant L (1982) Insulin, glucagon, and somatostatin receptors on cultured cells and clones from rat islet cell tumor. Diabetes 31:521–531Google Scholar
  497. Boyd III AE, Aguilar-Bryan L, Bryan J, Kunze DL, Moss L, Nelson DA, Rajan AS, Raef H, Xiang H, Yaney GC (1991) Sulfonylurea signal transduction. In. Bardin CW (ed) Proceedings of the 1990 Laurentian Hormone Conference. Rec Progr Horm Res 47:299–317PubMedGoogle Scholar
  498. Chick WL, Warren S, Chute RN, Like AA, Lauris V, Kitchen KC (1977) A transplantable insulinoma in the rat. Proc Natl Acad Sci, USA 74:628–632Google Scholar
  499. Gazdar AF, Chick WL, Oie HK, Sims HL, King DL, Weir GC, Lauris V (1980) Continuous, clonal, insulin-, and somatostatin-secreting cell lines established from a transplantable rat islet cell tumor. Proc. Natl Acad Sci, USA 77:3519–3523Google Scholar
  500. Geisen K, Hitzel V, Okonomopoulos R, Punter J, Weyer R, Summ HD (1985) Inhibition of 3H-glibenclamide binding to sulfonylurea receptors by oral antidiabetics. Arzneim Forsch/Drug Res 35:707–712Google Scholar
  501. Masuda K, Okamoto Y, Tuura Y, Kato S, Miura T, Tsuda K, Horikoshi H, Ishida H, Seino Y (1995) Effects of troglitazone (CS-045) on insulin secretion in isolated rat pancreatic islets and HIT cells: an insulinotropic mechanism distinct from glibenclamide. Diabetologia 38:24–30PubMedGoogle Scholar
  502. Müller G, Hartz D, Punter J, Okonomopulos R, Kramer W (1994) Differential interaction of glimepiride and glibenclamide with the b-cell sulfonylurea receptor. I. Binding characteristics. Biochim Biophys Acta 1191:267–277PubMedGoogle Scholar
  503. Praz GA, Halban PA, Wollheim CB, Blondel B, Strauss AJ, Renold AE (1983) Regulation of immunoreactive-insulin release from a rat cell line (RINm5F). Biochem J 210: 345–352PubMedGoogle Scholar
  504. Santerre RF, Cook RA, Crisek RMD, Sharp JD, Schmidt RJ, William DC, Wilson CP (1981) Insulin synthesis in a clonal cell line of simian virus 40-transformed hamster pancreatic beta cells. Proc Natl Acad Sci USA 78:4339–4343PubMedGoogle Scholar
  505. Geisen K, Hitzel V, Ôkonomopoulos R, Punter J, Weyer R, Summ HD (1985) Inhibition of 3H-glibenclamide binding to sulfonylurea receptors by oral antidiabetics. Arzneim Forsch/Drug Res 35:707–712Google Scholar
  506. Kaubisch N, Hammer R, Wollheim C, Renold AE, Offord R (1982) Specific receptors for sulfonylureas in brain and in a 13-cell tumor of the rat. Biochem Pharmacol 31:1171–1174PubMedGoogle Scholar
  507. Müller G, Hartz D, Punter J, Okonomopulos R, Kramer W (1994) Differential interaction of glimepiride and glibenclamide with the 13-cell sulfonylurea receptor. I. Binding characteristics. Biochim Biophys Acta 1191:267–277PubMedGoogle Scholar
  508. Aguilar-Bryan L, Nichols CG, Rajan AS, Parker Ch, Bryan J (1992) Co-expression of sulfonylurea receptors and KATP channels in hamster insulinoma tumor (HIT) cells. J Biol Chem 267:14934–14940PubMedGoogle Scholar
  509. Angel I, Bidet S (1991) The binding site for [3H]glibenclamide in the rat cerebral cortex does nor recognize K-channel agonists or antagonists other than sulfonylureas. Fundam Clin Pharmacol 5:107–115PubMedGoogle Scholar
  510. Ashcroft SJH, Ashcroft FM (1992) The sulfonylurea receptor. Biochem Biophys Acta 1175:45–59PubMedGoogle Scholar
  511. Boyd III AE (1992) The role of ion channels in insulin secretion. J Cell Biochem 48:234–241Google Scholar
  512. Gaines KL, Hamilton S, Boyd III AE (1988) Characterization of the sulfonylurea receptor on beta cell membranes. J Biol Chem 263:2589–2592PubMedGoogle Scholar
  513. Geisen K, Hitzel V, Ökonomopulos R, Punter J, Weyer R, Summ HD (1985) Inhibition of 3H-glibenclamide binding to sulfonylurea receptors by oral antidiabetics. Arzneim Forsch/Drug Res 35:707–712Google Scholar
  514. Masuda K, Okamoto Y, Tuura Y, Kato S, Miura T, Tsuda K, Horikoshi H, Ishida H, Seino Y (1995) Effects of troglitazone (CS-045) on insulin secretion in isolated rat pancreatic islets and HIT cells: an insulinotropic mechanism distinct from glibenclamide. Diabetologia 38:24–30PubMedGoogle Scholar
  515. Müller G, Hartz D, Punter J, Okonomopulos R, Kramer W (1994) Differential interaction of glimepiride and glibenclamide with the 3-cell sulfonylurea receptor. I. Binding characteristics. Biochim Biophys Acta 1191:267–277PubMedGoogle Scholar
  516. Panten U, Burgfeld J, Goerke F, Rennicke M, Schwanstecher M, Wallasch A, Zünkler BJ, Lenzen S (1989) Control of insulin secretion by sulfonylureas, meglitinide and diazoxide in relation to their binding to the sulfonylurea receptor in pancreatic islets. Biochem Pharmacol 8:1217–1229Google Scholar
  517. Panten U, Schwanstecher C, Schwanstecher M (1993) ATP-sensitive K+ channel: properties, occurrence, role in regulation of insulin secretion. In: Dickey BF, Birnbaumer L (eds) GTPases in Biology II, Handbook of Experimental Pharmacology Vol 108/I1, Springer Verlag Berlin, Heidelberg New York, pp 547–559Google Scholar
  518. Schmid-Antomarchi H, DeWeille J, Fosset M, Lazdunski M (1987) The receptor for the antidiabetic sulfonylureas controls the activity of the ATP-modulated K+ channel in insulin-secreting cells. J Biol Chem 262:15840–15844PubMedGoogle Scholar
  519. Schmid-Antomarchi H, deWeille J, Fosset M, Lazdunski M (1987) The antidiabetic sulfonylurea glibenclamide is a potent blocker of the ATP-modulated K+ channel in insulin secreting cells. Biochem Biophys Res Commun 146:21–25PubMedGoogle Scholar
