Skip to main content

Antidiabetic activity

  • Chapter
Book cover Drug Discovery and Evaluation

Abstract

Dysfunction of the visceral tract has been considered for a long time to be the cause of diabetes mellitus. Bomskov (1910) reported severe diabetic symptoms in dogs after cannulation of the ductus lymphaticus. This observation, however, could not be confirmed in later experiments (Vogel 1963). Mehring and Minkowski (1890) noted polyuria, polydipsia, polyphagia, and severe glycosuria following removal of the pancreas in dogs. The final proof for the existence of a hormone in the pancreas was furnished by Banting and Best (1922) who could reduce the elevated blood sugar levels in pancreatectomized dogs by injection of extracts of the pancreatic glands. The role of the pituitary gland in development of diabetes has first been elucidated by Houssay (1930, 1931) in pancreatectomized dogs (Survey by Beyer and Schöffling 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banting FG, Best CH (1922) The internal secretion of the pancreas. J Lab Clin Med 7:251–266

    CAS  Google Scholar 

  • Beyer J, Schöffling K (1968) Die Houssay-Präparation (Methodisches Vorgehen und Auswirkungen der Versuchsanordnung auf Stoffwechsel und endokrines System) in: Pfeiffer EF (ed.) Handbook of Diabetes mellitus, Pathophysiology and Clinical Considerations. Vol. I, Lehmanns Verlag, München. pp 745–761

    Google Scholar 

  • Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130

    CAS  Google Scholar 

  • Houssay BA (1930) Le diabète pancréatique des chiens hypophysectomisés. Les troubles diabétiques chez les chiens privés d’hypophyse et de pancréas. Compt rend Soc Biol, Paris 105:121–126

    CAS  Google Scholar 

  • Houssay BA, Biasotti A (1931) Pankreasdiabetes und Hypo- physe am Hund. Pflüger’s Arch ges Physiol 227:664–685

    Google Scholar 

  • Sirek A (1968) Pancreatectomy and diabetes. in: Pfeiffer EF (ed.) Handbook of Diabetes mellitus, Pathophysiology and Clinical Considerations. Vol. I, Lehmanns Verlag, München. pp 727–743

    Google Scholar 

  • Vogel HG (1963) Unpublished data von Mehring J, Minkowski 0 (1890) Diabetes mellitus nach Pankreasexstirpation. Arch exper Path Pharmakol 26: 371–387

    Google Scholar 

  • Baily CC, Baily OT (1943) Production of diabetes mellitus in rabbits with alloxan. A preliminary report. J Am Med Ass 122:1165–1166

    Google Scholar 

  • Bänder A, Pfaff W, Schmidt FH, Stork H, Schröder HG (1969) Zur Pharmakologie von HB 419, einem neuen, stark wirksamen oralen Antidiabeticum. Arzneim Forsch/Drug Res 19:1363–1372

    Google Scholar 

  • Blum F, Schmid R (1954) Über den Einfluss der Konzentration auf den Ablauf des experimentellen Alloxandiabetes. Helv Physiol Acta 12:181–183

    CAS  Google Scholar 

  • Brunschwig A, Allen JG, Goldner MG, Gomori G (1943) AIloxan. J Am Med Ass 122:966

    Google Scholar 

  • Dunn JS, McLetchie NGB (1943) Experimental alloxan diabetes in the rat. Lancet 11:384–387

    Google Scholar 

  • Frerichs H, Creutzfeldt W (1968) Diabetes durch BetaZytotoxine. In: Pfeiffer EF (ed.) Handbook of Diabetes mellitus, Pathophysiology and Clinical Considerations. Vol. I, Lehmanns Verlag, München. pp 811–840

    Google Scholar 

  • Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130

    CAS  Google Scholar 

  • Goldner MG, Gomori G (1944) Studies on the mechanism of alloxan diabetes. Endocrinology 35:241–248

    CAS  Google Scholar 

  • Heikkila RE, Barden H, Cohen G (1974) Prevention of alloxan-induced diabetes by ethanol administration. J Pharm Exp Ther 190:501–506

    CAS  Google Scholar 

  • Katsumata K, Katsumata Y (1990) Effect of single administration of tolbutamide on the occurrence of alloxan diabetes in rats. Horm Metabol Res 22:192–193

    CAS  Google Scholar 

  • Katsumata K, Katsumata Y, Ozawa T, Katsumata Jr (1993) Potentiating effect of combined usage of three sulfonylurea drugs on the occurrence of alloxan diabetes in rats. Horm Metab Res 25:125–126

    PubMed  CAS  Google Scholar 

  • Kodoma T, Iwase M, Nunoi K, Maki Y, Yoshinari M, Fujishima M (1993) A new diabetes model induced by neonatal alloxan treatment in rats. Diab Res Clin Pract 20: 183–189

    Google Scholar 

  • Pincus IJ, Hurwitz JJ, Scott ME (1954) Effect of rate of injection of alloxan on development of diabetes in rabbits. Proc Soc Exp Biol Med 86:553–558

    PubMed  CAS  Google Scholar 

  • Tasaka Y, Inoue Y, Matsumoto H, Hirata Y (1988) Changes in plasma glucagon, pancreatic polypeptide and insulin during development of alloxan diabetes mellitus in dog. Endocrinol Japon 35:399–404

    CAS  Google Scholar 

  • Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130

    CAS  Google Scholar 

  • Iwakiri R, Nagafuchi S, Kounoue E, Nakano S, Koga T, Nakayama M, Nakamura M. Niho Y (1987). Cyclosporin A enhances streptozocin induced diabetes in CD-1 mice. Experientia 43:324–327

    PubMed  CAS  Google Scholar 

  • Katsumata K, Katsumata K Jr, Katsumata Y (1992) Protective effect of diltiazem hydrochloride on the occurrence of alloxan-or streptozotocin-induced diabetes in rats. Horm Met Res 24:508–510

    CAS  Google Scholar 

  • Like AA, Rossini AA (1976) Streptozotocin-induced pancreatic insulitis: A new model of diabetes mellitus. Science 133:415–417

    Google Scholar 

  • Miller DL (1990) Experimental diabetes: Effect of streptozotocin on the golden Syrian hamster. Lab Anim Sci 40: 539–540

    PubMed  CAS  Google Scholar 

  • Rakieten N, Rakieten ML, Nadkarni MV (1963) Studies on the diabetogenic action of streptozotocin NSC-37917). Cancer Chemother Rep 29:91–102

    Google Scholar 

  • Rossini AA, Like AA, Chick A, Appel MC, Cahill GF (1977) Studies of streptozotocin-induced insulitis and diabetes. Proc Natl Acad Sci, USA, 74:2485–2489

    CAS  Google Scholar 

  • Tancrède G, Rousseau-Migneron S, Nadeau A (1983) Longterm changes in the diabetic state induced by different doses of streptozotocin in rats. Br J Exp Path 64:117–123

    Google Scholar 

  • Bavelsky ZE, Zavyazkina TV, Moisev YS, Medvedev VI (1992) Zinc content in pancreatic islets in experimental diabetes induced by chelating agents. Patol Fiziol Eksp Ter 36:29–32

    Google Scholar 

  • Caterson ID, Cooney GJ, Vanner MA, Nicks JL, Williams PF (1988) The activities of the pyruvate dehydrogenase complex and of acetyl-CoA carboxylase in various tissues in experimental obesity: tissue differences and insulin resistance. Diab Nutr Metab 1:65–70

    Google Scholar 

  • Goldberg ED, Eshchenko VA, Bovt VD (1991) The diabetogenic and acidotropic effects of chelators. Exp Pathol 42: 59–64

    PubMed  CAS  Google Scholar 

  • Hansen WA, Christie MR, Kahn R, Norgard A, Abel I, Petersen AM, Jorgensen DW, Baekkeskov S, Nielsen JH, Lernmark A, Egeberg J, Richter-Olesen H, Grainger T, Kristensen JK, Brynitz S, Bilde T (1989) Supravital dithizone staining in the isolation of human and rat pancreatic islets. Diabetes Res 10:53–57

    PubMed  CAS  Google Scholar 

  • Maske H, Weinges K (1957) Untersuchungen über das Verhalten der Meerschweinchen gegenüber verschiedenen diabetogenen Noxen. Alloxan and Dithizon. Naunyn-Schmiedeerg’s Arch exper Path Pharmakol 230:406–420

    CAS  Google Scholar 

  • Silva E, Hernandez L (1989) Goldthioglucose causes brain and serotonin depletion correlated with increased body weight. Brain Res 490:192–195

    CAS  Google Scholar 

  • Stauffacher W, Lambert AE; Vecchio D, Renold AE (1967) Measurement of insulin activities in pancreas and serum of mice with spontaneous (“obese” and “New Zealand obese”) and induced (goldthioglucose) obesity and hyperglycemia, with considerations on the pathogenesis of the spontaneous syndrome. Diabetologia 3:230–237

    PubMed  CAS  Google Scholar 

  • Martin TE, Young FG (1968) Experimental diabetes following growth hormone. In: Pfeiffer EF (ed.) Handbook of Diabetes mellitus, Pathophysiology and Clinical Considerations. Vol. I, Lehmanns Verlag, München. pp 763–770

    Google Scholar 

  • Young FG (1945) Growth and diabetes in normal animals treated with pituitary (anterior lobe) diabetogenic extract. Biochem J 39:515–536

    PubMed  CAS  Google Scholar 

  • Abelove WA, Paschkis KE (1954) Comparison of the diabetogenic action of cortisone and growth hormone in different species. Endocrinology 55:637–654

    PubMed  CAS  Google Scholar 

  • Bellens R, Bastenie PA (1968) Experimental steroid diabetes. In: Pfeiffer EF (ed.) Handbook of Diabetes mellitus, Pathophysiology and Clinical Considerations. Vol. I, Lehmanns Verlag, München. pp 797–810

    Google Scholar 

  • Hausberger FX, Ramsay AJ (1953) Steroid diabetes in guinea pigs. Effect of cortisone administration on blood-and urinary glucose, nitrogen excretion, fat deposition, and the islets of Langerhans. Endocrinology 53:423–435

    PubMed  CAS  Google Scholar 

  • Ingle DJ (1941) The production of glycosuria in the normal rat by means of 17-hydroxy-l1-dehydrocorticosterone. Endocrinology 29:649–652

    CAS  Google Scholar 

  • Ingle DJ, Li CH, Evans HM (1946) The effect of adrenocorticotropic hormone on the urinary excretion of sodium, chloride, potassium, nitrogen and glucose in normal rats. Endocrinology 39:32–39

    PubMed  CAS  Google Scholar 

  • Arnim J, Grant RT, Wright PH (1960) Acute insulin deficiency provoked by single injections of anti-insulin serum. J Physiol (London) 153:131–145

    Google Scholar 

  • Moloney PJ, Coval M (1955) Antigenicity of insulin: diabetes induced by specific antibodies. Biochem J 59:179–185

    PubMed  CAS  Google Scholar 

  • Wright PH (1968) Experimental insulin-deficiency due to insulin antibodies. In: 841–865. Pfeiffer EF (ed.) Handbook of Diabetes mellitus, Pathophysiology and Clinical Considerations. Vol. I, Lehmanns Verlag, München. pp 841–865

    Google Scholar 

  • Craighead J (1978) Current views on the etiology of insulin-dependent diabetes mellitus. New Engl J Med 299:1439–1445

    PubMed  CAS  Google Scholar 

  • Giron DJ, Patterson RR (1982) Effect of steroid hormones on virus-induced diabetes mellitus. Infect Immun 37:820–822

    PubMed  CAS  Google Scholar 

  • Giron DJ, Cohen SJ, Lyons SP, Trombley ML, Gould CL (1983) Virus-induced diabetes mellitus in ICR Swiss mice is age dependent. Infect Immun 41:834–836

    PubMed  CAS  Google Scholar 

  • Gould CL, McMannama KG, Bigley NJ, Giron DJ (1985) Virus-induced murine diabetes. Enhancement by immunosuppression. Diabetes 34:1217–1221

    PubMed  CAS  Google Scholar 

  • Vialettes B, Baume D, Charpin C, De Maeyer-Guignard J, Vague P (1983) Assessment of viral and immune factors in EMC virus-induced diabetes: effects of cyclosporin A and interferon. J Lab Clin Immunol 10:35–40

    CAS  Google Scholar 

  • Yoon JW, McClintock PR, Onodera T, Notkins AL (1980) Virus-induced diabetes mellitus. XVII. Inhibition by a nondiabetogenic variant of encephalomyocarditis virus. J Exp Med 152:878–892

    PubMed  CAS  Google Scholar 

  • Ellerman K, Wroblewski M, Rabinovitch A, Like A (1993) Natural killer cell depletion and diabetes mellitus in the BB/Wor rat. Diabetologia 36:596–601

    PubMed  CAS  Google Scholar 

  • Gottlieb PA, Berrios JP, Mariani G, Handler ES, Greiner D, Mordes JP, Rossini AA (1990) Autoimmune destruction of islets transplanted into RT6-depleted diabetes-resistant BB/Wor rats. Diabetes 39:643–645

    PubMed  CAS  Google Scholar 

  • Hao L, Chan SM, Lafferty KJ (1993) Mycophenolate mofetil can prevent the development of diabetes in BB rats. Ann NY Acad Sci 969:328–332

    Google Scholar 

  • Kolb H, Burkart V, Appels B, Hanenberg H, Kantwerk-Funke G, Kiesel U, Funda J, Schraermeyer U, Kolb-Bachofen V (1990) Essential contribution of macrophages to islet cell destruction in vivo and in vitro. J Autoimmun 3 Suppl): 117–120

    Google Scholar 

  • Lee KU, Pak CY, Amano K, Yoon JW (1988) Prevention of lymphocytic thyroiditis and insulitis in diabetes-prone BB rats by the depletion of macrophages. Diabetologia 31: 400–402

    PubMed  CAS  Google Scholar 

  • Lefkowith J, Schreiner G, Cormier J, Handler ES, Driscoll HK, Greiner D, Mordes JP, Rossini AA (1990) Prevention of diabetes in the BB rat by essential fatty acid deficiency. J Exp Med 171:729–743

    PubMed  CAS  Google Scholar 

  • Like AA, Butler L, Williams RM, Appel MC, Weringer EJ, Rossini AA (1982) Spontaneous autoimmune diabetes mellitus in the BB rat. Diabetes 31 (Suppl 1):7–11

    PubMed  CAS  Google Scholar 

  • Nakhooda AF, Like AA, Chappel CI, Murray FT, Marliss EB (1977) The spontaneously diabetic Wistar rat; metabolic and morphologic studies. Diabetes 26:100–112