  520. Sugiura M, Sawada Y, Yamada Y, Nakamura K, Iga T (1992) Prediction of therapeutic doses of sulfonylureas based on receptor occupancy theory. Xenobiot Metab Dispos 7: 233–241Google Scholar
  521. Aguilar-Bryan L, Nelson DA, Vu QA, Humphrey MB (1990) Photoaffinity labeling and partial purification of the b cell sulfonylurea receptor using a novel, biologically active glyburide analog. J Biol Chem 265:8218–8224PubMedGoogle Scholar
  522. Bernardi H, Fosset M, Lazdunski M (1988) Characterization, purification, and affinity labeling of the brain [3Hlglibenclamide-binding protein, a putative neuronal ATP-regulated K* channel. Proc Natl Acad Sci USA 85:9816–9820PubMedGoogle Scholar
  523. Boyd III AE, Aguilar-Bryan L, Bryan J, Kunze DL, Moss L, Nelson DA, Rajan AS, Raef H, Xiang H, Yaney GC (1991) Sulfonylurea signal transduction. Rec Progr Horm Res 47:299–317PubMedGoogle Scholar
  524. Kramer W, Müller G, Girbig F, Gutjahr U, Kowalewski S, Hertz D, Summ HD (1994) Differential interaction of glimepiride and glibenclamide with the li-cell sulfonylurea receptor. II. Photoaffinity labeling. Biochem Biophys Acta 119:278–290Google Scholar
  525. Kramer W, Oekonomopulos R, Pünter J, Summ HD (1988) Direct photolabeling of the putative sulfonylurea receptor in rat b-cell tumor membranes by [3H]glibenclamide. FEBS Lett 229:355–359PubMedGoogle Scholar
  526. Wessel D, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143PubMedGoogle Scholar
  527. Yip CC (1984) Photoaffinity probes for hormone receptor characterization. In: Lamer J, Pohl SL (eds) Methods in Diabetes Research Vol I: Laboratory Methods, Part A, pp 3–14, John Wiley and Sons, New YorkGoogle Scholar
  528. Boyd III AE, Aguilar-Bryan L, Bryan J, Kunze DL, Moss L, Nelson DA, Rajan AS, Raef H, Xiang H, Yaney GC (1991) Sulfonylurea signal transduction. Rec Progr Horm Res 47:299–317PubMedGoogle Scholar
  529. Nicki I, Nicks JL, Ashcroft SJH (1990) The 13-cell glibenclamide receptor is an ADP-binding protein. Biochem J 268:713–718Google Scholar
  530. Niki I, Kelly RP, Ashcroft SJH, Ashcroft FM (1989) ATP-sensitive K-channels in HIT T15 13-cells studied by patch-clamp methods, R6Rb efflux and glibenclamide binding. Pflügers Arch 415:47–55PubMedGoogle Scholar
  531. Schmid-Antomarchi H, De Weille J, Fosset M, Lazdunski M (1987) The receptor for antidiabetic sulfonylureas controls the activity of the ATP-modulated K+ channel in insulin secreting cells. J Biol Chem 262:15840–15844PubMedGoogle Scholar
  532. Boyd III AE (1992) The role of ion channels in insulin secretion. J Cell Biochem 48:234–241Google Scholar
  533. Boyd III AE, Aguilar-Bryan L, Bryan J, Kunze DL, Moss L, Nelson DA, Rajan AS, Raef H, Xiang H, Yaney GC (1991) Sulfonylurea signal transduction. Rec Progr Horm Res 47:299–317PubMedGoogle Scholar
  534. deWeille J, Schmid-Antomarchi H, Fosset, M, Lazdunski M (1988) ATP-sensitive K+ channels that are blocked by hypoglycemia-inducing sulfonylureas in insulin-secreting cells are activated by galanin, a hyperglycemia-inducing hormone. Proc Natl Acad Sci, USA, 85:1312–1316Google Scholar
  535. deWeille JR, Fossel M, Mourre C, Schmid-Antomarchi H, Bernardi H, Lazdunski M (1989) Pharmacology and regulation of ATP-sensitive K+ channels. Pflüger’s Arch 441 (Suppl 1) S80–S87Google Scholar
  536. Dunne MJ, Illot MC, Petersen OH (1987) Interaction of diazoxide, tolbutamide and ATP on nucleotide-dependent K+ channels in an insulin-secreting cell line. J Membrane Biol 99:215–224Google Scholar
  537. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth RI (1981) Improved patch-clamp techniques for high-resolution current recordings from cells and cell-free membrane patches. Pflüger’s Arch 391:85–100Google Scholar
  538. Henquin JC, Meissner HP (1984) Effects of theophylline and dibutyryl cyclic adenosine monophosphate on the membrane potential of mouse pancreatic R-cells. J Physiol 351:595–612PubMedGoogle Scholar
  539. Henquin JC, Schmeer W, Henquin M, Meissner HP (1984) Forskolin suppresses the slow cyclic variations of glucose-induced electrical activity in pancreatic ß cells. Biochem Biophys Res Commun 120:797–803PubMedGoogle Scholar
  540. Henquin JC, Schmeer W, Henquin M, Meissner HP (1985) Effects of a calcium channel agonist on the electrical, ionic and secretory events in mouse pancreatic 13-cells. Biochem Biophys Res Commun 131:980–986PubMedGoogle Scholar
  541. Kozlowski RZ, Sturgess NC, Hales CN, Ashford MU (1988) Inhibition of the ATP-K+ channel by glibenclamide in a rat insulinoma cell line. Br J Pharmacol 93:296PGoogle Scholar
  542. Lindau M, Neher E (1988) Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pflüger’s Arch 411:137–146Google Scholar
  543. Meissner HP (1990) Membrane potential measurements in pancreatic 13 cells with intracellular microelectrodes. Meth Enzymol 192:235–246PubMedGoogle Scholar
  544. Nelson TY, Gaines KL, Rajan AS, Berg M, Boyd III AE (1987) Increased cytosolic calcium. A signal for sulfonylurea-stimulated insulin release from beta cells. J Biol Chem 262:2606–2612Google Scholar
  545. Niki I, Kelly RP, Ashcroft SJH, Ashroft FM (1989) ATP-sensitive K-channels in HIT T15 13-cells studied by patch-clamp methods, $“Rb efflux and glibenclamide binding. Pflügers Arch 415:47–55PubMedGoogle Scholar
  546. Rajan AS, Aguilar-Bryan L, Nelson DA, Nichols CG, Wechsler SW, Lechago J, Bryan J (1993) Sulfonylurea receptors and ATP-sensitive K+ channels in clonal pancreatic 13 cells. Evidence for two high affinity sulfonylurea receptors. J Biol Chem 268:15221–15228PubMedGoogle Scholar
  547. Rorsman P, Bokvist K, Ammälä C, Eliasson L, Renström E. Gäbel J (1994) Ion channels, electrical activity and insulin secretion. Diabete and Metabolisme (Paris) 20:138–145Google Scholar
  548. Rorsman P, Trube G (1985) Glucose dependent K’ channels in pancreatic B-cells are regulated by intracellular ATP. Pflüger’s Arch 405:305–309Google Scholar
  549. Rorsman P, Trube G (1986) Calcium and delayed potassium currents in mouse pancreatic 0-cells under voltage-clamp conditions. J Physiol 374:531–550PubMedGoogle Scholar
  550. Schwanstecher C, Dickel C, Panten U (1992) Cytosolic nucleotides enhance the tolbutamide sensitivity of the ATP-dependent K+ channel in mouse pancreatic B cells by their combined actions at inhibitory and stimulatory receptors. Mol Pharmacol 41:480–486PubMedGoogle Scholar
  551. Sturgess NC, Kozlowski RZ, Carrington CA, Hales CN, Ashford MU (1988) Effects of sulphonylureas and diazoxide on insulin secretion and nucleotide-sensitive channels in an insulin-secreting cell line. Br J Phannacol 95:83–94Google Scholar
  552. Trube G, Rorsman P, Ohno-Shosaku T (1986) Opposite effects of tolbutamide and diazoxide on the ATP-dependent K’ channel in mouse pancreatic 0-cells. Pflügers Arch 407:493–499PubMedGoogle Scholar
  553. Wahl MA, Straub SG, Ammon HPT (1993) Vasoactive intestinal polypeptide-augmented insulin release: action on ionic fluxes and electrical activity of mouse islets. Diabetologia 36:920–925PubMedGoogle Scholar
  554. Zünkler BJ, Lenzen S, Männer K, Panten U, Trube G (1988) Concentration-dependent effects of tolbutamide, meglitinide, glipizide, glibenclamide and diazoxide on ATP-regulated K+ currents in pancreatic B-cells. NaunynSchmiedeberg’ s Arch Pharmacol 337:225–230Google Scholar
  555. Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130Google Scholar
  556. Miller TB (1984) Use of liver perfusion for metabolic studies. In: Lamer J, Pohl SL (eds) Methods in Diabetes Research. Vol I: Laboratory Methods. Part A, John Wiley and Sons, New York, pp 143–151Google Scholar
  557. Ross BD (1972) Perfusion techniques in biochemistry. A laboratory manual in the use of isolated perfused organs in biochemical experimentation. Clarendon Press, Oxford. pp 135–220Google Scholar
  558. Sugano T, Suda K, Shimada M, Oshino N (1978) Biochemical and ultrastructural evaluation of isolated rat liver systems perfused with a haemoglobin-free medium. J Biochem 83: 995–1007PubMedGoogle Scholar
  559. Berry MN, Friend DS (1969) High-yield preparation of isolated rat liver parenchymal cells. A biochemical and fine structural study. J Cell Biol 43:506–520PubMedGoogle Scholar
  560. Caro JF, Poulos J, Ittoop 0, Pories WJ, Flickinger EG, Sinha MK (1988) Insulin-like growth factor I binding in hepatocytes from human liver, human hepatoma, and normal, regenerating and fetal rat liver. J Clin Invest 81:976–981PubMedGoogle Scholar
  561. Chowdhury MH, Agius L (1987) Epidermal growth factor counteracts the glycogenic effect of insulin in parenchymal hepatocyte cultures. Biochem J 247:307–314PubMedGoogle Scholar
  562. Ciaraldi TP, Gilmore A, Olefsky JM, Goldberg M, Heidenreich KA (1990) In vitro studies on the action of CS-045, a new antidiabetic agent. Metabolism 39:1056–1062PubMedGoogle Scholar
  563. Czok R, Lamprecht W (1974) Pyruvate, phosphoenol-pyruvate and D-glycerate-2-phosphate. In: Bergmeyer HJ (ed) Methods of Enzymatic Analysis, Vol 3, Verlag Chemie Weinheim, Academic Press New York, London. pp 1446–1451Google Scholar
  564. Forsayeth JR, Maddux BA, Goldfine IA (1986) Biosynthesis and processing of the human insulin receptor. Diabetes 35: 837–846Google Scholar
  565. Forsayeth JR, Montemurro A, Maddux BA, DePirro R, Gold-fine ID (1988) Effect of monoclonal antibodies on human insulin receptor autophosphorylation, negative cooperativity, and down-regulation. J Biol Chem 262:4134–4140Google Scholar
  566. Fukuda H, Katsurada A, Iritani N (1992) Nutritional and hormonal regulation of mRNA levels of lipogenic enzymes in primary cultures of rat hepatocytes. J Biochem 111:25–30PubMedGoogle Scholar
  567. Gliemann J (1965) Insulin-like activity of dilute human serum assayed by an isolated adipose cell method. Diabetes 14: 643–649PubMedGoogle Scholar
  568. Gutmann I, Wahlefeld AM (1974) L-(+)-lactate determination with lactate dehydrogenase and NAD. In: Bergmeyer HJ (ed) Methods of Enzymatic Analysis, Vol 3, Verlag Chemie Weinheim, Academic Press New York, London. pp 1464–1468Google Scholar
  569. Kobayashi M, Hotta N, Komori T, Haga T, Koh N, Sakakibara F, Sakamoto N (1991) Antigluconeo-genetic effect of a new potent sulfonylurea drug, Hoe 490, in isolated hepatocytes from normal, fasted rats. J Japan Diab Soc 34: 767–774Google Scholar
  570. Mellanby J, Williamson DH (1974) Acetoactetate. In: Bergmeyer HJ (ed) Methods of Enzymatic Analysis, Vol 4, Verlag Chemie Weinheim, Academic Press New York, London. pp 1840–1843Google Scholar
  571. Podskalny JM, Takeda S, Silverman RE, Tran D, Carpentier JL, Orci L, Gorden P (1985) Insulin receptors and bioresponses in a human liver cell line (Hep G-2). Eur J Biochem 150:401–407Google Scholar
  572. Seglen PO (1976) Preparation of isolated rat liver cells. In: Prescott DM (ed) Methods in Cell Biology, Vol XIII, Academic Press, New York, pp 29–83Google Scholar
  573. Verspohl EJ, Maddux BA, Goldfine IA (1988) Insulin and insulin-like growth factor regulate the same biological functions in Hep G2 cells via their own specific receptors. J Clin Endocrin Metab 67:169–174Google Scholar