    PubMed  CAS  Google Scholar 

  • Nakhooda AF, Like AA, Chappel CI, Wei CN, Marliss EB (1978) The spontaneously diabetic Wistar rat (the `BB“ rat). Studies prior to and during development of the overt syndrome. Diabetologia 14:199–207

    PubMed  CAS  Google Scholar 

  • Papaccio G, Mezzogiorno V (1989) Morphological aspects of glucagon and somatostatin islet cells in diabetic Bio Breeding and low-dose streptozotocin-treated Wistar rats. Pancreas 4:289–294

    CAS  Google Scholar 

  • Pipeleers D, Pipeleers-Marichal M, Markholst H, Hoorens A, Klöppel G (1991) Transplantation of purified islet cells in diabetic BB rats. Diabetologia 34:390–396

    PubMed  CAS  Google Scholar 

  • Sima AAF (1984) Neuropathic and ocular complications in the BB-Wistar rat. In: Shafrir R, Reynold A (eds) Lesson from Diabetes, London, pp 447–453

    Google Scholar 

  • Solomon SS, Deaton J, Harris G, Smoake JA (1989) Studies of insulin resistance in the streptozotocin diabetic and BB rat: Activation of low Km cAMP phosphodiesterase by insulin. Am J Med Sci 297:372–376

    PubMed  CAS  Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4: 2850–2859

    Google Scholar 

  • Koizumi M, Shimoda I, Sato K, Shishido T, Ono T, Ishizuka J, Toyota T, Goto Y (1989) Effects of CAMOSTAT on development of spontaneous diabetes in the WBN/Kob rats. Biomed Res 10, Suppl 1:45–50

    Google Scholar 

  • Nakama K, Shichinohe K, Kobayashi K, Naito K, Ushida O, Yasuhara K, Zobe M (1985) Spontaneous diabetes-like syndrome in WBN/Kob rats. Acta Diabetol Lat. 122: 335–342

    Google Scholar 

  • Tsichitani M Saegusa T, Narama I, Nishikawa T, Gonda T (1985) A new diabetic strain of rat (WBN/Kob) Laboratory Animals 19:200–207

    Google Scholar 

  • Cohen AM, Teitelbaum A, Saliternik R (1972) Genetics and diet as factors in the development of diabetes mellitus. Metabolism 21:235–240

    CAS  Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4: 2850–2859

    Google Scholar 

  • Abadie JM, Wright B, Correa G, Browne ES, Porter JR, Svec F (1993) Effect of dihydro-epiandrosterone on neurotransmitter levels and appetite regulation of the obese Zucker rat. Diabetes 42:662–669

    PubMed  CAS  Google Scholar 

  • Alamzadeh R, Slonim AE, Zdanowicz MM (1993) Modification of insulin resistance by diazoxide in obese Zucker rats. Endocrinology 133:705–712

    Google Scholar 

  • Bray GA (1977) The Zucker-fatty rat: A review. Fed Proc 36: 148–153

    PubMed  CAS  Google Scholar 

  • Clark JB, Palmer CJ, Shaw WN (1983) The diabetic Zucker fatty rat. Proc Soc Exp Biol Med 173:68–75

    PubMed  CAS  Google Scholar 

  • Fujiwara T, Yoshioka S, Yoshioka T, Ushiyama I, Horikoshi H (1988) Characterization of new oral antidiabetic agent CS-045. Studies in KK and ob/ob mice and Zucker fatty rats. Diabetes 37:1549–1558

    PubMed  CAS  Google Scholar 

  • Galante P, Maerker E, Scholz R, Rett K, Herberg L, Mosthaf L, Häring HU (1994) Insulin-induced translocation of GLUT 4 in skeletal muscle of insulin-resistant Zucker rats. Diabetologia 37:3–9

    PubMed  CAS  Google Scholar 

  • Kasim SE, Elovson J, Khilnani S, Almario RU, Jen KLC (1993) Effect of lovostatin on the secretion of very low density lipoproteins and apolipoprotein B in the hypertriglyceridemic Zucker obese rat. Atherosclerosis 104: 147–152

    PubMed  CAS  Google Scholar 

  • Kava R, Greenwoof MRC, Johnson PR (1990) Zucker (fa/fa) rat. Ilar News 32:4–8

    Google Scholar 

  • McCaleb ML, Sredy J (1992) Metabolic abnormalities of the hyperglycemic obese Zucker rat. Metabolism 41:522–525

    PubMed  CAS  Google Scholar 

  • Shafrir E (1992) Animal models of non-insulin-dependent diabetes. Diabetes/Metab Rev 8:179–208

    CAS  Google Scholar 

  • Vasselli JR, Flory T, Fried KS (1987) Insulin binding and glucose transport in adipocytes of acarbose-treated Zucker lean and obese rats. Int J Obesity 11:71–75

    CAS  Google Scholar 

  • Yoshioka S, Nishino H, Shiraki T, Ikeda K, Koike H, Okuno A, Wada M, Fujiwara T, Horikoshi H (1993) Antihypertensive effects of CS-045 treatment in obese Zucker rats. Metabolism 42:75–80

    PubMed  CAS  Google Scholar 

  • Zucker LM (1965) Hereditary obesity in the rat associated with hyperlipidemia. Ann NY Acad Sci 131:447–458

    PubMed  CAS  Google Scholar 

  • Ikeda H, Shino A, Matsuo T, Iwatsuka H, Suzuoki Z (1981) A new genetically obese-hyperglycemic rat (Wistar fatty). Diabetes 30:1045–1050

    PubMed  CAS  Google Scholar 

  • Kava R, Peterson RG, West DB, Greenwood MRC (1990) Ilar News 32:9–13

    Google Scholar 

  • Kava RA, West DB, Lukasik VA, Greenwood MRC (1989) Sexual dimorphism of hyperglycemia and glucose tolerance in Wistar fatty rats. Diabetes 38:159–163

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Iwanshi M, Egawa K, Shigeta Y (1992) Pioglitazone increases insulin sensitivity by activating insulin receptor kinase. Diabetes 41:476–483

    PubMed  CAS  Google Scholar 

  • Madar Z, Omusky Z (1991) Inhibition of intestinal aglucosidase activity and postprandial hyperglycemia by aglucosidase inhibitors in fa/fa rats. Nutrit Res 11:10351046

    Google Scholar 

  • Peterson RG, Little LA, Neel MA (1990) WKY fatty rat as a model of obesity and non-insulin dependent diabetes mellitus. Ilar News 32:13–15

    Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE, IV (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4: 2850–2859

    Google Scholar 

  • Dumm CLAG, Semino MC, Gagliardino JJ (1990) Sequential changes in pancreatic islets of spontaneously diabetic rats. Pancreas 5:533–539

    Google Scholar 

  • Herberg L, Coleman DL (1977) Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 26:59–99

    CAS  Google Scholar 

  • Tarrés MC, Martinez SM, Liborio MM, Rabasa SL (1981) Diabetes mellitus en una Linea endocrinada de rata. Mende-liana 5:39–48

    Google Scholar 

  • Koletsky S (1973) Obese spontaneous hypertensive rats — a model for study of arteriosclerosis. Exp Mol Pathol 19: 53–60

    PubMed  CAS  Google Scholar 

  • Koletsky S (1975) Pathologic findings and laboratory data in a new strain of obese hypertensive rats. Am J Pathol 80: 129–142

    PubMed  CAS  Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE,IV (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859

    Google Scholar 

  • Adamo M, Shemer J, Aridor M, Dixon J, Carswell N, Bhathena SJ, Michaelis OE,IV, LeRoith D (1989) Liver insulin receptor tyrosine kinase activity in a model of type II diabetes mellitus and obesity. J Nutr 119:484–489

    CAS  Google Scholar 

  • Hansen CT (1983) Two new congenic rat strains for nutrition and obesity research. Fed Proc 42:573

    Google Scholar 

  • Hansen CT (1988) The development of the SRH/N- and LA/Ncp (corpulent) congenic rat strains. In: Hansen CT, Michaelis OE,IV (eds) New models of genetically obese rats for studies in diabetes, heart disease, and complications of obesity. Summaries of Workshop Papers and Current Bibliography. National Institutes of Health, Bethesda, MD, pp 7–10

    Google Scholar 

  • McCune SA, Baker PB, Stills HF (1990) SHHF/Mcc-cp rat: a model of obesity, non-insulin-dependent diabetes, and congestive heart failure. Ilar News 32:23–27

    Google Scholar 

  • Michaelis 0E, Hansen CT (1990) The spontaneous hypertensive/NIH corpulent rat: a new rodent model for the study of non-insulin dependent diabetes mellitus and its complications. Ilar News 32:19–22

    Google Scholar 

  • Michaelis 0E, Patrick DH, Hansen A, Canry JJ, Werner RM, Carswell N (1986) Spontaneous hypertensive/NIH-corpulent rat. An animal model for insulin-independent diabetes mellitus (type II).Am J Pathol 123:398–400

    Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4: 2850–2859

    Google Scholar 

  • Berdanier CD (1974) Metabolic abnormalities in BHE rats. Diabetologia 10:691–695

    PubMed  CAS  Google Scholar 

  • Durand AMA, Fisher M, Adams M (1964) Histology in rats as influenced by age and diet. Arch Pathol 77. 268–277

    PubMed  CAS  Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859

    Google Scholar 

  • Fujiwara T, Yoshioka S, Yoshioka T, Ushiyama I, Horikoshi H (1988) Characterization of new oral antidiabetic agent CS-045. Studies in KK and ob/ob mice and Zucker fatty rats. Diabetes 37:1549–1558

    PubMed  CAS  Google Scholar 

  • Herberg L, Coleman DL (1977) Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 26:59–99

    CAS  Google Scholar 

  • Nakamura M (1962) A diabetic strain of the mouse. Proc Jap Acad 38:348–352

    Google Scholar 

  • Nakamura M, Yamada K (1967) Studies on a diabetic (KK) strain of the mouse. Diabetologia 3:212–221

    PubMed  CAS  Google Scholar 

  • Diani AR, Sawada GA, Zhang NY, Wyse BM, Connell CL, Vidmar TJ, Connell MA (1987) The KKAY mouse: a model for the rapid development of glomerular capillary basement membrane thickening. Blood Vessels 24:297–303

    PubMed  CAS  Google Scholar 

  • Hofmann CA, Edwards CW, Hillman RM, Colca JR (1992) Treatment of insulin-resistant mice with the oral antidiabetic agent pioglitazone: evaluation of liver GLUT2 and phosphoenolpyruvate carboxykinase expression. Endocrinol 130:735–740

    CAS  Google Scholar 

  • Iwatsuka H, Shino A, Suzouki Z (1970) General survey of diabetic features of yellow KK mice. Endocrinol Japon 17:23–35

    CAS  Google Scholar 

  • Shafrir E (1992) Animal models of non-insulin-dependent diabetes. Diabetes/Metab Rev 8:179–208

    CAS  Google Scholar 

  • Sohda T, Momose Y, Meguro K, Kawamatsu Y, Sugiyama Y, Ikeda H (1990) Studies on antidiabetic agents. Synthesis and hypoglycemic activity of 5-[4-(pyridylalkoxy)benzyl]2,4-thiazolidinediones. Arzneim Forsch/Drug Res 40:37–42

    CAS  Google Scholar 

  • Baeder WL, Sredy J, Sehgal SN, Chang JY, Adams LM (1992) Rapamycin prevents the onset of insulin dependent diabetes mellitus (IDDM) in NOD mice. Clin Exp Immunol 89:174–178

    PubMed  CAS  Google Scholar 

  • Charlton B, Bacelj A, Mandel TE (1988) Administration of silica particles or anti-Lyt2 antibody prevents 13-cell destruction in NOD mice given cyclophosphamide. Diabetes 37:930–935

    PubMed  CAS  Google Scholar 

  • Geisen K, Deutschländer H, Gorbach S, Klenke C, Zimmermann U (1990) Function of barium alginate-microencapsulated xenogenic islets in different diabetic mouse models. In: Shafrir E (ed) Frontiers in Diabetes Research. Lessons from Animal Diabetes III. Smith-Gordon, pp 142–148

    Google Scholar 

  • Lee KU, Amano K, Yoon JW (1988) Evidence for initial involvement of macrophage in development of insulitis in NOD mice. Diabetes 37:989–991

    PubMed  CAS  Google Scholar 

  • Matsuba H, Jitsukawa T, Yamagata N, Uchida S, Watanabe H (1994) Establishment of rat glutamic acid decarboxylase (GAD)-reactive T-cell clones from NOD mice. Immunol Lett 42:101–103

    PubMed  CAS  Google Scholar 

  • Nicoletti F, Di Marco R, Barcellini W, Magro G, Schorlemmer HU, Kurrle R, Lunetta M, Grasso S, Zaccone P, Meroni PL (1994) Protection from experimental autoimmune diabetes in the non-obese diabetic mouse with soluble interleukin-1 receptor. Eur J Immunol 24:1843–1847

    PubMed  CAS  Google Scholar 

  • Tochino Y (1984) Breeding and characteristics of a spontaneously diabetic non obese strain (NOD mouse) of mice. In: Shafrir E, Renold AE (eds) Lessons from Animal Diabetes. John Libbey, London, pp 93–98

    Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4:2850–2859

    Google Scholar 

  • Bleisch VR, Mayer J, Dickie MM (1952) Familial diabetes mellitus in mice associated with insulin resistance, obesity and hyperplasia of the islands of Langerhans. Am J Pathol 28:369–385

    PubMed  CAS  Google Scholar 

  • Coleman DL, Hummel KP (1973) The influence of genetic background on the expression of obese (ob) gene in the mouse. Diabetologia 9:287–293

    PubMed  CAS  Google Scholar 

  • Dickie MM (1962) New mutations. Mouse News Letter 27:37

    Google Scholar 

  • Gill AM, Yen TI’ (1991) Effects of ciglitazone on endogenous plasma islet amyloid polypeptide and insulin sensitivity in obese-diabetic viable yellow mice. Life Sci 48:703–710

    PubMed  CAS  Google Scholar 

  • Hellman B (1967) Some metabolic aspects of the obesehyperglycemic syndrome in mice. Diabetologia 3:222–229

    PubMed  CAS  Google Scholar 

  • Herberg L, Coleman DL (1977) Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 26:59–99

    CAS  Google Scholar 

  • Ingalls AM, Dickie MM, Snell GT (1950) Obese, a new mutation in the house mouse. J Hered 14:317–318

    Google Scholar 

  • Mayer J, Bates MW, Dickie MM (1951) Hereditary diabetes in genetically obese mice. Science 113:746–747

    PubMed  CAS  Google Scholar 

  • Sirek A (1968) Spontaneous hereditary diabetes in laboratory animals. in: Pfeiffer EF (ed.) Handbook of Diabetes mellitus, Pathophysiology and Clinical Considerations. Vol. I, Lehmanns Verlag, München. pp 715–726