  574. Wade DP, Knight BL, Soutar AK (1988) Hormonal regulation of low-density lipoprotein (LDL) receptor activity in human hepatoma Hep G2 cells. Insulin increases LDL receptor activity and diminishes its suppression by exogenous LDL. Eur J Biochem 174:213–218PubMedGoogle Scholar
  575. Williamson DH, Mellanby J (1974) D-(-)-3-hydroxybutyrate. In: Bergmeyer HJ (ed) Methods of Enzymatic Analysis, Vol 4, Verlag Chemie Weinheim, Academic Press New York, London. pp 1836–1839Google Scholar
  576. Aoki M, Kaku K, Inoue H, Matsutani A, Kaneko T (1992) Tolbutamide inhibits cAMP-dependent phosphorylation of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Diabetes 41:334–338Google Scholar
  577. Furuya E, Uyeda K (1980) An activation factor of liver phos- phofructokinase. Proc Natl Acad Sci USA 77:5861–5864PubMedGoogle Scholar
  578. Gabbay RA, Lardy HA (1987) Insulin inhibition of hepatic cAMP-dependent protein kinase: Decreased affinity of protein kinase for cAMP and possible differential regulation of interchain sites 1 and 2. Proc Nat] Acad Sci USA 84:2218–2222Google Scholar
  579. Hatao K, Kaku K, Matsuda M, Tsuchiya M, Kaneko T (1985) Sulfonylurea stimulates liver fructose-2,6-bisphosphate formation in proportion to its hypoglycemic action. Diab Res Clin Pract 1:49–53Google Scholar
  580. Kaku K, Matsuda M, Matsutani A, Kaneko T (1986) Effect of tolbutamide on fructose-6-phosphate-2-kinase and fructose2,6-bisphosphatase in rat liver. Biochem Biophys Res Commun 139:687–692PubMedGoogle Scholar
  581. Mori K, Kaku K, Inoue H, Aoki M, Marsutani A, Kaneko T (1992) Effects of tolbutamide on fructose-2,6-bisphosphate formation and ketogenesis in hepatocytes from diabetic rats. Metabolism 41:706–710PubMedGoogle Scholar
  582. Murano K, Inoue Y, Emoto M, Kaku K, Kaneko T (1994) CS-045, a new oral antidiabetic agent, stimulates fructose-2,6bisphosphate production in rat hepatocytes. Eur J Pharmacol 254:257–262PubMedGoogle Scholar
  583. Pilkis SJ, El-Maghrabi MR (1988) Hormonal regulation of hepatic gluconeogenesis and glycolysis. Ann Rev Biochem 57:755–783PubMedGoogle Scholar
  584. Richards CS, Uyeda K (1982) The effect of insulin and glucose on fructose-2,6-P2 in hepatocytes. Biochem Biophys Res Commun 109:394–401PubMedGoogle Scholar
  585. Van Schaftingen E (1993) Glycolysis revisited. Diabetologia 36:581–588PubMedGoogle Scholar
  586. Vaulont S, Kahn A (1994) Transcriptional control of metabolic regulation genes by carbohydrates. FASEB J 8:28–35Google Scholar
  587. Daniels EL, Lewis SB (1982) Acute tolbutamide administration alone and combined with insulin enhances glucose uptake in the perfused rat hindlimb. Endocrinology 110:1840–1842PubMedGoogle Scholar
  588. Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130Google Scholar
  589. Ruderman NB, Houghton CRS, Hems R (1971) Evaluation of the isolated perfused rat hindquarter for the study of muscle metabolism. Biochem J 124:639–651PubMedGoogle Scholar
  590. Bahr M, von Holtey M, Müller G, Eckel J (1995) Direct stimulation of myocardial glucose transport and glucose transporter-1 (GLUT1) and GLUT4 protein expression by the sulfonylurea glimepiride. Endocrinology 136:2547–2553PubMedGoogle Scholar
  591. Calderhead DM, Kitagawa K, Lienhard GE, Gould GW (1990) Translocation of the brain-type glucose transporter largely accounts for insulin stimulation of glucose transport in BC3H-1 myocytes. Biochem J 269:597–601PubMedGoogle Scholar
  592. Cooper DR, Vila MC, Watson JE, Nair G, Pollet RJ, Standaert M, Farese RV (1990) Sulfonylurea-stimulated glucose transport association with diacylglycerol-like activation of protein kinase C in BC3H1 myocytes. Diabetes 39:1399–1407PubMedGoogle Scholar
  593. Davidson MB, Molnar IG, Furman A, Yamaguchi D (1991) Glyburide-stimulated glucose transport in cultured muscle cells via protein kinase C-mediated pathway requiring new protein synthesis Diabetes 40:1531–1538Google Scholar
  594. Eckel J, Asskamp B, Reinauer H (1991) Induction of insulin resistance in primary cultured adult cardiac myocytes. Endocrinology 129:345–352PubMedGoogle Scholar
  595. Eckel J, Pandalis G, Reinauer H (1983) Insulin action on the glucose transport system in isolated cardiocytes from adult rat. Biochem J 212:385–392PubMedGoogle Scholar
  596. Kayalar C, Wong WT, Hendrickson L (1990) Differentiation of BC3H1 and primary skeletal muscle cells and the activity of their endogenous insulin-degrading enzyme are inhibited by the same metalloendoprotease inhibitors. J Cell Biochem 44:137–151PubMedGoogle Scholar
  597. Klip A, Marette A (1992) Acute and chronic signals controlling glucose transport in skeletal muscle. J Cell Biochem 48:51–60PubMedGoogle Scholar
  598. Klip A, Ramlal RJ (1987) T, Douen AG, Burdett E, Young D, Cartee GD, Holloszy JO (1988) Insulin-induced decrease in 5’-nucleotidase activity in skeletal muscle membranes. FEBS Lett 238:419–423Google Scholar
  599. McCusker RH, Clemmons DR (1994) Effects of cytokines on insulin-like growth factor-binding protein secretion by muscle cells in vitro. Endocrinology 134:2095–2102PubMedGoogle Scholar
  600. McMahon DK, Anderson PAW, Nassar R, Bunting JB, Saba Z, Oakeley AE, Malouf NN (1994) C2C12cells: biophysical, biochemical, and immunocytochemical properties. Am J Physiol Cell Physiol 266:C1795–C1802Google Scholar
  601. Mitsumoto Y, Burdett E, Grant A, Klip A (1991) Differential expression of the GLUT1 and GLUT4 glucose transporters during differentiation of L6 muscle cells. Biochem Biophys Res Commun 175:652–659PubMedGoogle Scholar
  602. Munson R, Calswell KL, Glaser L (1982) Multiple control for the synthesis of muscle-specific proteins in BC3H1 cells. J Cell Biol 92:350–356PubMedGoogle Scholar
  603. Pardrige WM, Davidson MB, Casanello-Ertl D (1978) Glucose and amino acid metabolism in an established cell line of skeletal muscle cells. J Cell Physiol 96:309–317Google Scholar
  604. Rogers BJ, Standaert ML, Pollet (1987) Direct effects of sulfonylurea agents on glucose transport in the BC3H1 myocyte. Diabetes 39:1292–1296Google Scholar
  605. Rosen KM, Wentworth BM, Rosenthal N, Villa-Komaroff L (1993) Specific, temporally regulated expression of the insulin-like growth factor II gene during muscle cell differentiation. Endocrinology 133:474–481PubMedGoogle Scholar
  606. Saltiel AR, Fox JA, Sherline P, Cuatrecasas P (1986) Insulin-stimulated hydrolysis of a novel glycolipid generates modulators of cAMP phosphodiesterase. Science 233:967–972PubMedGoogle Scholar
  607. Sarabia V, Lam L, Burdett E, Leiter LA, Klip A (1992) Glucose transport in human skeletal muscle cells in culture. Stimulation by insulin and metformin. J Clin Invest 90: 1386–1395PubMedGoogle Scholar
  608. Schubert D, Harris AJ, Devine CE, Heinemann S (1974) Characterization of a unique muscle cell line. J Cell Biol 61: 398–413PubMedGoogle Scholar
  609. Standaert ML, Shimmel SD, Pollet RJ (1984) The development of insulin receptors and responses in the differentiating nonfusing muscle cell line BC3H1. J Biol Chem 259: 2337–2345PubMedGoogle Scholar
  610. Wang PH, Beguinot F, Smith RJ (1987) Augmentation of the effects of insulin and insulin-like growth factors I and II on glucose uptake in cultured rat skeletal muscle cells by sulfonylureas. Diabetologia 30:797–803PubMedGoogle Scholar
  611. Wang PH, Moller D, Flier JS, Nayak RC, Smith RJ (1989) Coordinate regulation of glucose transporter function, number, and gene expression by insulin and sulfonylureas in L6 skeletal muscle cells. J Clin Invest 84:62–67PubMedGoogle Scholar
  612. Yaffe D (1986) Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc Natl Acad Sci USA 61:477–483Google Scholar
  613. Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature, Lond. 270:725–727Google Scholar
  614. Bischoff H (1991) Wirkung von Acarbose auf diabetische Spätkomplikationen und Risikofaktoren — Neue tierexperimentelle Ergebnisse. Akt Endokrin Stoffw 12:25–32Google Scholar
  615. Bischoff H (1994) Pharmacology of a-glucosidase inhibition Eur J Clin Invest 24, Suppl 3:3–10Google Scholar
  616. Bischoff H, Puls W, Krause HP, Schutt H, Thomas G (1985) Pharmacological properties of the novel glucosidase inhibitors BAY M1099 (Miglitol) and BAY 0 1248. Diab Res Clin Pract Suppl 1:S53Google Scholar
  617. Lembcke B, Lamberts R, Creutzfeldt W (1991) Lysosomal storage of glycogen as a sequel of a-glucosidase inhibition by the absorbed deoxynojirimycin derivative emiglitate (BAYo1248). A drug-induced pattern of hepatic glycogen storage mimicking Pompe’s disease (glycogenosis type II). Res Exp Med 191:389–404Google Scholar
  618. Shainkin R, Birk Y (1970) a-Amylase inhibitors from wheat. Isolation and characterization. Biochim Biophys Acta 221:502–513Google Scholar
  619. Rick W, Stegbauer HP (1970) cc-Amylase. Messung der reduzierenden Gruppen. In: Bergmeyer H (ed) Methoden der enzymatischen Analyse, Vol II, 2nd ed., pp 848–853Google Scholar
  620. Dahlqvist A (1964) Method for assay of intestinal disaccharidases. Anal Biochem 7:18–25PubMedGoogle Scholar
  621. Matsuo T, Odaka H, Ikeda H (1992) Effect of an intestinal disaccharidase inhibitor (AO-128) on obesity and diabetes. Am J Clin Nutr 55, Suppl 1:3145–317SGoogle Scholar
  622. Madar Z (1983) Demonstration of amino acid and glucose transport in chicken small intestine everted sac as a student laboratory exercise. Biochem Educ 1 L:9–1 1Google Scholar
  623. Madar Z, Omusky Z (1991) Inhibition of intestinal etglucosidase activity and postprandial hyperglycemia by etglucosidase inhibitors in fa/fa rats. Nutr Res 11:1035–1046Google Scholar
  624. Lembcke B, Fölsch UR, Creutzfeldt W (1985) Effect of 1desoxynojirimycin derivatives on small intestinal disaccharidase activities and on active transport in vitro. Digestion 31:120–127PubMedGoogle Scholar
  625. Glick Z, Bray GA (1983) Effects of acarbose on food intake, body weight and fat depots in lean and obese rats. Pharmacol Biochem Behav 19:71–78PubMedGoogle Scholar
  626. Ho RS, Aranda CG (1979) The influence of 2,2-dimethyl-l-(4methylphenyl)-1-propanone (SaH 50–283) on food efficiency in rats. Arch Int Pharmacodyn 237:98–109PubMedGoogle Scholar
  627. Ikeda H, Odaka H, Matsuo T (1991) Effect of a disaccharidase inhibitor, AO-128, on a high sucrose-diet-induced hyperglycemia in female Wistar fatty rats. Jpn Pharmacol Ther 19:155–150Google Scholar
  628. Le Marchand-Brustel Y, Rochet N, Grémeaux T, Marot I, Van Obberghen E (1990) Effect of an a-glycosidase inhibitor on experimentally induced obesity in mice. Diabetologia 33: 24–30PubMedGoogle Scholar
  629. Madar Z, Omusky Z (1991) Inhibition of intestinal aglucosidase activity and postprandial hyperglycemia by aglucosidase inhibitors in fa/fa rats. Nutr Res 11:1035–1046Google Scholar
  630. Matsuo T, Odaka H, Ikeda H (1992) Effect of an intestinal disaccharidase inhibitor (AO-128) on obesity and diabetes. Am J Clin Nutr 55, Suppl 1:314S–317SGoogle Scholar
  631. Okada H, Shino A, Ikeda H, Matsuo T (1992) Anti-obesity and antidiabetic actions of a new potent disaccharidase inhibitor in genetically obese-diabetic mice, KKAr. J Nut Sci Vitaminol 38:27–37Google Scholar