    Google Scholar 

  • Stauffacher W, Lambert AE; Vecchio D, Renold AE (1967) Measurement of insulin activities in pancreas and serum of mice with spontaneous (“obese” and “New Zealand obese”) and induced (goldthioglucose) obesity and hyperglycemia, with considerations on the pathogenesis of the spontaneous syndrome. Diabetologia 3:230–237

    PubMed  CAS  Google Scholar 

  • Stein JM, Bewsher PD, Stowers JN (1970) The metabolism of ketones, triglyceride and monoglyceride in livers of obese hyperglycaemic mice. Diabetologia 6:570–574

    PubMed  CAS  Google Scholar 

  • Westman S (1968) Development of the obese-hyperglycaemic syndrome in mice. Diabetologia 4:141–149

    PubMed  CAS  Google Scholar 

  • Berglund O, Frankel BJ, Hellman B (1980) Development of the insulin secretory defect in genetically diabetic (db/db) mouse. Acta Endocrinol 87:543–551

    Google Scholar 

  • Coleman DL, Hummel KP (1967) Studies with the mutation diabetes in the mouse. Diabetologia 3:238–248

    PubMed  CAS  Google Scholar 

  • Gardner K (1978) Glomerular hyperfiltration during the onset of diabetes mellitus in two strains of diabetic mice (C57BL/6J db/db and C57BL/KsJ db/db) Diabetologia 15: 59–63

    Google Scholar 

  • Herberg L, Coleman DL (1977) Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 26:59–99

    CAS  Google Scholar 

  • Lee SM (1982) The effect of chronic a-glycosidase inhibition on diabetic nephropathy in the db/db mouse. Diabetes 13: 249–254

    Google Scholar 

  • Leiter EH, Coleman DL, Ingram DK, Reynold MA (1983) Influence of dietary carbohydrate on the induction of diabetes in C5BL/KsJ-db/db diabetes mice. J Nutr 113:184–195

    PubMed  CAS  Google Scholar 

  • Like AA, Lavine RL, Poffenbarger PL, Chick WI (1972) Studies on the diabetic mutant mouse. VI Evolution of glomerular lesions and associated proteinuria. Am J Pathol 66:193–224

    PubMed  CAS  Google Scholar 

  • Stearns SB, Benz CA (1978) Glucagon and insulin relationships in genetically diabetic (db/db) and streptozotocininduced diabetic mice. Horm Metab Res 10:20–33

    PubMed  CAS  Google Scholar 

  • Cahill GF, Jones EE, Lauris V, Steinke J, Soeldner JS (1967) Studies on experimental diabetes in the Wellesley hybrid mouse. II. Serum insulin levels and response of peripheral tissues. Diabetologia 3:171–174

    PubMed  CAS  Google Scholar 

  • Gleason RE, Lauris V, Soeldner JS (1967) Studies on experimental diabetes in the Wellesley hybrid mouse. III. Dietary effects and similar changes in a commercial Swiss-Hauschke strain. Diabetologia 3:175–178

    PubMed  CAS  Google Scholar 

  • Jones E (1964) Spontaneous hyperplasia of the pancreatic islets associated with glycosuria in hybrid mice. In: Brolin SE, Hellman B, Knutson H (eds) The structure and metabolism of pancreatic islets. Pergamon Press, Oxford, pp 189–191

    Google Scholar 

  • Like AA, Jones EE (1967) Studies on experimental diabetes in the Wellesley hybrid mouse. IV. Morphologic changes in islet tissue. Diabetologia 3:179–187

    PubMed  CAS  Google Scholar 

  • Cofford OB, Davis CK (1965) Growth characteristics, glucose tolerance and insulin sensitivity of New Zealand obese mice. Metabolism 14:271–280

    Google Scholar 

  • Melez KA; Harrison LC, Gilliam JN, Steinberg AD (1980) Diabetes is associated with autoimmunity in the New Zealand obese (NZO) mouse. Diabetes 29:835–840

    PubMed  CAS  Google Scholar 

  • Seemayer TA, Colle E (1980) Pancreatic cellular infiltrates in autoimmune-prone New Zealand black mice. Diabetologia 19:216–221

    Google Scholar 

  • Shafrir E (1992) Animal models of non-insulin-dependent diabetes. Diabetes/Metab Rev 8:179–208

    CAS  Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4: 2850–2859

    Google Scholar 

  • Veroni MC, Proietto J, Larkins RG (1991) Insulin resistance in New Zealand obese mice. Diabetes 40:1480

    PubMed  CAS  Google Scholar 

  • Butler L (1967) The inheritance of diabetes in the Chinese hamster. Diabetologia 3:124–129

    PubMed  CAS  Google Scholar 

  • Gerritsen CG, Dulin WE (1967) Characterization of diabetes in the Chinese hamster. Diabetologia 3:74–78

    PubMed  CAS  Google Scholar 

  • Gerritsen GC (1982) The Chinese hamster as a model for the study of diabetes mellitus. Diabetes 31 (Suppl 1) 14–23

    PubMed  CAS  Google Scholar 

  • Gundersen K, Yerganian G, Lin BJ, Gagnon H, Bell F, McRae W, Onsberg T (1967) Diabetes in the Chinese hamster. Some clinical and metabolic aspects. Diabetologia 3:85–91

    PubMed  CAS  Google Scholar 

  • Luse SA, Caramia F, Gerritsen G, Dulin WE (1967) Spontaneous diabetes mellitus in the Chinese hamster: An electron microscopic study of the islets of Langerhans. Diabetologia 3:97–108

    PubMed  CAS  Google Scholar 

  • Malaisse W, Malaisse-Lagae F, Gerritsen GC, Dulin WE, Wright PH (1967) Insulin secretion in vitro by the pancreas of the Chinese hamster. Diabetologia 3:109–114

    PubMed  CAS  Google Scholar 

  • Meier H, Yerganian G (1961) Spontaneous diabetes mellitus in the Chinese hamster (Cricetulus griseus). II. Findings in the offspring of diabetic parents. Diabetes 10:12–18

    PubMed  CAS  Google Scholar 

  • Meier H, Yerganian G (1961) Spontaneous hereditary diabetes mellitus in the Chinese hamster (Cricetulus griseus). III. Maintenance of a diabetic hamster colony with the aid of hypoglycemic therapy. Diabetes 10:19–21

    PubMed  CAS  Google Scholar 

  • Meier H, Yerganian GA (1959) Spontaneous hereditary diabetes mellitus in Chinese hamster (Cricetulus griseus). I. Pathological findings. Proc Soc Exper Biol Med 100: 810–815

    CAS  Google Scholar 

  • Shirai T, Welsh GW, Sims EAH (1967) Diabetes mellitus in the Chinese hamster. II. The evolution of renal glomerulopathy. Diabetologia 3:266–286

    PubMed  CAS  Google Scholar 

  • Sims EAH, Landau BR (1967) Diabetes mellitus in the Chinese hamster. I. Metabolic and morphologic studies. Diabetologia 3:115–123

    PubMed  CAS  Google Scholar 

  • Sirek A (1968) Spontaneous hereditary diabetes in laboratory animals. in: Pfeiffer EF (ed) Handbook of Diabetes mellitus, Pathophysiology and Clinical Considerations. Vol. I, Lehmanns Verlag, München. pp 715–726

    Google Scholar 

  • Sirek OV, Sirek A (1967) The colony of Chinese hamsters of the C.H. Best institute. A review of experimental work. Diabetologia 3:65–73

    PubMed  CAS  Google Scholar 

  • Soret MG, Dulin WE, Matthew’s J, Gerritsen GC (1974) Morphologic abnormalities observed in retina, pancreas and kidney of diabetic Chinese hamsters. Diabetologia 10: 567–579

    PubMed  CAS  Google Scholar 

  • Brodoff BN, Penhos JC, Levine R, White R (1967) The effect of feeding and various hormones on the glucose tolerance of the sand rat (Psammomys obesus) Diabetologia 3:167–170

    CAS  Google Scholar 

  • DeFronzo R, Miki E, Steinke J (1967) Diabetic syndrome in sand rats. Diabetologia 3:140–142

    CAS  Google Scholar 

  • Hackel DB, Mikat E, Lebovitz HE, Schmidt-Nielsen K, Horton ES, Kinney TD (1967) The sand rat (Psammomys obesus) as an experimental animal in studies of diabetes mellitus. Diabetologia 3:130–134

    PubMed  CAS  Google Scholar 

  • Hackel DB, Schmidt-Nielson K, Haines HB, Miai E (1965) Diabetes mellitus in the sand rat (Psammomys obesus) - pathologic studies. Lab Invest 14:200–207

    PubMed  CAS  Google Scholar 

  • Kalderon B, Gutman A, Levy E, Shafrir E, Adler JH (1986) Characterization of stages in the development of obesity-diabetes syndrome in the sand rat (Psammomys obesus). Diabetes 35:717–724

    PubMed  CAS  Google Scholar 

  • Marquie G, Duhault J, Jacotot B (1984) Diabetes mellitus in sand rats (Psammomys obesus). Metabolic pattern during development of the diabetic syndrome. Diabetes 33: 438–443

    PubMed  CAS  Google Scholar 

  • Miki E, Like AA, Steinke J, Soeldner JS (1967) Diabetic syndrome in sand rats. Diabetologia 3:135–139

    PubMed  CAS  Google Scholar 

  • Shafrir E (1992) Animal models of non-insulin-dependent diabetes. Diabetes/Metab Rev 8:179–208

    CAS  Google Scholar 

  • Pictet R, Orci L, Gonet AE, Rouiller Ch, Renold AE (1967) Ultrastructural studies of the hyperplastic islets of Langerhans of spiny mice (Acomys Cahirinus) before and during the development of hyperglycemia. Diabetologia 3: 188–211

    PubMed  CAS  Google Scholar 

  • Renold AE, Dulin WE (1967) Spontaneous diabetes in laboratory animals. Diabetologia 3:63–64

    Google Scholar 

  • Shafrir E, Teitelbaum A, Cohen AM (1972) Hyperlipidemia and impaired glucose tolerance in Acomys cahirinus maintained on synthetic carbohydrate diets. Isr J Med Sci 8: 990–992

    PubMed  CAS  Google Scholar 

  • Velasquez MT, Kimmel PL, Michaelis OE (1990) Animal models of spontaneous diabetic kidney disease. FASEB J 4: 2850–2859

    Google Scholar 

  • Wise PH, Weir BJ, Hirne JM, Forrest E (1972) The diabetic syndrome in the Tuco-Tuco (Ctenomis talarum). Diabetologia 8:165–172

    PubMed  CAS  Google Scholar 

  • Schaefer EM, Viard V, Morin J, Ferré P, Pénicaud L, Ramos P, Maika SD, Ellis L, Hammer RE (1994) A new transgenic mouse model of chronic hyperglycemia. Diabetes 43: 143–153

    PubMed  CAS  Google Scholar 

  • Biological Assay of Insulin. British Pharmacopoeia 1988, Vol. II, London, Her Majesty’s Stationary Office, pp A168—A170

    Google Scholar 

  • Insulin assay. Rabbit blood-sugar method. United States Pharmacopoeia XXII. The National Formulary XVII, 1990. United States Pharmacopoeia) Convention, Inc., Rockville, MD, pp 1513–1514

    Google Scholar 

  • Underhill LA, Dabbah R, Grady LT, Rhodes CT (1994) Alternatives to animal testing in the USP-NF: Present and future. Drug Devel Industr Pharmacy 20:165–216

    CAS  Google Scholar 

  • USP 23 (1995) Design and analysis of biological assays. The United States Pharmacopeia. pp 1705–1715

    Google Scholar 

  • USP 23 (1995) Insulin assay. The United States Pharmacopeia. pp 1716–1717

    Google Scholar 

  • Wertbestimmung von Insulin. Deutsches Arzneibuch, 9. Aus- gabe 1986, Deutscher Apotheker Verlag Stuttgart, pp 50–52

    Google Scholar 

  • Biological Assay of Insulin. British Pharmacopoeia 1988, Vol. II, London, Her Majesty’s Stationary Office, pp A168–A170

    Google Scholar 

  • Eneroth G, Ahlund K (1970) A twin crossover method for bioassay of insulin using blood glucose levels in mice — a comparison with the rabbit method. Acta Pharm Suec 7: 457–462

    PubMed  CAS  Google Scholar 

  • Trethewey J (1989) Bio-assays for the analysis of insulin. J Pharm Biomed Anal 7:189–197

    PubMed  CAS  Google Scholar 

  • Wertbestimmung von Insulin. Deutsches Arzneibuch, 9. Aus- gabe 1986, Deutscher Apotheker Verlag Stuttgart, pp 50–52

    Google Scholar 

  • Ball EG, Merrill MA (1961) A manometric assay of insulin and some results of the application of the method to sera and islet-containing tissue. Endocrinology 69:596–607

    PubMed  CAS  Google Scholar 

  • Basi NS, Thomaskutti KG, Pointer RH (1992) Regulation of glucose transport in isolated adipocytes by levamisole. Can J Physiol Pharmacol 70:1190–1194

    PubMed  CAS  Google Scholar 

  • Clancy BM, Czech MP (1990) Hexose transport stimulation and membrane redistribution of glucose transporter isoforms in response to cholera toxin, dibutyryl cyclic AMP, and insulin in 3T3–L1 adipocytes. J Biol Chem 265:12434–12443

    PubMed  CAS  Google Scholar 

  • Ditschuneit H, Chang SA, Pfeiffer M, Pfeiffer EF (1959) Über die Bestimmung von Insulin im Blute am epididymalen Fettanhang der Ratte mit Hilfe markierter Glukose. Klin Wschr. 37:1234–1239

    PubMed  CAS  Google Scholar 

  • Foley JE, Cushman SW, Salans LB (1978) Glucose transport in isolated rat adipocytes with measurement of L-arabinose uptake. Am J Physiol 234:E112–E119

    PubMed  CAS  Google Scholar 

  • Foley JE, Gliemann J (1981) Accumulation of 2-deoxyglucose against its concentration gradient in rat adipocytes. Biochim Biophys Acta 648:100–106

    PubMed  CAS  Google Scholar 

  • Frost SC, Lane MD (1985) Evidence for the involvement of vicinal sulfhydryl groups in insulin-activated hexose transport by 3T3–L1 adipocytes. J Biol Chem 260:2646–2652

    PubMed  CAS  Google Scholar 

  • Gliemann J (1965) Insulin-like activity of dilute human serum assayed by an isolated adipose cell method. Diabetes 14: 643–649

    PubMed  CAS  Google Scholar 

  • Gliemann J (1967) Assay of insulin-like activity by the isolated fat cell method. II. The suppressible and non-suppressible insulin-like activity of serum. Diabetologia 3: 389–394