  632. Puls W, Keup U (1973) Influence of an a-amylase inhibitor (BAY d 7791) on blood glucose, serum insulin and NEFA in starch loading tests in rats, dogs and man. Diabetologia 9:97–101PubMedGoogle Scholar
  633. Puls W, Keup U, Krause HP, Thomas G, Hoffmeister F (1977) Glucosidase inhibition. A new approach to the treatment of diabetes, obesity, and hyperlipoproteinaemia. Naturwiss 64:536–537PubMedGoogle Scholar
  634. Takami K, Okada H, Tsukuda R, Matsuo T (1991) Antidiabetic actions of a disaccharidase inhibitor, AO-128, in spontaneously diabetic (GK) rats. Jpn J Pharmacol Ther 19: 161–171Google Scholar
  635. Cameron NE, Cotter MA, Robertson S (1989) Contractile properties of cardiac papillary muscle in streptozotocindiabetic rats and the effects of aldose reductase inhibition. Diabetologia 32:365–370PubMedGoogle Scholar
  636. Clements RS (1979) Diabetic neuropathy — new concepts in its etiology. Diabetes 28:604–611PubMedGoogle Scholar
  637. Geisen K, Utz R, Grötsch H, Lang HJ, Nimmesgern H (1994) Sorbitol-accumulating pyrimidine derivatives. Arzneim Forsch/Drug Res 44:1032–1043Google Scholar
  638. Kador PF, Robison WG, Kinoshita JH (1985) The pharmacology of aldose reductase inhibitors. Ann Rev Pharmacol Toxicol 25:691–714Google Scholar
  639. Pugliese G, Tilton RG, Speedy A, Chang K, Province MA, Kilo C, Williamson JR (1990) Vascular filtration function in galactose-fed versus diabetic rats: the role of polyol pathway activity. Metabolism 39:690–697PubMedGoogle Scholar
  640. Rathbun WB (1980) Biochemistry of the lens and cataractogenesis: Current concepts. Symposium on Ophthalmology. Veterinary Clinics of North America: Small Animal Practice 10:377–398PubMedGoogle Scholar
  641. Sarges R, Oates PJ (1993) Aldose reductase inhibitors: Recent developments. Progr Drug Res 40:99–161Google Scholar
  642. Tilton RG, Chang K, Pugliese G, Eades DM, Province MA, Sherman WR, Kilo C, Williamson JR (1989) Prevention of hemodynamic and vascular filtration changes in diabetic rats by aldose reductase inhibitors. Diabetes 38:1258–1270PubMedGoogle Scholar
  643. Tilton RG, Chang K, Weigel C, Eades D, Sherman WR, Kilo C, Williamson JR (1988) Increased ocular blood flow and ‘25I-albumin permeation in galactose-fed rats: Inhibition by sorbinil. Invest Ophthalm Vis Sci 29:861–868Google Scholar
  644. van Heyningen R (1959) Formation of polyols by the lens of the rat with “sugar” cataract. Nature 184:194–195Google Scholar
  645. Williamson JR, Chang K, Tilton RG, Prater C, Jeffrey JR, Weigel C, Sherman WR, Eades DM, Kilo C (1987) Increased vascular permeability in spontaneously diabetic BB/W rats and rats with mild versus severe streptozotocininduced diabetes. Diabetes 36:813–821PubMedGoogle Scholar
  646. Yue DK, Hanwell MA, Satchell PM, Tuftle JR (1982) The effect of aldose reductase inhibition on motor nerve conduction velocity in diabetic rats. Diabetes 31:789–794PubMedGoogle Scholar
  647. Billon F, Delchambre Ch, Cloarec A, Sartori E, Teulon JM (1990) Aldose reductase inhibition by 2,4-oxo and thioxo derivates of 1,2,3,4-tetrahydroquinazoline. Eur J Med Chem 25:121–126Google Scholar
  648. Hayman S, Kinoshita JH (1965) Isolation and properties of lens aldose reductase. J Biol Chem 240:877–882PubMedGoogle Scholar
  649. Jacobson M, Sharma YR, Cotlier E, Hollander JD (1983) Diabetic complications in lens and nerve and their prevention by Sulindac or Sorbinil: Two novel aldose reductase inhibitors. Invest Ophthalmol Vis Sci 24:1426–1429PubMedGoogle Scholar
  650. Peterson MJ, Sarges R, Aldinger CE, MacDonald DP (1979) CP 45,634: A novel aldose reductase inhibitor that inhibits polyol pathway activity in diabetic and galactosemic rats. Metabolism 28:456–461PubMedGoogle Scholar
  651. Terashima H, Hama K, Yamamoto R, Tsuboshima M, Kikkawa R, Hatanaka I, Shigeta Y (1984) Effects of a new aldose reductase inhibitor on various tissues in vitro. J Pharmacol Exp Ther 229:226–230PubMedGoogle Scholar
  652. Terashima H, Tanaka M, Motoishi M, Yamamoto R, Hama K, Okegawa T, Kawasaki A (1988) Biochemical studies of a new aldose reductase inhibitor, ONO-2235. In: Sakamoto N, Kinoshita JH, Kador PF, Hotta N (eds) Polyol pathway and its role in diabetic complications. Excerpta Medica, Amsterdam, pp 82–87Google Scholar
  653. Varma S, Kinoshita JH (1976) Inhibition of lens aldose reductase by flavonoids — their possible role in the prevention of diabetic cataracts. Biochem Pharmacol 25:2505–2513PubMedGoogle Scholar
  654. Calcutt NA, Mizisin AP, Kalichman MW (1994) Aldose reductase inhibition, Doppler flux and conduction in diabetic rat nerve. Eur J Pharmacol 251:27–33PubMedGoogle Scholar
  655. Cameron NE, Cotter MA, Low AP (1991) Nerve blood flow in early experimental diabetes in rats: relation to conduction deficits. Am J Physiol 261 EI-E8Google Scholar
  656. Cameron NE, Cotter MA, Robertson S (1989) The effect of aldose reductase inhibition on the pattern of nerve conduction deficits in diabetic rats. Quart J Exp Physiol 74:917–926Google Scholar
  657. Cameron NE, Leonard MB, Ross IS, Withing PH (1986) The effects of Sorbinil on peripheral nerve conduction velocity, polyol concentrations and morphology in the streptozotocin-diabetic rat. Diabetologia 29:168–174PubMedGoogle Scholar
  658. Carrington AL, Ettlinger CB, Calcutt NA, Tomlinson DR (1991) Aldose reductase inhibition with imirestat—effects on impulse conduction and insulin-stimulation of Na’/K’adenosine triphosphatase activity in sciatic nerves of streptozotocin-diabetic rats. Diabetologia 34:397–401PubMedGoogle Scholar
  659. Gillon KRW, Hawthorne JN, Tomlinson DR (1983) Myoinositol and sorbitol metabolism in relation to peripheral nerve function in experimental diabetes in the rat: The effect of aldose reductase inhibition. Diabetologia 25:365–371PubMedGoogle Scholar
  660. Greene DA, Chakrabarti S, Lattimer SA, Sima AAF (1987) Role of sorbitol accumulation and myo-inositol depletion in paranodal swelling of large myelinated nerve fibres in the insulin-deficient spontaneously diabetic Bio-breeding rat. J Clin Invest 79:1479–1485PubMedGoogle Scholar
  661. Greene DA, DeJesus PV, Winegrad AI (1975) Effects of insulin and dietary myoinositol on impaired peripheral motor nerve conduction velocity in acute streptozotocin diabetes. J Clin Invest 55:1326–1336PubMedGoogle Scholar
  662. Hirata Y, Fujimori S, Okada K (1988) Effect of a new aldose reductase inhibitor, 8’-chloro-2’,3’-dihydrospiro[pyrrolidine-3,6’(5 ‘H)-pyrrolo[1,2,3-de] [1,4]benzoxazine]-2,5,5’trione (ADN-138), on delayed motor conduction velocity in streptozotocin-diabetic rats. Metabolism 37:159–163PubMedGoogle Scholar
  663. Hotta N, Sigimura K, Kakuta H, Fukasawa H, Kimura M, Koh N, Matsumae H, Kitoh R, Sakamoto N (1988) Effects of a fructose-rich diet and an aldose reductase inhibitor on the development of diabetic neuropathy in streptozotocintreated rats. In: Sakamoto N, Kinoshita JH, Kador PF, Hotta N (eds) Polyol pathway and its role in diabetic complications. Excerpta Medica, Amsterdam, pp 505–511Google Scholar
  664. Kikkawa R, Hatanaka I, Yasuda H, Kobayashi N, Shigeta Y, Terashima H, Morimura T, Tsuboshima M (1983) Effect of a new aldose reductase inhibitor, (E)-3-Carboxymethyl-5[(2E)-methyl-3-phenylpropylidene]rhodanine (ONO-2235) on peripheral nerve disorders in streptozotocin-diabetic rats. Diabetologia 24:290–292PubMedGoogle Scholar
  665. Miyoshi T, Goto I (1973) Serial in vivo determinations of nerve conduction velocity in rat tails. Physiological and pathological changes. Electroencephalogr Clin Neurophysiol 35:125–131PubMedGoogle Scholar
  666. Price DE, Airey CM, Alani SM, Wales JK (1988) Effect of aldose reductase inhibition on nerve conduction velocity and resistance to ischemic conduction block in experimental diabetes. Diabetes 37:969–973PubMedGoogle Scholar
  667. Schmidt RE, Plurad SB, Coleman BD, Williamson JR, Tilton RG (1991) Effects of sorbinil, dietary myo-inositol supplementation, and insulin on resolution of neuroaxonal dystrophy in mesenteric nerves of streptozotocin-induced diabetic rats. Diabetes 40:573–582Google Scholar
  668. Sharma AK, Thomas PK (1974) Peripheral nerve structure and function in experimental diabetes. J Neurol Sci 23:1–15PubMedGoogle Scholar
  669. Sima AAF, Prashar A, Zhang WX, Chakrabarti S, Greene DA (1990) Preventive effect of long-term aldose reductase inhibition (Ponalrestat) on nerve conduction and sural nerve structure in the spontaneously diabetic Bio-Breeding rat. J Clin Invest. 85:1410–1420PubMedGoogle Scholar
  670. Stribling D, Mirrlees DJ, Harrison HE, Earl DCN, (1985) Properties of ICI 128,436, a novel aldose reductase inhibitor and its effects on diabetic complications in the rat. Metabolism 34:336–344PubMedGoogle Scholar
  671. Calcutt NA, Mizisin AP, Kalichman MW (1994) Aldose reductase inhibition, Doppler flux and conduction in diabetic rat nerve. Eur J Pharmacol 251:27–33PubMedGoogle Scholar
  672. Engerman RL (1989) Pathogenesis of diabetic retinopathy. Diabetes 38:1203–1206PubMedGoogle Scholar
  673. Funada M, Okamoto I, Fujinaga Y, Yamana T (1987) Effects of aldose reductase inhibitor (M79175) on ERG oscillatory potential abnormalities in streptozotocin fructose-induced diabetes in rats. Jpn J Ophthalm 31:305–314Google Scholar
  674. Hotta N, Kakuta H, Fukasawa H, Koh N, Matsumae H, Kimura M, Sakamoto N (1988) Prevention of diabetic neuropathy by an aldose reductase inhibitor in fructose-fed streptomycin-diabetic rats. In: Sakamoto N, Kinoshita JH, Kador PF, Hotta N (eds) Polyol pathway and its role in diabetic complications. Excerpta Medica, Amsterdam, pp 311–318Google Scholar
  675. Kozak WM, Marker NA, Elmer KK (1986) Effects of aldose reductase inhibition on the retina and health indices of streptozotocin-diabetic rats. Docum Ophthalm 64:355–377Google Scholar
  676. Kuwabara T, Cogan DG (1960) Studies on retinal vascular patterns. Arch Ophthalm 64:904–911Google Scholar
  677. Lightman S, Rechthand E, Terubayashi H, Palestine A, Rapoport A, Kador P (1987) Permeability changes in blood-retinal barrier of galactosemic rats are prevented by aldose reductase inhibitors. Diabetes 36:1271–1275PubMedGoogle Scholar
  678. Nagata M, Robison WG (1988) Basement membrane thickening in retina and muscle of animal models of diabetes. In: Sakamoto N, Kinoshita JH, Kador PF, Hotta N (eds) Polyol pathway and its role in diabetic complications. Excerpta Medica. Amsterdam, pp 276–285.Google Scholar
  679. Segawa M, Hirata Y, Fujimori S, Okada K (1988) The development of electroretinogram abnormalities and the possible role of polyol pathway activity in diabetic hyperglycemia and galactosemia. Metabolism 37:454–460PubMedGoogle Scholar
  680. Segawa M, Takahashi N, Namiki H, Masuzawa K (1988) Electrophysiological abnormalities and polyol accumulation in retinas of diabetic and galactosemic rats. In: Sakamoto N, Kinoshita JH, Kador PF, Hotta N (eds) Polyol pathway and its role in diabetic complications. Excerpta Medica, Amsterdam, pp 306–310Google Scholar