    PubMed  CAS  Google Scholar 

  • Gliemann J (1967) Insulin assay by the isolated fat cell method. I. Factors influencing the response to crystalline insulin. Diabetologia 3:382–388

    PubMed  CAS  Google Scholar 

  • Gliemann J, osterlind K, Vinten J. Gammeltoft S (1972) A procedure for measurement of distribution spaces in isolated fat cells. Biochim Biophys Acta 286:1–9

    PubMed  CAS  Google Scholar 

  • Green H, Kehinde 0 (1974) Sublines of mouse 3T3 cells that accumulate lipid. Cell 1:113–116

    CAS  Google Scholar 

  • Humbel RE (1959) Messung der Serum — Insulin — Aktivität mit epididymalem Fettgewebe in vitro. Experientia (Basel) 15:256–258

    CAS  Google Scholar 

  • Jacobs DB, Hayer GR, Lockwood DH (1987) Effect of chlorpropamide on glucose transport in rat adipocytes in the absence of changes in insulin binding and receptor-associated tyrosine kinase activity. Metabolism 36:548–554

    PubMed  CAS  Google Scholar 

  • Karnieli E, Zarnowski MJ, Hissin PJ, Simpson IA, Salans LB, Cushman SW (1981) Insulin-stimulated translocation of glucose transport systems in the isolated rat adipose cell. J Biol Chem 256:4772–3777

    PubMed  CAS  Google Scholar 

  • Kletzien RF, Foellmi LA, Harris PKW, Wyse BM, Clarke SD (1992) Adipocyte fatty acid-binding protein: Regulation of gene expression in vivo and in vitro by an insulin-sensitizing agent. Mol Pharmacol 42:558–562

    PubMed  CAS  Google Scholar 

  • Lamer AC, Fleming JW (1984) Hormone-sensitive adenylate cyclase. In: Lamer J, Pohl SL (eds) Methods in Diabetes Research Vol I: Laboratory Methods. Part B. John Wiley and Sons, New York, pp 23–36

    Google Scholar 

  • Lingsoe J (1961) Determination of the insulin-like activity in serum using rat epididymal adipose tissue. Scand J Clin Lab Invest 13:628–636

    Google Scholar 

  • Maloff BL, Lockwood DH (1981) In vitro effects of a sulfonylurea on insulin action in adipocytes. J Clin Invest 68:85–90

    PubMed  CAS  Google Scholar 

  • Marshall S, Garvey WT, Geller M (1984) Primary culture of adipocytes. J Biol Chem 259:6376–6384

    PubMed  CAS  Google Scholar 

  • Martin DB, Renold AE, Dagenais YM (1958) An assay for in- sulin-like activity using rat adipose tissue. Lancet 11: 76–77

    Google Scholar 

  • McKee] DW, Jarett L (1970) Preparation and characterization of a plasma membrane fraction from isolated fat cells. J Cell Biol 44:417–432

    Google Scholar 

  • Moody AJ, Stan MA, Stan M (1974) A simple free fat cell bioassay for insulin. Horm Metab Res 6:12–16

    PubMed  CAS  Google Scholar 

  • Müller G, Korndörfer A, Saar K, Karbe-Thönges B, Fasold H, Müllner S (1994) 4’-Amino-benzamido-taurocholic acid selectively solubilizes glycosyl-phophatidylinositol-anchored membrane proteins and improves lipolytic cleavage of their membrane anchors by specific phospholipases. Arch Biochem Biophys 309:329–340

    Google Scholar 

  • Müller G, Wied S (1993) The sulfonylurea drug, glimepiride, stimulates glucose transport, glucose transporter translocation, and dephosphorylation in insulin-resistant rat adipocytes in vitro. Diabetes 42:1852–1867

    PubMed  Google Scholar 

  • Pillion DJ (1985) Differential effects of insulin, antibodies against rat adipocyte plasma membranes, and other agents that mimic insulin action in rat adipocytes. Metabolism 34: 1012–1019

    PubMed  CAS  Google Scholar 

  • Renold AE, Martin DB, Dagenais YM, Steinke J, Nickerson RJ, Lauris V (1960) Measurement of small quantities of insulin-like activity using rat adipose tissue. I. A proposed procedure. J Clin Invest 39:1487–1498

    PubMed  CAS  Google Scholar 

  • Rodbell M (1964) Metabolism of isolated fat cells. I. Effect of hormones on glucose metabolism and lipolysis. J Biol Chem 239:375–380

    PubMed  CAS  Google Scholar 

  • Siess E, Teinzer A, Wieland 0 (1965) Eine vereinfachte Methode zur Insulinbestimmung im Serum. Diabetologia 1:201–207

    Google Scholar 

  • Slater JDH, Samaan N, Fraser R, Stillman D (1961) Immunological studies with circulating insulin. Br Med J 1:1712–1715

    PubMed  CAS  Google Scholar 

  • Sönksen PH, Ellis JP, Lowy C, Rutherford A, Nabarro JDN (1965) Plasma insulin: a correlation between bioassay and immunoassay. Br Med J (1965 II):209–210

    Google Scholar 

  • Spooner PM, Chernick SS, Garrison MM, Scow RO (1979) Insulin regulation of lipoprotein lipase activity and release in 3T3–L1 adipocytes. J Biol Chem 254:10021–10029

    PubMed  CAS  Google Scholar 

  • Steinke J, Miki E, Cahill GF (1965) Assay of crystalline insulin and of serum insulin-like activity of different species on adipose tissue of the rat, mouse and guinea pig. New Engl J Med. 273:1464–1467

    PubMed  CAS  Google Scholar 

  • Steinke J, Sirek A, Lauris V, Lukens FDW, Renold AE (1962) Measurement of small quantities of insulin-like activity with rat adipose tissue. III. Persistence of serum insulin-like activity after pancreatectomy. J Clin Invest 41:1699–1707

    PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon, J. (1979) Electrophoretic transfer from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    PubMed  CAS  Google Scholar 

  • Traxinger RR; Marshall S (1989) Role of amino acids in modulating glucose induced desensitization of the glucose transport system. J Biol Chem 264:20910–20916

    PubMed  CAS  Google Scholar 

  • Van Putten JPM, Krans HMJ (1986) Characterization of the sulfonylurea-induced potentiation of the insulin response in cultured 3T3 adipocytes. Biochem Pharmacol 35:2141–2144

    PubMed  Google Scholar 

  • Whitesell RR, Gliemann J (1979) Kinetic parameters of 3–0methylglucose and glucose in adipocytes. J Biol Chem 254: 5276–5283

    PubMed  CAS  Google Scholar 

  • Wieland M, Brandenburg C, Brandenburg D, Joost HG (1990) Antagonistic effect of a covalently dimerized insulin derivative on insulin receptors in 3T3–L1 adipocytes. Proc Natl Acad Sci USA 87:1154–1158

    Google Scholar 

  • Zuber MX, Wang SM, Thammavaram KV, Reed DK, Reed BC (1985) Elevation of the number of cell-surface insulin receptors and the rate of 2-deoxyglucose uptake by exposure of 3T3–L1 adipocytes to tolbutamide. J Biol Chem 260: 14045–14052

    PubMed  CAS  Google Scholar 

  • Assimacopoulos-Jeannet F, Cusin I, Greco-Perotto RM, Terrettaz J, Rohner-Jeanrenaud F, Zarjevski N, Jeanrenaud B (1991) Glucose transporters: structure, function, and regulation. Biochimie 73:76–70

    Google Scholar 

  • Bahr M, von Holtey M, Müller G, Eckel J (1995) Direct stimulation of myocardial glucose transport and glucose transporter-1 (GLU1) and GLUT4 protein expression by the sulfonylurea glimepiride. Endocrinology 136:2547–2553

    PubMed  CAS  Google Scholar 

  • Baldwin JM, Gorga JC, Lienhard GE (1981) The monosaccharide transporter of the human erythrocyte. J Biol Chem 256:3685–3689

    PubMed  CAS  Google Scholar 

  • Begum N, Draznin B (1992).The effect of streptozotocininduced diabetes on GLUT-4 phosphorylation in rat adipocytes. J Clin Invest 90:1254–1262

    PubMed  CAS  Google Scholar 

  • Cusin I, Terrettaz J, Rohner-Jeanrenaud F, Zarjevski N, Assimacopoulos-Jeannet F, Jeanrenaud B (1990) Hyperinsulinemia increases the amount of GLUT4 mRNA in white adipose tissue and decreases that of muscles: a clue for increased fat depot and insulin resistance. Endocrinology 127:3246–3248

    PubMed  CAS  Google Scholar 

  • Ezaki O, Kasuga M, Akanuma Y, Takata K, Hirano H, FujitaYamaguchi Y, Kasahara M (1986) Recycling of the glucose transporter, the insulin receptor, and insulin in rat adipocytes. J Biol Chem 261:3295–3305

    PubMed  CAS  Google Scholar 

  • Galante P, Maerker E, Scholz R, Rett K, Herberg L, Mosthaf L, Häring HU (1994) Insulin-induced translocation of GLUT4 in skeletal muscle of insulin-resistant Zucker rats. Diabetologia 37:3–9

    PubMed  CAS  Google Scholar 

  • Gould GW, Holman GD (1993) The glucose transporter family: structure, function and tissue-specific expression. Biochem J 295:329–341

    PubMed  CAS  Google Scholar 

  • Hofmann C, Lorenz K, Colca JR (1991) Glucose transport deficiency in diabetic animals is corrected by treatment with the oral antihyperglycemic agent pioglitazone. Endocrinol 129:1915–1925

    CAS  Google Scholar 

  • Jacobs DB, Hayes GR, Lockwood DHl (1989) In vitro effect of sulfonylurea on glucose transport and translocation of glucose transporters in adipocytes from streptozocininduced diabetic rats. Diabetes 38:205–211

    PubMed  CAS  Google Scholar 

  • Jacobs DB, Jung CY (1985) Sulfonylurea potentiates insulin-induced recruitment of glucose transport carrier in rat adipocytes. J Biol Chem 260:2593–2596

    PubMed  CAS  Google Scholar 

  • James DE, Strube M, Mueckler M (1989). Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature 338:83–87

    PubMed  CAS  Google Scholar 

  • Klip A, Marette A (1992) Acute and chronic signals controlling glucose transport in skeletal muscle. J Cell Biochem 48:51–60

    PubMed  CAS  Google Scholar 

  • Klip A, Paquet MR (1990) Glucose transport and glucose transporters in muscle and their metabolic regulation. Diabetes Care 13:228–243

    PubMed  CAS  Google Scholar 

  • Klip A, Ramlal T, Young DA, Holloszy JO (1987) Insulin-induced translocation of glucose transporters in rat hind-limb muscles. FEBS Lett 224:224–230

    PubMed  CAS  Google Scholar 

  • Laurie SM, Cain CC, Lienhard GE, Castle JD (1993) The glucose transporter GLUT4 and secretory membrane proteins (SCAMPs) colocalize in rat adipocytes and partially segregate during insulin stimulation. J Biol Chem 268:1911019117

    Google Scholar 

  • Matthei S, Hamann A, Klein HH, Benecke H, Kreymann G, Flier JS, Greten H (1991) Association of metformin’s effect to increase insulin-stimulated glucose transport with potentiation of insulin-induced translocation of glucose transporters from intracellular pool to plasma membrane in rat adipocytes. Diabetes 40:850–857

    Google Scholar 

  • Matthei S, Trost B, Hammann A, Kausch C, Benecke H, Greten H, Höppner W, Klein HH (1995) The effect of in vivo thyroid hormone status on insulin signalling and GLUT1 and GLUT4 glucose transport systems in rat adipocytes. J Endocrinol 144:347–357

    Google Scholar 

  • Mühlbacher C, Karnieli E, Schaff P, Obermaier B, Mushack J, Rattenhuber E, Häring HU (1988) Phorbol esters imitate in rat fat-cells the full effect of insulin on glucose-carrier translocation, but not on 3-O-methylglucose-transport activity. Biochem J 249:865–870

    PubMed  Google Scholar 

  • Müller G, Wied S (1993) The sulfonylurea drug, glimepiride, stimulates glucose transport, glucose transporter translocation, and dephosphorylation in insulin-resistant rat adipocytes in vitro. Diabetes 42:1852–1867

    PubMed  Google Scholar 

  • Rampal AL, Jhun BH, Kim S, Liu H, Manka M, Lachaal M, Spangler RA, Jung CY (1995) Okadaic acid stimulates glucose transport in rat adipocytes by increasing the externalization rate constant of GLUT4 recycling. J Biol Chem 270: 3938–3943

    PubMed  CAS  Google Scholar 

  • Reusch JEB, Sussman KE, Draznin B (1993) Inverse relationship between GLUT-4 phosphorylation and its intrinsic activity. J Biol Chem 268:3348–3351

    PubMed  CAS  Google Scholar 

  • Simpson IA, Yver DR, Hissin PJ, Wardzala LJ, Karnieli E, Salans LB, Cushman SW (1983) Insulin-stimulated translocation of glucose transporters in the isolated rat adipose tissue cells: characterization of subcellular fractions. Biochim Biophys Acta 763:393–407

    PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon, J. (1979) Electrophoretic transfer from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    PubMed  CAS  Google Scholar 

  • Honnor RC, Dhillon GS, Londos C (1985) cAMP dependent protein kinase and rat adipocytes. J Biol Chem 260:15122–15129

    Google Scholar 

  • Kono T, Robinson FW, Sarver JA (1975) Insulin-sensitive phosphodiesterase. Its localization, hormonal stimulation, and oxidative stabilization. J Biol Chem 250:7826–7835

    PubMed  CAS  Google Scholar 

  • Müller G, Wied S, Wetekam EM, Crecelius A, Punter J (1994) Stimulation of glucose utilization in 3T3 adipocytes and rat diaphragm in vitro by the sulfonylureas glimiperide and glibenclamide, is correlated with modulations of the cAMP regulatory cycle. Biochem Pharmacol 48:985–996

    PubMed  Google Scholar 

  • Müller HK, Kellerer M, Ermel B, Mühlhöfer A, ObermaierKusser B, Vogt B, Häring HU (1991) Prevention by protein kinase C inhibitors of glucose-induced insulin-receptor tyrosine kinase in rat fat cells. Diabetes 40:1440–1448

    PubMed  Google Scholar 

  • Okuno S, Inaba M, Nishizawa Y, Inoue A, Morii H (1988) Effect of tolbutamide and glyburide on cAMP-dependent protein kinase activity in rat liver cytosol. Diabetes 37:857–861

    PubMed  CAS  Google Scholar 

  • Osegawa M, Makino H, Kanatsuka A, Kumagai A (1982) Effects of sulfonylureas on membrane-bound low Km cyclic AMP phosphodiesterase in rat fat cells. Biochim Biophys Acta 721:289–296

    PubMed  CAS  Google Scholar 

  • Roskoski R (1983) Assays of protein kinase. Meth Enzymol 99:3–6

    PubMed  CAS  Google Scholar 

  • Saltiel AR, Steigerwalt RW (1985) Purification of putative insulin-sensitive cAMP phosphodiesterase or its catalytic domain from adipose tissue. Diabetes 35:698–704

    Google Scholar 

  • Solomon SS, Deaton J, Shankar TP, Palazzolo M (1986) Cyclic AMP phosphodiesterase in diabetes. Effect of glyburide. Diabetes 35:1233–1236

    PubMed  CAS  Google Scholar 

  • Sooranna SR, Saggerson ED (1976) Interactions of insulin and adrenaline with glycerol phosphate acylation processes in fat cells from rat. FEBS Lett 64:36–39

    PubMed  CAS  Google Scholar 

  • Vila MDC, Milligan G, Standaert ML, Farese RV (1990) Insulin activates glycerol-3-phosphate-acyltransferase (de novo phosphatidic acid synthesis) through a phospholipidderived mediator. Apparent involvement of Gia and activation of a phospholipase C. Biochem 29:8735–8740

    CAS  Google Scholar 

  • Wieland 0 (1974) Glycerin UV-Methode. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse. Verlag Chemie Weinheim, pp 1448–1453

    Google Scholar 

  • Araki E, Lipes MA, Patti ME, Brüning JC, Haag III B, Johnson RS, Kahn CR (1994) Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 372:186–190

    PubMed  CAS  Google Scholar 

  • Berti L, Mosthaf L, Kroder GF, Kellerer M, Tippmer S, Mushack J, Seffer E, Seedorf K, Häring H (1994) Glucose-induced translocation of protein kinase C isoforms in rat-1 fibroblasts is paralleled by inhibition of the insulin receptor tyrosine kinase. J Biol Chem 269:3381–3386

    PubMed  CAS  Google Scholar 

  • DeMeyts P, Christoffersen CT, Ursks B, Ish-Shalom D, Sacerdote-Sierra N, Drejer K, Schäffer L, Shymko RM, Naor D (1993) Insulin’s potency as a mitogen is determined by the half-life of the insulin-receptor complex. Exp Clin Endocrinol 101:22–23

    Google Scholar 

  • Myers MG, Sun XJ, White MF (1994) The IRS-1 signaling system. Trends Biochem Sci 19:289–293

    PubMed  CAS  Google Scholar 

  • Pelicci G, Lanfrancone L, Grignani F, McGlade J, Cavallo F, Forni G, Nicoletti I, Grignani F, Pawson T, Pelicci PG (1992) A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell 70:93–104

    PubMed  CAS  Google Scholar 

  • Pronk GJ, McGlade J, Pelicci G, Pawson T, Bos JL (1993) Insulin-induced phosphorylation of the 46- and 52-kDA Shc proteins. J Biol Chem 268:5748–5753

    PubMed  CAS  Google Scholar 

  • Quon MJ, Butte AT, Zarnowski MI, Sesti G, Cushman SW, Taylor SI (1994) Insulin receptor substrate 1 mediates the stimulatory effect of insulin on GLUT4 translocation in transfected rat adipose cells. J Biol Chem 269:27920–27924

    PubMed  CAS  Google Scholar 

  • Sasaoka T, Draznin B, Leitner JW, Langlois WJ, Olefsky JM (1994) Shc is the predominant signaling molecule coupling insulin receptors to activation of guanine nucleotide releasing factor and p21’°s-GPT formation. J Biol Chem 269: 10734–10738

    PubMed  CAS  Google Scholar 

  • Sun XJ, Miralpeix M, Myers MG, Glasheen EM, Backer JM, Kahn CR, White MF (1992) Expression and function of IRS-1 in insulin signal transmission. J Biol Chem 267:22662–22672

    PubMed  CAS  Google Scholar 

  • Tamemoto H, Kadowaki T, Tobe K, Yagi T, Sakura H, Hayakawa T, Terauchi Y, Ueki K, Kaburagi Y, Satoh S, Sekihara H, Yoshioka S, Horokoshi H, Furuta Y, Ikawa Y, Kasuga M, Yazaki Y, Aizawa S (1994) Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372:182–186

    PubMed  CAS  Google Scholar 

  • Tanti JF, Grémeaux T, Van Obberghen E, Le MarchandBrustel Y (1994) Serine/threonine phosphorylation of insulin substrate 1 modulates insulin receptor signaling. J Biol Chem 269:6051–6057

    PubMed  CAS  Google Scholar 

  • White MF, Maron R, Kahn RC (1985) Insulin rapidly stimulates tyrosine phosphorylation of a Mr-185,000 protein in intact cells. Nature 318:183–186

    PubMed  CAS  Google Scholar 

  • Yonazawa K, Ando A, Kaburagi Y, Yamamoto-Honda R, Kitamura T, Hara K, Nakafuku M, Okabayashi Y, Kadowaki T, Kaziro Y, Kasuga M (1994) Signal transduction pathways from insulin receptor to ras. Analysis by mutant insulin receptors. J Biol Chem 269:4634–4640

    Google Scholar 

  • Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256:1604–1607

    PubMed  CAS  Google Scholar 

  • Chan BL, Lisanti MP, Rodriguez-Boulan E, Saltiel AR (1988) Insulin-stimulated release of lipoprotein lipase by metabolism of its phosphatidinylinositol anchor. Science 241: 1670–1672

    PubMed  CAS  Google Scholar 

  • Cross GAM (1990) Glycolipid anchoring of plasma membrane proteins. Ann Rev Cell Biol 6:1–39

    PubMed  CAS  Google Scholar 

  • Ferguson MAJ (1991) Lipid anchors on membrane proteins. Curr Opin Struct Biol 1:522–529

    CAS  Google Scholar 

  • Ferguson MAJ, Williams AF (1988) Cell-surface anchoring of proteins via glycosyl-phophatidylinositol structures. Ann Rev Biochem 57:285–320

    PubMed  CAS  Google Scholar 

  • Lamer J (1988) Insulin-signaling mechanisms. Lessons from the old testament of glycogen metabolism and the new testament of molecular biology. Diabetes 37:262–275

    Google Scholar 

  • Lawrence JC, Hiken JF, Inkster M, Scott CW, Mumby MC (1986) Insulin stimulates the generation of an adipocyte phosphoprotein that is isolated with a monoclonal antibody against the regulatory subunit of bovine heart cAMPdependent protein kinase. Proc Nat1 Acad Sci USA 83: 3649–3653

    CAS  Google Scholar 

  • Lewis KA, Garigapati VR, Zhou C, Roberts MF (1993) Substrate requirements of bacterial phosphatidinylinositolspecific phospholipase C. Biochem 32:8836–8841

    CAS  Google Scholar 

  • Lisanti MP, Darnell JC, Chan BL, Rodriguez-Boulan E, Saltiel AR (1989) The distribution of glycosyl-phophatidylinositol anchored proteins is differentially regulated by serum and insulin. Biochem Biophys Res Comm 164:824–832

    PubMed  CAS  Google Scholar 

  • Low MG (1989) The glycosyl-phophatidylinositol anchor of membrane proteins. Biochim Biophys Acta 988:427–454

    PubMed  CAS  Google Scholar 

  • Low MG (1990) Degradation of glycosyl-phophatidylinositol anchors by specific phospholipases. In: Turner AJ (ed) Molecular and Cell Biology of Membrane Proteins. Glycolipid Anchors of Cell-surface Proteins. Ellis Horwood, New York, pp 35–63

    Google Scholar 

  • Low MG, Saltiel AR (1988) Structural and functional roles of glycosyl-phophatidylinositol in membranes. Science 239: 268–275

    PubMed  CAS  Google Scholar 

  • Low MG, Stiernberg J, Waneck GL, Flavell RA, Kincade PW (1988) Cell-specific heterogeneity in sensitivity of phosphatidinylinositol-anchored membrane antigens to release by phopsholipase C. J Immunol Meth 113:101–111

    CAS  Google Scholar 

  • Marshall S, Garvey WT, Geller M (1984) Primary culture of adipocytes. J Biol Chem 259:6376–6384

    PubMed  CAS  Google Scholar 

  • Muller G, Bandlow W (1991) A cAMP binding ectoprotein in the yeast Saccharomyces cerevisiae. Biochemistry 30: 10181–10190

    PubMed  CAS  Google Scholar 

  • Muller G, Dearey EA, Punter J (1993) The sulfonylurea drug, glimepiride, stimulates release of glycosylphophatidylinositol-anchored plasma membrane proteins from 3T3 adipocytes. Biochem J 289:509–521

    PubMed  Google Scholar 

  • Muller G, Korndörfer A, Saar K, Karbe-Thönges B, Fasold H, Milliner S (1994) 4’-Amino-benzamido-taurocholic acid selectively solubilizes glycosyl-phophatidylinositol-anchored membrane proteins and improves lipolytic cleavage of their membrane anchors by specific phospholipases. Arch Biochem Biophys 309:329–340

    Google Scholar 

  • Muller G, Wied S, Wetekam EM, Crecelius A, Punter J (1994) Stimulation of glucose utilization in 3T3 adipocytes and rat diaphragm in vitro by the sulfonylureas glimiperide and glibenclamide, is correlated with modulations of the cAMP regulatory cycle. Biochem Pharmacol 48:985–996

    PubMed  CAS  Google Scholar 

  • Pryde JG, Phillips JH (1986) Fractionation of membrane proteins by temperature-induced phase separation in Triton X114. Biochem J (1986) 233.525–533

    PubMed  CAS  Google Scholar 

  • Romero G, Luttrell L, Rogol A, Zeller K, Hewlett E, Larner J (1988) Phophatidylinositol-glycan anchors of membrane proteins: Potential precursors of insulin mediators. Science 240:509–512

    PubMed  CAS  Google Scholar 

  • Saltiel AR, Cuatrecasas P (1986) Insulin stimulates the generation from hepatic plasma membranes of modulators derived from an inositol glycolipid. Proc Natl Acad Sci USA 83:5793–5797

    PubMed  CAS  Google Scholar 

  • Satiel AR (1990) Second messengers of insulin action. Trends Endocrinol Metab 1:158–163

    Google Scholar 

  • Thomas JR, Dwek RA, Rademacher TW (1990) Structure, biosynthesis and function of gylcosylphosphatidinylinositols. Biochem 29:5413–5422

    CAS  Google Scholar 

  • Altan N, Altan VM, Mikolay L, Lamer J, Schwartz CFW (1985) Insulin-like and insulin-enhancing effects of the sulfonylurea glyburide on rat adipose tissue glycogen synthase. Diabetes 34:281–286

    PubMed  CAS  Google Scholar 

  • Antoniades HN (1961) Studies on the state of insulin in blood: The state and transport of insulin in blood. Endocrinology 68:7–16

    PubMed  CAS  Google Scholar 

  • Chen-Zion M, Bassukevitz Y, Beitner R (1992) Sequence of insulin effects on cytoskeletal and cytosolic phosphofructokinase, glucose 1,6-biphosphate and fructose 2,6-biphosphate levels, and the antagonistic action of calmodulin inhibitors, in diaphragm muscle. Int J Biochem 24:1661–1667

    PubMed  CAS  Google Scholar 

  • Geiger R, Geisen K, Summ HD (1982) Austausch von A1Glycin in Rinderinsulin gegen L- und D-Tryptophan. Hoppe Seyler’s Z Physiol Chem 363:1231–1239

    PubMed  CAS  Google Scholar 

  • Groen J, Kamminga CE, Willebrands AF, Blickman JR (1952) Evidence for the presence of insulin in blood serum. A method for the approximate determination of the insulin content of blood. J Clin Invest 31:97–106

    PubMed  CAS  Google Scholar 

  • Guinovart JJ, Salavert A, Massagué J, Ciudad CJ, Salsas E, Itarte E (1979) Glycogen synthase: A new activity ratio assay expressing a high sensitivity to the phosphorylation state. FEBS Lett 106:284–288

    PubMed  CAS  Google Scholar 

  • Hothersall JS, Muirhead RP, Wimalawansa S (1990) The effect of amylin and calcitonin gene-related peptide on insulin-stimulated glucose transport in the diaphragm. Biochem Biophys Res Commun 169:451–454

    PubMed  CAS  Google Scholar 

  • Ishizuka T, Cooper DR, Hernandez H, Buckley D, Standaert M, Farese RV (1990) Effects of insulin on diacylglycerolprotein kinase C signaling in rat diaphragm and soleus muscle and relationship to glucose transport. Diabetes 39: 181–190

    PubMed  CAS  Google Scholar 

  • Lowry OH, Passonneau JV (1972) A flexible system of enzymatic analysis. Chapter 9: A collection of metabolite assays. Academic Press, New York, pp 174–177

    Google Scholar 

  • Moody Ai, Felber JP (1964) A diaphragm bioassay for the measurement of total `insulin-like activity’ and of ‘antigenic insulin’ in serum. Experientia 20:105–108

    PubMed  CAS  Google Scholar 

  • Müller G, Wied S, Wetekam EM, Crecelius A, Punter J (1994) Stimulation of glucose utilization in 3T3 adipocytes and rat diaphragm in vitro by the sulfonylureas glimiperide and glibenclamide, is correlated with modulations of the cAMP regulatory cycle. Biochem Pharmacol 48:985–996

    PubMed  Google Scholar 

  • Oron Y, Lamer J (1979) A modified rapid filtration assay of glycogen synthase. Anal Biochem 94:409–410

    PubMed  CAS  Google Scholar 

  • Pletscher A, Gey KF (1957) Über die Wirkung blutzuckersenkender Sulfonylharnstoffe auf das isolierte Rattenzwerchfell. Experientia 13:447–449

    PubMed  CAS  Google Scholar 

  • Randle PJ (1954) Assay of plasma insulin activity by the rat diaphragm method. Br Med J 1: 1237–1240

    PubMed  CAS  Google Scholar 

  • Robinson KA, Boggs KP, Buse MG (1993) Okadaic acid, insulin, and denervation effects on glucose and amino acid transport and glycogen synthesis in muscle. Am J Physiol; Endocrinol Metab 265:E36–E43

    CAS  Google Scholar 

  • Smith RL, Lawrence JC (1984) Insulin action in denervated rat hemidiaphragm. J Biol Chem 259:2201–2207

    PubMed  CAS  Google Scholar 

  • Standing VF, Foy JM (1970) The effect of glibenclamide on glucose uptake in the isolated rat diaphragm. Postgrad Med J, Dec Suppl 16–20

    Google Scholar 

  • Vallance-Owen J, Hurlock B (1954) Estimation of plasma insulin by the rat diaphragm method. Lancet 268:68–70

    Google Scholar 

  • Valiance-Owen J, Wright PH (1960) Assay of insulin in blood. Physiol Rev 40:219–244

    Google Scholar 

  • Willebrands AF, v.d. Geld H, Groen J (1958) Determination of serum insulin using the isolated rat diaphragm. The effect of serum dilution. Diabetes 7:119–124

    PubMed  CAS  Google Scholar 

  • Wright PH (1957) Plasma-insulin estimation by the rat diaphragm method. Lancet 11, 621–624

    Google Scholar 

  • Freedlender AE, Vandenhoff GE, Macleod MS, Malcolm RR (1984) Radioimmunoassay of insulin. In: Lamer J, Pohl SL (eds) Methods in Diabetes Research, Vol I: Laboratory Methods, Part B., John Wiley and Sons, New York, pp 295–305

    Google Scholar 

  • Grodsky GM, Forsham PH (1960) An immunochemical assay of total extractable insulin in man. J Clin Invest 39:1070–1079

    Google Scholar 

  • Hales CN, Randle PJ (1963) Immunoassay of insulin with insulin-antibody precipitate. Biochem J 88:137–146

    PubMed  CAS  Google Scholar 

  • Melani F, Lawecki J, Bartelt KM, Pfeiffer EF (1967) Immunologisch nachweisbares Insulin (IMI) bei Stoffwechselgesunden, Fettsüchtigen und adipösen Diabetikern nach intravenöser Gabe von Glukose, Tolbutamid und Glucagon. Diabetologia 3:422–426

    PubMed  CAS  Google Scholar 

  • Morgan CR, Lazarow A (1963) Immunoassay of insulin: Two antibody system. Plasma insulin levels of normal, subdiabetic and diabetic rats. Diabetes 12:115–126

    Google Scholar 

  • Starr JI, Horwitz DL, Rubenstein AH, Mako ME (1979) Insulin, proinsulin and C-peptide. In: Jaffe BM, Behrman HR (eds) Methods of Hormone Radioimmunoassay, 2nd ed., Academic Press, New York, pp 613–642

    Google Scholar 

  • Yalow R, Black H, Villazon M, Berson SA (1960) Comparison of plasma insulin levels following administration of tolbutamide and glucose. Diabetes 9:356–362

    PubMed  CAS  Google Scholar 

  • Yalow RS, Berson SA (1960) Immunoassay of endogenous plasma insulin in man. J Clin Invest 39:1157–1175

    PubMed  CAS  Google Scholar 

  • Bornfeldt KE, Gidlöf RA, Wasteson A, Lake M, Skottner A, Amqvist JH (1991) Binding and biological effects of insulin, insulin analogues and insulin-like growth factors in rat aortic smooth muscle cells. Comparison of maximal growth promoting activities. Diabetologia 34:307–313

    PubMed  CAS  Google Scholar 

  • Bremner M, Weiland M, Becker W, Müller-Wieland D, Streicher R, Fabry M, Joost HG (1993) Heterogeneity of insulin receptors in rat tissues as detected with the partial agonist B29,B29’-suberoyl-insulin. Molec Pharmacol 44: 271–276

    Google Scholar 

  • Burke GT, Chantey JD, Okada Y, Cosmatos A, Ferderigos N, Katsoyannis PG (1980) Divergence of the in vitro biological activity and receptor binding affinity of a synthetic insulin analogue, [21-asparaginamide-Alnsulin. Biochemistry 19:4547–4556

    PubMed  CAS  Google Scholar 

  • DeMeyts P (1976) Insulin and growth hormone receptors in human cultured lymphocytes and peripheral blood monocytes. In: Blecher M (ed) Methods in Receptor Research. Part I, Marcel Dekker Inc., New York and Basel, pp 301–383

    Google Scholar 

  • DeMeyts P, Bianco AR, Roth J (1976) Site-site interactions among insulin receptors. Characterization of the negative cooperativity. J Biol Chem 251:1877–1888

    PubMed  CAS  Google Scholar 

  • Drejer K, Kruse V, Larsen UD, Hougaard P, Bjorn S, Gammeltoft S (1991) Receptor binding and tyrosine kinase activation by insulin analogues with extreme affinities studied in human hepatoma HepG2 cells. Diabetes 40:1488–1495

    PubMed  CAS  Google Scholar 

  • Freychet P (1976) Insulin receptors. In: Blecher M (ed) Methods in Receptor Research, Part II, Marcel Dekker, Inc., New York and Basel, pp 385–428

    Google Scholar 

  • Gammeltoft S (1984) Insulin receptors: binding kinetics and structure-function relationship of insulin. Physiol Rev 64: 1321–1378

    PubMed  CAS  Google Scholar 

  • Gammeltoft S (1988) Binding properties of insulin receptors in different tissues. In: Insulin Receptors, Part A: Methods for the Study of Structure and Function. Alan R. Liss, Inc., pp 15–27

    Google Scholar 

  • Gavin III JR, Kahn CR, Gorden P, Roth J, Neville DM (1975) Radioreceptor assay of insulin: Comparison of plasma and pancreatic insulins and proinsulins. J Clin Endocr Metab 41:438–445

    PubMed  CAS  Google Scholar 

  • Häring HU (1991) The insulin receptor: signalling mechanisms and contribution to the pathogenesis of insulin resistance. Diabetologia 34:848–861

    PubMed  Google Scholar 

  • Hjollund E (1991) Insulin receptor binding and action in human adipocytes. Dan Med Bull 38:252–270

    PubMed  CAS  Google Scholar 

  • Hollenberg MD, Cuatrecasas P (1976) Methods for the biochemical identification of insulin receptors. In: Blecher M (ed) Methods in Receptor Research, Part II, Marcel Dekker, Inc., New York and Basel, pp 429–477

    Google Scholar 

  • Hurrell DG, Pedersen O, Kahn CR (1989) Alteration in the hepatic insulin receptor kinase in genetic and acquired obesity in rats. Endocrinology 125:2454–2462

    PubMed  CAS  Google Scholar 

  • Kellerer M, Kroder G, Tippmer S, Berti L, Kiehn R, Mosthaf L, Häring H (1994) Troglitazone prevents glucose-induced insulin resistance of insulin receptor in rat-1 fibroblasts. Diabetes 43:447–453

    PubMed  CAS  Google Scholar 

  • Klein HH, Freidenberg GR, Kladde M, Olefsky JM (1986) Insulin activation of insulin receptor tyrosine kinase in intact rat adipocytes. J Biol Chem 261:4691–4697

    PubMed  CAS  Google Scholar 

  • Koch R, Weber U (1981) Partial purification of the solubilized insulin receptor from rat liver membranes by precipitation with concanavalin A. Hoppe-Seyler’s Z Physiol Chem 362:347–351

    PubMed  CAS  Google Scholar 

  • Kurose T, Pashmforoush M, Yoshimasa Y, Carroll R, Schwartz GP, Thompson Burke G, Katsoyannis PG, Steiner DF (1994) Cross-linking of a B25 azidophenylalanine insulin derivative to the carboxy-terminal region of the a-subunit of the insulin receptor. J Biol Chem 269:29190–29197

    PubMed  CAS  Google Scholar 

  • Levy JR, Belsky M (1990) Down-regulated insulin receptors in HepG2 cells have an altered intracellular itinerary. Am J Med Sci 299:302–308

    PubMed  CAS  Google Scholar 

  • Markussen J, Halstram, Wiberg FC, Schaffer L (1991) Immobilized insulin for high capacity affinity chromatography of insulin receptors. J Biol Chem 266:18814–18818

    PubMed  CAS  Google Scholar 

  • Müller HK, Kellerer M, Ermel B, Mühldorfer A, ObermaierKusser B, Vogt B, Häring HU (1991) Prevention by protein kinase C inhibitors of glucose-induced insulin-receptor tyrosine kinase resistance in rat fat cells. Diabetes 40:1440–1447

    PubMed  Google Scholar 

  • Nenoff P, Remke H, Müller F, Arndt T, Mothes T (1993) In vivo assessment of insulin binding in different organs of growing and adult glutamate-induced obese rats. Exp Clin Endocrinol 101:215–221

    PubMed  CAS  Google Scholar 

  • Olefsky JM (1976) Decreased insulin binding to adipocytes and circulating monocytes from obese subjects. J Clin Invest 57:1165–1172

    PubMed  CAS  Google Scholar 

  • Olichon-Berthe C, Hauguel-De Mouzon S, Péraldi P, Van Obberghen E, Le Marchand-Brustel Y (1994) Insulin receptor dephosphorylation by phosphotyrosine phosphatases obtained from insulin-resistant obese mice. Diabetologia 37: 56–60

    PubMed  CAS  Google Scholar 

  • Pedersen O, Hjollund E, Beck-Nielsen H, Lindskov HO, Sonne O, Gliemann J (1981) Insulin receptor binding and receptor-mediated insulin degradation in human adipocytes. Diabetologia 20:636–641

    PubMed  CAS  Google Scholar 

  • Pedersen O, Hjollund E, Linkskov HO (1982) Insulin binding and action on fat cells from young healthy females and males. Am J Physiol 243:E158—E167

    Google Scholar 

  • Podlecki DA, Frank BH, Olefsky JM (1984) In vitro characterization of human proinsulin. Diabetes 33:111–118

    PubMed  CAS  Google Scholar 

  • Podskalny JM, Takeda S, Silverman RE, Tran D, Carpentier JL, Orci L, Gorden P (1985) Insulin receptors and bioresponses in a human liver cell line (Hep G-2) Eur J Biochem 150:401–407

    CAS  Google Scholar 

  • Ribel U, Hougaard P, Drejer K, Sorensen AR (1990) Equivalent in vivo biological activity of insulin analogues and human insulin despite different in vitro potencies. Diabetes 39:1033–1039

    PubMed  CAS  Google Scholar 

  • Robertson DA, Singh BM, Hale PJ, Jensen I, Nattrass M (1992) Metabolic effects of monomeric insulin analogues of different receptor affinity. Diabet Med 9:240–246

    PubMed  CAS  Google Scholar 

  • Schäffer L, Kjeldsen T, Andersen AS, Wiberg FC, Larsen UD, Cara JF, Mirmira RG, Nakagawa SH, Tager HS (1993) Interaction of a hybrid insulin/insulin-like growth factor-I analog with chimeric insulin/type I insulin-like growth factor receptors. J Biol Chem 268:3044–3047

    PubMed  Google Scholar 

  • Schumacher R, Soos MA, Schlessinger J, Brandenburg D, Siddle K, Ullrich A (1993) Signaling-competent receptor chimeras allow mapping of major insulin receptor binding domain determinants. J Biol Chem 268:1087–1094

    PubMed  CAS  Google Scholar 

  • Schwartz GP, Burke GT, Katsoyannis PG (1987) A superactive insulin: [B 10-aspartic acid]insulin(human). Proc Natl Acad Sci USA 84:6408–6411

    PubMed  CAS  Google Scholar 

  • Standaert ML, Schimmel SD, Pollet RI (1984) The development of insulin receptors and responses in the differentiating nonfusing muscle cell line BC3H-1. J Biol Chem 259:2337–2345

    PubMed  CAS  Google Scholar 

  • Volund A, Brange J, Drejer K, Jensen I, Markussen J, Ribel U, Sorensen AR (1991) In vitro and in vivo potency of insulin analogues designed for clinical use. Diabet Med 8:839–847

    PubMed  CAS  Google Scholar 

  • Weiland M, Brandenburg C, Brandenburg D, Joost HG (1990) Antagonistic effects of a covalently dimerized insulin derivative on insulin receptors in 3T3–L1 adipocytes. Proc Natl Acad Sci USA 87:1154–1158

    PubMed  CAS  Google Scholar 

  • Whitcomb DC, O’Dorisio TM, Cataland S, Nishikawara MT (1985 a) Theoretical basis for a new in vivo radioreceptor assay for polypeptide hormones. Am J Physiol 249 (Endocrinol Metab 12) E555–E560

    Google Scholar 

  • Whitcomb DC, O’Dorisio TM, Cataland S, Shetzline MA, Nishikawara MT (1985 b) Identification of tissue insulin receptors. Am J Physiol 249 (Endocrinol Metab 12) E61–E567

    Google Scholar 

  • Zeuzem S, Stahl E, Jungmann E, Zoltobrocki M, Schöffling K, Caspary WF (1990) In vitro activity of biosynthetic human diarginylinsulin. Diabetologia 33:65–71

    PubMed  CAS  Google Scholar 

  • Zeuzem S, Taylor R, Agius L, Albisser AM, Alberti KGMM (1984) Differential binding of sulphated insulin to adipocytes and hepatocytes. Diabetologia 27:184–188

    PubMed  CAS  Google Scholar 

  • Biological assay of glucagon. British Pharmacopoeia 1988, Vol II, London, Her Majesty’s Stationary Office, pp A70–A171

    Google Scholar 

  • Harris V, Faloona GR, Unger RH (1978) Glucagon. In: Jaffe BM, Behrman HR (eds) Methods of Hormone Radioimmunoassay. Second edition, Academic Press New York, San Francisco, London, pp 643–656

    Google Scholar 

  • Unger RH, Eisentraut AM, McCall MS, Keller S, Lanz HC, Madison LL (1959) Glucagon antibodies and their use for immunoassay for glucagon. Proc Soc Exp Biol Med 102:621–623

    PubMed  CAS  Google Scholar 

  • von Schenk H (1984) Radioimmunoassay of glucagon. In: Lamer J, Pohl SL (eds) Methods in Diabetes Research, Vol I: Laboratory Methods, Part A, John Wiley and Sons, New York, pp 327–345

    Google Scholar 

  • Goldstein St, Blecher M (1976) Isolation of glucagon receptor proteins from rat liver plasma membranes. In: Blecher M (ed) Methods in Receptor Research, Part I, Marcel Decker, Inc., New York and Basel, pp 119–142

    Google Scholar 

  • Hagopian WA, Tager HS (1983) Receptor binding and cell-mediated metabolism of [’25I]monoiodoglucagon by isolated hepatocytes. J Biol Chem 259:8986–8993

    Google Scholar 

  • Hruby VJ, Gysin B, Trivedi D, Johnson DG (1993) New glucagon analogues with conformational constrictions and altered amphiphilicity: Effects on binding, adenylate cyclase and glycogenolytic activities. Life Sci 52:845–855

    PubMed  CAS  Google Scholar 

  • Ishibashi H, Cottam GL (1978) Glucagon-stimulation of pyru- vate kinase in hepatocytes. J Biol Chem 253:8767–8771

    PubMed  CAS  Google Scholar 

  • Jorgensen KH, Larsen UD (1972) Purification of 1251-glucagon by ion exchange chromatography. Horm Metab Res 4: 223–224

    PubMed  CAS  Google Scholar 

  • Lin ME, Wright DE, Hruby VL, Rodbell M (1985) Structure-function relationships in glucagon: properties of highly purified des-his’-monoiodo-, and [des-asn2,thr29](homoserine lactone) glucagon. Biochemistry 14:1559–1563

    Google Scholar 

  • McVittie LD, Gurd RS (1989) Stabilization of soluble active rat liver glucagon receptor. Arch Biochem Biophys 273:254–263

    PubMed  CAS  Google Scholar 

  • Neville DM (1968) Isolation of an organ specific protein antigen from cell-surface membrane of rat liver. Biochim Biophys Acta 154:540–552

    PubMed  CAS  Google Scholar 

  • Pohl SL (1976) The glucagon receptor in plasma membranes prepared from rat liver. In: Blecher M (ed) Methods in Receptor Research, Part I, Marcel Decker, Inc., New York and Basel, pp 159–174

    Google Scholar 

  • Pohl SL, Birnbaumer L, Rodbell M (1971) The glucagonsensitive adenyl cyclase system in plasma membranes of rat liver. J Biol Chem 246:1849–1856

    PubMed  CAS  Google Scholar 

  • Sato N, Irie M, Kajinuma H, Suzuki K (1990) Glucagon inhibits insulin activation of glucose transport in rat adipocytes mainly through a postbinding process. Endocrinol 127: 1072–1077

    CAS  Google Scholar 

  • Unson CG, McDonald D, Ray K, Durrah TL, Merrifield RB (1991) Position 9 replacement analogs of glucagon uncouple biological activity and receptor binding. J Biol Chem 266:2763–2766

    PubMed  CAS  Google Scholar 

  • Wright DE, Rodbell M (1979) Glucagon,.6binds to the glucagon receptor and activates hepatic adenylate cyclase. J Biol Chem 254:268–269

    PubMed  CAS  Google Scholar 

  • Zechel Ch, Trivedi D, Hruby VJ (1991) Synthetic glucagon agonists and antagonists. Int J Peptide Protein Res 38: 131–138

    CAS  Google Scholar 

  • Creutzfeldt W, Ebert R (1985) New developments in the in-cretin concept. Diabetologia 28:565–573

    PubMed  CAS  Google Scholar 

  • Dillon JS, Tanizawa Y, Wheeler MB, Leng XH, Ligon BB, Rabin DU, Yoo-Warren H, Permutt MA, Boyd III AE (1993) Cloning and functional expression of the human glucagon-like peptidel (GLP-1) receptor. Endocrinology 133:1907–1910

    PubMed  CAS  Google Scholar 

  • Fehmann HC, Göke R, Göke B (1992) Glucagon-like peptide1(7–37)/(7–36)amide is a new incretin. Mol Cell Endocrin 85:C39–C44

    CAS  Google Scholar 

  • Fehmann HC, Habener JF (1991) Homologous desensitization of the insulinotropic glucagon-like peptide-1(7–37) receptor in insulinoma (HIT-T15) cells. Endocrinology 128:2880–2888

    PubMed  CAS  Google Scholar 

  • Fehmann HC, Habener JF (1992) Insulinotropic hormone glucagon-like peptide-1(7–37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma 3TC1 cells. Endocrinology 130:159–166

    PubMed  CAS  Google Scholar 

  • Gazdar AF, Chick WL, Oie HK, Sims HL, King DL, Weir GC, Lauris V (1980) Continuous, clonal insulin-and somatostatin-secreting cell line established from a transplantable rat islet cell tumor. Proc Natl Acad Sci, USA 77:3519–3523

    CAS  Google Scholar 

  • Göke R, Conlon JM (1988) Receptors for glucagon-like peptide-l(7–36)amide on rat insulinoma-derived cells. J Endocrinol 116:357–362

    PubMed  Google Scholar 

  • Göke R, Fehmann HC, Linn Th, Schmidt H, Krause M, Eng J, Göke B (1993b) Exendin-4 is a high potency agonist and truncated exendin-(9–39)-amide an antagonist at the glucagon-like peptide-1(7–36)amide receptor of insulin-secreting ß cells. J Biol Chem 268:19650–19655

    Google Scholar 

  • Göke R, Oltmer B, Sheikh SP, Göke B (1992) Solubilization of active GLP-1(7–36)amide receptors from RINm5F plasma membranes. FEBS Lett 300:232–236

    PubMed  Google Scholar 

  • Göke R, Wagner B, Fehmann HC, Göke B (1993a) Glucosedependency of the insulin stimulatory effect of glucagonlike peptide-1(7–36)amide on the rat pancreas. Res Exp Med 193:97–103

    Google Scholar 

  • Komatsu R, Matsuyama T, Namba M, Watanabe N, Itoh H, Kono N, Tarui S (1989) Glucagonostatic and insulinotropic action of glucagon-like peptide 1(7–36)-amide. Diabetes 38:902–905

    PubMed  CAS  Google Scholar 

  • Lankat-Buttgereit B, Göke R, Fehmann HC, Richter G, Göke B (1994) Molecular cloning of a eDNA encoding for the GLP-1 receptor expressed in rat lung. Exp Clin Endocrinol 102:341–347

    PubMed  CAS  Google Scholar 

  • Nathan DM, Schreiber E, Fogel H, Mojsov S, Habener JF (1992) Insulinotropic action of glucagon-like peptide-1-(737) in diabetic and nondiabetic subjects. Diabet Care 15:270–276

    CAS  Google Scholar 

  • Nauck MA, Heimesaat MM, Q rskov C, Holst JJ, Ebert R, Creutzfeldt W (1993) Preserved incretin activity of glucagon-like peptide 1 [7–36 amide] but not of synthetic human gastric inhibitory peptide in patients with type-2 diabetes mellitus. J Clin Invest 91:301–307

    PubMed  CAS  Google Scholar 

  • Praz GA, Halban PA, Wollheim CB, Blondel B, Strauss JA. Reynold AE (1983) Regulation of immunoreactive insulin release from a rat cell line (RINm5F) Biochem J 210:345–352

    Google Scholar 

  • Watanabe Y, Kawai K, Ohashi S, Yokota C, Suzuki S, Yamashita K (1994) Structure-activity of glucagon-like peptide-1(7–36)amide: insulinotropic activities in perfused rat pancreas, and receptor binding and cyclic AMP production in RINm5F cells. J Endocrinol 140:45–52

    PubMed  CAS  Google Scholar 

  • Cascieri MA, Saperstein R, Hayes NS, Green BG, Chicchi GG, Applebaum J, Bayne ML (1988) Serum half-live and biological activity of mutants of human insulin-like growth factor I which do not bind to serum binding proteins. Endocrinol 123:373–381

    CAS  Google Scholar 

  • DeMeyts P (1994) The structural basis of insulin and insulin-like growth factor-I receptor binding and negative cooperativity, and its relevance to mitogenic versus metabolic signalling. Diabetologia 37 [Suppl 21:S135–S148

    Google Scholar 

  • Dideriksen LH, Jorgensen LN, Drejer K (1992) Carcinogenic effect on female rats after 12 months administration of the insulin analogue B10 Asp. Diabetes 41 (Suppl I):143A

    Google Scholar 

  • Drejer K (1992) The bioactivity of insulin analogues from in vitro receptor binding to in vivo glucose uptake. Diabetes/ Metab Rev 8:259–286

    CAS  Google Scholar 

  • Fantl WJ, Johnson DE, Williams LT (1993) Signalling by re- ceptor tyrosine kinases. Annu Rev Biochem 62:453–481

    PubMed  CAS  Google Scholar 

  • Froesch ER, Schmid C, Schwander J, Zapf J (1985) Actions of insulin-like growth factors. Ann Rev Physiol 47:443–467

    CAS  Google Scholar 

  • Gammeltoft S, Drejer K (1991) Increased mitogenic potency of high affinity insulin analogues in mouse NIH 3T3 fibroblasts. J Cell Biol (Suppl 15B):54

    Google Scholar 

  • Heinze E, Vetter U, Holl RW, Brenner RE (1995) Glibenclamide stimulates growth of human chondrocytes by IGF 1 dependent mechanisms. Exp Clin Endocrinol 103: 260–265

    CAS  Google Scholar 

  • Moxley RT, Amer P, Moss A, Skottner A, Fox M, James D, Livingston JN (1990) Acute effects of insulin-like growth factor I and insulin on glucose metabolism in vivo. Am J Physiol; Endocrinol Metab 259:E561–E567

    CAS  Google Scholar 

  • Nielsen FC, Haselbacher G, Christiansen J, Lake M, Gronborg M, Gammeltoft S (1993) Biosynthesis of 10 kDa and 7.5 kDa insulin-like growth factor II in a human rhabdomyosarcoma cell line. Mol Cell Endocrinol 93:87–95

    PubMed  CAS  Google Scholar 

  • Pierson RW, Temin HM (1972) The partial purification from calf serum of a fraction with multiplication-stimulating activity for chicken fibroblasts in the cell culture and with non-suppressible insulin-like activity. J Cell Physiol 79: 319–330

    PubMed  CAS  Google Scholar 

  • Rechler MM (1985) The nature and regulation of the receptors for insulin-like growth factors. Ann Rev Physiol 47: 425–442

    CAS  Google Scholar 

  • Rinderknecht E, Humbel RE (1978 a) The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem 253: 2769–2776

    Google Scholar 

  • Rinderknecht E, Humbel RE (1978 b) Primary structure of human insulin-like growth factor II. FEBS Lett 89:283–286

    Google Scholar 

  • Roth RA (1988) Structure of the receptor for insulin-like growth factor II: the puzzle amplified. Science 239: 1269–1271

    PubMed  CAS  Google Scholar 

  • Salamon EA, Luo J, Murphy LJ (1989) The effect of acute and chronic insulin administration on insulin-like growth factor expression in the pituitary-intact and hypophysectomized rat. Diabetologia 32:348–353

    PubMed  CAS  Google Scholar 

  • Salmon WD, Daughaday WH (1957) A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vivo. J Lab Clin Med 49:825–836

    PubMed  CAS  Google Scholar 

  • Schäffer L, Kjeldsen T, Andersen AS, Wiberg FC, Larsen UD, Cara JF, Mirmira RG, Nakagawa SH, Tager HS (1993) Interaction of a hybrid insulin/insulin-like growth factor-I analog with chimeric insulin/type I insulin-like growth factor receptors. J Biol Chem 268:3044–3047

    PubMed  Google Scholar 

  • Schlessinger J, Ullrich A (1992) Growth factor signaling by receptor tyrosine kinases. Neuron 9:383–391

    PubMed  CAS  Google Scholar 

  • Schmitz F, Hartmann H, Stiimpel F, Creutzfeldt W (1991) In vivo metabolic action of insulin-like growth factor I in adult rats. Diabetologie 34:144–149

    CAS  Google Scholar 

  • Schoenle E, Zapf J, Humbel RE, Froesch ER (1982) Insulin-like growth factor I stimulates growth in hypophysectomized rats. Nature 296:252–253

    PubMed  CAS  Google Scholar 

  • Schwander J, Hauri C, Zapf J, Froesch ER (1983) Synthesis and secretion of insulin-like growth factor and its binding protein by the perfused rat liver: Dependence on growth hormone status. Endocrinol 113:297–305

    CAS  Google Scholar 

  • Steinke J, Sirek A, Lauris V, Lukens FDW, Renold AE (1962) Measurement of small quantities of insulin-like activity with rat adipose tissue. III. Persistence of serum insulin-like activity after pancreatectomy. J Clin Invest 41: 1699–1707

    PubMed  CAS  Google Scholar 

  • Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61:203–212

    PubMed  CAS  Google Scholar 

  • Verspohl EJ, Maddux BA, Goldfine ID (1988) Insulin and insulin-like growth factor I regulate the same biological functions in HEP-G2 cells via their own specific receptors. J Clin Endocr Metab 67:169–174

    PubMed  CAS  Google Scholar 

  • Vikman K, Isgaard J, Edén S (1991) Growth hormone regulation of insulin-like growth factor-I mRNA in rat adipose tissue and isolated rat adipocytes. J Endocrinol 131: 139–145

    PubMed  CAS  Google Scholar 

  • Zapf J, Hauri C, Waldvogel M. Froesch ER (1986) Acute metabolic effects and half-lives of intravenously administered insulinlike growth factors I and II in normal and hypophysectomized rats. J Clin Invest 77:1768–1775

    PubMed  CAS  Google Scholar 

  • Zapf J, Waldvogel M, Froesch ER (1975) Binding of non-suppressible insulin-like activity to human serum: Evidence for a carrier protein. Arch Biochem Biophys 168:638–645

    PubMed  CAS  Google Scholar 

  • Bänder A, Pfaff W, Schmidt FH, Stork H, Schröder HG (1969) Zur Pharmakologie von HB 419, einem neuen, stark wirksamen oralen Antidiabeticum. Arzneim Forsch/Drug Res 19:1363–1372

    Google Scholar 

  • Fieller EC (1944) A fundamental formula in the statistics of biological assay, and some applications. Quart J Pharm Pharmacol 17:117–123

    CAS  Google Scholar 

  • Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130

    CAS  Google Scholar 

  • Levene H (1960) Robust tests for equality of variances. In Olkin I, Ghury SG, Hoeffding W, Madow WG, Mann HB (eds.) Contributions to probability and statistics. Essays in honor of Harold Hotteling. Stanford University Press, Stanford, CA., pp 278–292

    Google Scholar 

  • Miller RG (1966) Simultaneous statistical inference. McGraw-Hill Book Company, New York

    Google Scholar 

  • Scheffé H (1959) The analysis of variance. J Wiley and Sons, Inc., New York

    Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (Complete samples) Biometrika 52:591–611

    Google Scholar 

  • Sidak Z (1967) Rectangular confidence regions for the means of multivariate normal distributions. J Am Statist Assoc 62:626–631

    Google Scholar 

  • Bänder A, Pfaff W, Schmidt FH, Stork H, Schröder HG (1969) Zur Pharmakologie von HB 419, einem neuen, stark wirksamen oralen Antidiabeticum. Arzneim Forsch/Drug Res 19:1363–1372

    Google Scholar 

  • Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130

    CAS  Google Scholar 

  • Gill AM, Yen TT (1991) Effects of ciglitazone on endogenous plasma islet amyloid polypeptide and insulin sensitivity in obese-diabetic viable yellow mice. Life Sci 48:703–710

    PubMed  CAS  Google Scholar 

  • Root MA, Sigal MV, Anderson RC (1959) Pharmacology of 1(p-chlorobenzenesulfonyl)-3-n-propylurea (Chlorpropamide). Diabetes 8:7–13

    PubMed  CAS  Google Scholar 

  • Sohda T, Momose Y, Meguro K, Kawamatsu Y, Sugiyama Y, Ikeda H (1990) Studies on antidiabetic agents. Synthesis and hypoglycemic activity of 5-[4-(pyridylalkoxy)benzyll2,4-thiazolidinediones. Arzneim Forsch/Drug Res 40:37–42

    CAS  Google Scholar 

  • Bänder A, Pfaff W, Schmidt FH, Stork H, Schröder HG (1969) Zur Pharmakologie von HB 419, einem neuen, stark wirksamen oralen Antidiabeticum. Arzneim Forsch/Drug Res 19:1363–1372

    Google Scholar 

  • Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130

    CAS  Google Scholar 

  • Geisen K, Reisig E, Härtel D (1981) Kontinuierliche Blutglucosemessung und Infusion bei wachen, frei beweglichen Hunden. Continuous blood glucose monitoring and infusion in freely mobile dogs. Res Exp Med (Berl) 179: 103–111

    CAS  Google Scholar 

  • DeFronzo RA, Tobin JD, Andres R (1979) Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 237:E214–223

    PubMed  CAS  Google Scholar 

  • Finegood DT, Bergman RN, Vranic A (1987) Estimation of endogenous glucose production during hyperinsulinemiceuglycemic glucose clamps. Comparison of unlabeled and labeled glucose infusates. Diabetes 36:914–924

    PubMed  CAS  Google Scholar 

  • Hirshman MF, Horton ES (1990) Glyburide increases insulin sensitivity and responsiveness in peripheral tissues of the rat as determined by the glucose clamp technique. Endocrinol 126:2407–2412

    CAS  Google Scholar 

  • Kraegen EW, James DE, Bennett SP, Chishol DJ (1983) In vivo insulin sensitivity in the rat determined by euglycemic clamp. Am J Physiol 245:E1–E7

    PubMed  CAS  Google Scholar 

  • Kraegen EW, James DE, Jenkins AB, Chisholm DJ (1985) Dose-response curves for in vivo sensitivity in individual tissues in rats. Am J Physiol; Endocrin Metab 11:E353–E362

    Google Scholar 

  • Lang CH (1992) Rates and tissue sites of noninsulin-and insulin-mediated glucose uptake in diabetic rats. Proc Soc Exp Biol Med 199:81–87

    PubMed  CAS  Google Scholar 

  • Lee MK, Miles PDG, Khoursheed M, Gao KM, Moossa AR, Olefsky JM (1994) Metabolic effects of troglitazone on fructose-induced insulin resistance in rats. Diabetes 43: 1435–1439

    PubMed  CAS  Google Scholar 

  • Marfaing P, Ktorza A, Berthault MF, Predine J, Picon L, Penicaud L (1991). Effects of counterregulatory hormones on insulin-induced glucose utilization by individual tissues in rats. Diabete and Metabolisme (Paris) 17:55–60

    CAS  Google Scholar 

  • Ohsawa I; Sato J, Oshida Y, Sato Y, Sakamoto N (1991) Effect of glimepiride on insulin action in peripheral tissues of the rat determined by the euglycemic clamp technique. J Japan Diab Soc 34:873–874

    CAS  Google Scholar 

  • Smith D, Rossetti L, Ferrannini E, Johnson CM, Cobelli C, Toffolo G, Katz LD, DeFronzo RA (1987) In vivo glucose metabolism in the awake rat: Tracer and insulin clamp studies. Metabolism 36:1167–1174

    PubMed  CAS  Google Scholar 

  • Tominaga M, Igarashi M, Daimon M, Eguchi H, Matsumoto M, Sekikawa A, Yamatani K, Sasaki H (1993) Thiazolidin- ediones (AD-4833 and CS-045) improve hepatic insulin resistance in streptozotocin-induced diabetic rats. Endocr J 40:343–349

    PubMed  CAS  Google Scholar 

  • Ciaraldi TP, Gilmore A, Olefsky JM, Goldberg M, Heidenreich KA (1990) In vitro studies on the action of CS-045, a new antidiabetic agent. Metabolism 39:1056–1062

    PubMed  CAS  Google Scholar 

  • Colca JR (1995) Insulin sensitiser drugs in development for the treatment in diabetes. Expert Opin Invest Drugs 4: 27–29

    Google Scholar 

  • Fujiwara T, Yoshioka S, Yoshioka T, Ushiyama I, Horikoshi H (1988) Characterization of new oral antidiabetic agent CS-045. Studies in KK and ob/ob mice and Zucker fatty rats. Diabetes 37:1549–1558

    PubMed  CAS  Google Scholar 

  • Gill AM, Yen TT (1991) Effects of ciglitazone on endogenous plasma islet amyloid polypeptide and insulin sensitivity in obese-diabetic viable yellow mice. Life Sci 48:703–710

    PubMed  CAS  Google Scholar 

  • Hofmann C, Lorenz K, Colca JR (1991) Glucose transport deficiency in diabetic animals is corrected by treatment with the oral antihyperglycemic agent pioglitazone. Endocrinol 129:1915–1925

    CAS  Google Scholar 

  • Hofmann CA. Edwards CW, Hillman RM, Colca JR (1992) Treatment of insulin-resistant mice with the oral antidiabetic agent pioglitazone: evaluation of liver GLUT2 and phosphoenolpyruvate carboxykinase expression. Endocrinol 130:735–740

    Google Scholar 

  • Ikeda H, Taketomi S, Sugiyama Y, Shimura Y, Sohda T Meguro K, Fujita T (1990) Effects of pioglitazone on glucose and lipid metabolism in normal and insulin resistant animals. Arzneim Forsch/Drug Res 40:156–162

    CAS  Google Scholar 

  • Kellerer M, Kroder G, Tippmer S, Berti L, Kiehn R, Mosthaf L, Häring H (1994) Troglitazone prevents glucose-induced insulin resistance of insulin receptor in rat-1 fibroblasts. Diabetes 43:447–453

    PubMed  CAS  Google Scholar 

  • Kirsch DM, Bachmann W, Häring HU (1984) Ciglitazone reverses cAMP-induced post-insulin receptor resistance in rat adipocytes in vitro. FEBS Lett 176:49–54

    PubMed  CAS  Google Scholar 

  • Kobayashi M, Iwanshi M, Egawa K, Shigeta Y (1992) Pioglitazone increases insulin sensitivity by activating insulin receptor kinase. Diabetes 41:476–483

    PubMed  CAS  Google Scholar 

  • Lee MK, Miles PDG, Khoursheed M, Gao KM, Moossa AR, Olefsky JM (1994) Metabolic effects of troglitazone on fructose-induced insulin resistance in rats. Diabetes 43: 1435–1439

    PubMed  CAS  Google Scholar 

  • Masuda K, Okamoto Y, Tuura Y, Kato S, Miura T, Tsuda K, Horikoshi H, Ishida H, Seino Y (1995) Effects of troglitazone (CS-045) on insulin secretion in isolated rat pancreatic islets and HIT cells: an insulinotropic mechanism distinct from glibenclamide. Diabetologia 38:24–30

    PubMed  CAS  Google Scholar 

  • Murano K, Inoue Y, Emoto M, Kaku K, Kaneko T (1994) CS-045, a new oral antidiabetic agent, stimulates fructose-2,6bisphosphate production in rat hepatocytes. Eur J Pharmacol 254:257–262

    PubMed  CAS  Google Scholar 

  • Murano K, Inoue Y, Emoto M, Kaku K, Kaneko T (1994) CS-045, a new oral antidiabetic agent, stimulates fructose-2,6bisphosphate production in rat hepatocytes. Eur J Pharmacol 254:257–262

    PubMed  CAS  Google Scholar 

  • Sohda T, Momose Y, Meguro K, Kawamatsu Y, Sugiyama Y, Ikeda H (1990) Studies on antidiabetic agents. Synthesis and hypoglycemic activity of 5-[4-(pyridylalkoxy)benzyll- 2,4-thiazolidinediones. Arzneim Forsch/Drug Res 40:37–42 Tominaga M, Igarashi M, Daimon M, Eguchi H, Matsumoto

    Google Scholar 

  • M, Sekikawa A, Yamatani K, Sasaki H (1993) Thiazolidinediones (AD-4833 and CS-045) improve hepatic insulin resistance in streptozotocin-induced diabetic rats. Endocr J 40:343–349

    Google Scholar 

  • Yoshioka S, Nishino H, Shiraki T, Ikeda K, Koike H, Okuno A, Wada M, Fujiwara T, Horikoshi H (1993) Antihypertensive effects of CS-045 treatment in obese Zucker rats. Metabolism 42:75–80

    PubMed  CAS  Google Scholar 

  • Anderson E, Long JA (1947) The effect of hyperglycemia on insulin secretion as determined with the isolated rat pancreas in a perfusion apparatus. Endocrinology 40:92–97

    PubMed  CAS  Google Scholar 

  • Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130

    CAS  Google Scholar 

  • Grodsky GM, Batts AA, Bennett LL, Vicella C, McWilliams NB, Smith DF (1963) Effects of carbohydrates on secretion of insulin from isolated rat pancreas. Am J Physiol 205:638–644

    PubMed  CAS  Google Scholar 

  • Grodsky GM, Heldt A (1984) Method for the in vitro perfusion of the pancreas. In: Lamer J, Pohl SL (eds) Methods in Diabetes Research. Vol. I.: Laboratory Methods, Part B, John Wiley and Sons, New York, pp 137–146

    Google Scholar 

  • Ross BD (1972) Endocrine organs: Pancreas. In Ross BD: Perfusion Techniques in Biochemistry. A Laboratory Manual in the Use of Isolated Perfused Organs in Biochemical Experimentation. Clarendon Press, Oxford, pp 321–355

    Google Scholar 

  • Fletcher DJ, Weir G (1984) Tissue culture of dispersed islet cells. In: Lamer J, Pohl StL (eds) Methods in Diabetes Research. Vol I: Laboratory Methods. Part A, John Wiley and Sons, New York, pp 167–173

    Google Scholar 

  • Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130

    Google Scholar 

  • Idahl L4 (1972) A microperifusion device for pancreatic islets allowing concomitant recordings of intermediate metabolites and insulin release. Analyt Biochem 50:386–398

    PubMed  CAS  Google Scholar 

  • Kaiser N, Cerasi E (1991) Long term monolayer culture of adult rat islet of Langerhans. In: Greenstein B (ed) Neuroendocrine Research Methods. Vol I, Chapter 6, pp 131–147. Harwood Academic Publ

    Google Scholar 

  • Lernmark A (1974) The preparation of, and studies on, free cell suspensions from mouse pancreatic islets. Diabetologia 10:431–438

    PubMed  CAS  Google Scholar 

  • Malaisse-Lagae F, Malaisse WJ (1984) Insulin release by pancreatic islets. In: Lamer J, Pohl StL (eds) Methods in Diabetes Research. Vol. I.: Laboratory Methods, Part B, John Wiley and Sons, New York, pp 147–152

    Google Scholar 

  • McDaniel ML, Colca JR, Kotagal N (1984) Islet cell membrane isolation and characterization. In: Lamer J, Pohl StL (eds) Methods in Diabetes Research. Vol I: Laboratory Methods. Part A, John Wiley and Sons, New York, pp 153–166

    Google Scholar 

  • Panten U, Ishida H, Schauder P, Frerichs H, Hasselblatt A (1977) A versatile microperifusion system. Anal Biochem 82:317–326

    Google Scholar 

  • Pipeleers DG (1984) Islet cell purification. In: Lamer J, Pohl StL (eds) Methods in Diabetes Research. Vol. I.: Laboratory Methods, Part B, John Wiley and Sons, New York, pp 185–211

    Google Scholar 

  • Schatz H, Maier V, Hinz M, Nierle C, Pfeiffer EF (1972) The effect of tolbutamide and glibenclamide on the incorporation of [’H] leucine and on the conversion of proinsulin to insulin in isolated pancreatic islets. FEBS Lett 26:237–240

    PubMed  CAS  Google Scholar 

  • Yoon JW, Bachurski CJ, Shin SY, Srinivasappa J, Rayfield EJ (1984) Simple method for human pancreatic ß cell cultures. In: Lamer J, Pohl StL (eds) Methods in Diabetes Research. Vol. 1.: Laboratory Methods, Part B, John Wiley and Sons, New York, pp 167–171

    Google Scholar 

  • Bhatena SJ, Oie HK, Gazdar AF, Voyles NR, Wilkins SD, Recant L (1982) Insulin, glucagon, and somatostatin receptors on cultured cells and clones from rat islet cell tumor. Diabetes 31:521–531

    Google Scholar 

  • Boyd III AE, Aguilar-Bryan L, Bryan J, Kunze DL, Moss L, Nelson DA, Rajan AS, Raef H, Xiang H, Yaney GC (1991) Sulfonylurea signal transduction. In. Bardin CW (ed) Proceedings of the 1990 Laurentian Hormone Conference. Rec Progr Horm Res 47:299–317

    PubMed  CAS  Google Scholar 

  • Chick WL, Warren S, Chute RN, Like AA, Lauris V, Kitchen KC (1977) A transplantable insulinoma in the rat. Proc Natl Acad Sci, USA 74:628–632

    CAS  Google Scholar 

  • Gazdar AF, Chick WL, Oie HK, Sims HL, King DL, Weir GC, Lauris V (1980) Continuous, clonal, insulin-, and somatostatin-secreting cell lines established from a transplantable rat islet cell tumor. Proc. Natl Acad Sci, USA 77:3519–3523

    CAS  Google Scholar 

  • Geisen K, Hitzel V, Okonomopoulos R, Punter J, Weyer R, Summ HD (1985) Inhibition of 3H-glibenclamide binding to sulfonylurea receptors by oral antidiabetics. Arzneim Forsch/Drug Res 35:707–712

    CAS  Google Scholar 

  • Masuda K, Okamoto Y, Tuura Y, Kato S, Miura T, Tsuda K, Horikoshi H, Ishida H, Seino Y (1995) Effects of troglitazone (CS-045) on insulin secretion in isolated rat pancreatic islets and HIT cells: an insulinotropic mechanism distinct from glibenclamide. Diabetologia 38:24–30

    PubMed  CAS  Google Scholar 

  • Müller G, Hartz D, Punter J, Okonomopulos R, Kramer W (1994) Differential interaction of glimepiride and glibenclamide with the b-cell sulfonylurea receptor. I. Binding characteristics. Biochim Biophys Acta 1191:267–277

    PubMed  Google Scholar 

  • Praz GA