  681. Akagi Y, Tasaka H, Terubayashi H, Kador PF, Kinoshita JH (1988) Aldose reductase localization in rat sugar cataract. In: Sakamoto N, Kinoshita JH, Kador PF, Hotta N (eds) Polyol pathway and its role in diabetic complications. Excerpta Medica, Amsterdam, pp 170–181Google Scholar
  682. Ao S, Shingu Y, Kikuchi C, Takano Y, Nomura K, Fujiwara T, Ohkubo Y, Notsu Y, Yamaguchi I (1991) Characterization of a novel aldose reductase inhibitor, FR74366, and its effects on diabetic cataract and neuropathy in the rat. Metabolism 40:77–87PubMedGoogle Scholar
  683. Dvornik D, Simard-Duquesne, Krami M, Sestanj K, Gabbay KH, Kinoshita JH, Varma SD, Merola LO (1973) Polyol accumulation in galactosemic and diabetic rats: Control by an aldose reductase inhibitor. Science 182:1146–1148PubMedGoogle Scholar
  684. Griffin BW, Chandler ML, DeSantis L (1984) Prevention of diabetic cataract and neuropathy in rats by two new aldose reductase inhibitors. Invest Ophthal Vis Sci 25:136Google Scholar
  685. Hockwin O, Wegener A, Sisk DR, Dohrmann B, Kruse M (1985) Efficacy of AL-1576 in preventing naphthalene cataract in three rat strains. Slit lamp and Scheimpflug photographic study. Lens Res 2:321–335Google Scholar
  686. Kinoshita JH (1965) Cataracts in galactosemia. Invest Ophthal 4:786–799PubMedGoogle Scholar
  687. Kinoshita JH (1974) Mechanisms initiating cataract formation. Invest Ophthal 13:713–724PubMedGoogle Scholar
  688. Kinoshita JH, Fukushi S, Kador P, Merola LO (1979) Aldose reductase in diabetic complications of the eye. Metabolism 28 (Suppl 1):462–469PubMedGoogle Scholar
  689. Müller P, Hockwin O, Ohrloff C (1985) Comparison of aldose reductase inhibitors by determination of IC50 with bovine and rat lens extracts. Ophthal Res 17:115–119Google Scholar
  690. Nishimura C, Akagi Y, Robison WG, Kador PF, Kinoshita JH (1988) Increased aldose reductase in galactosemic lens. In: Sakamoto N, Kinoshita JH, Kador PF, Hotta N (eds) Polyol pathway and its role in diabetic complications. Excerpta Medica, Amsterdam, pp 182–188Google Scholar
  691. Pirie A, van Heyningen R (1964) Effect of diabetes on the content of sorbitol, glucose, fructose and inositol in the human lens. Exp Eye Res 3:124–131PubMedGoogle Scholar
  692. van Heyningen R (1959) Formation of polyols by the lens of the rat with “sugar” cataract. Nature 184:194–195Google Scholar
  693. Varma SD. Kinoshita JH (1976) Inhibition of lens aldose reductase by flavonoids - their possible role in the prevention of diabetic cataracts. Biochem Pharmacol 25:2505–2513PubMedGoogle Scholar
  694. Wegener A, Hockwin 0 (1991) Benefit/risk assessment of ophthalmic anti-infectives. Chibret Intern J Ophthalmol 8: 43–45Google Scholar
  695. Billon F, Delchambre Ch, Cloarec A, Sartori E, Teulon JM (1990) Aldose reductase inhibition by 2,4-oxo and thioxo derivates of 1,2,3,4-tetrahydroquinazoline. Eur J Med Chem 25:121–126Google Scholar
  696. Gonzales AM, Sochor M, Hothersall JS, McLean P (1986) Effect of aldose reductase inhibitor (sorbinil) on integration of polyol pathway, pentose phosphate pathway and glycolytic route in diabetic rat lens. Diabetes 35:1200–1205Google Scholar
  697. Griffin BW, McNatt LG, Chandler ML, York BM (1987) Effects of two new aldose reductase inhibitors, AL-1567 and AL-1576, in diabetic rats. Metabolism 36:486–490PubMedGoogle Scholar
  698. Hockwin 0 (1989) Die Scheimpflug-Photographie der Linse. Fortschr Ophthalmol 86:304–311Google Scholar
  699. Hu TS, Datiles M, Kinoshita JH (1983) Reversal of galactose cataract with sorbinil in rats. Invest Ophthalmol Vis Sci 24:640–644PubMedGoogle Scholar
  700. Keller HW, Koch HR (1978) Experimental arabinose cataracts. Interdiscipl Topics Gerontol 12:141–146Google Scholar
  701. Lee SM; Schade SZ, Doughty CC (1985) Aldose reductase, NADPH, and NADP+ in normal, galactose-fed and diabetic rat lens. Biochem Biophys Acta 841:247–253PubMedGoogle Scholar
  702. Müller P, Hockwin 0, Ohrloff C (1985) Comparison of aldose reductase inhibitors by determination of IC50 with bovine and rat lens extracts. Ophthal Res 17:115–119Google Scholar
  703. Naeser et al (1988) Sorbitol metabolism in the retina, optic nerve, and sural nerve of diabetic rats treated with an aldose reductase inhibitorGoogle Scholar
  704. Sekiguchi M, Watanabe K, Eto M, Iwashima Y, Morikawa A, Oshima E, Chonan N, Takebe R, Ishii K (1988) The effect of the aldose reductase inhibitor ON0–2235 on the polyol pathway in diabetic Chinese hamsters. In: Sakamoto N, Kinoshita JH, Kador PF, Hotta N (eds) Polyol pathway and its role in diabetic complications. Excerpta Medica, Amsterdam, pp 88–92Google Scholar
  705. Varma S, Kinoshita JH (1976) Inhibition of lens aldose reductase by flavonoids — their possible role in the prevention of diabetic cataracts. Biochem Pharmacol 25:2505–2513PubMedGoogle Scholar
  706. Hockwin O, Wegener A, Sisk DR, Dohrmann B, Kruse M (1985) Efficacy of AL-1576 in preventing naphthalene cataract in three rat strains. Slit lamp an Scheimpflug photographic study. Lens Res 2:321–335Google Scholar
  707. Hockwin O (1989) Die Scheimpflug-Photographie der Linse. Fortschr Ophthalmol 86:304–311PubMedGoogle Scholar
  708. Wegener A, Hockwin O (1991) Benefit/risk assessment of ophthalmic anti-infectives. Chibret Intern J Ophthalmol 8: 43–45Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  1. 1.Johann Wolfgang Goethe Universität FrankfurtFrankfurt am MainGermany
  2. 2.Philipps Universität MarburgMarburgGermany
  3. 3.Department of Pharmacology Jefferson Medical CollegeThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations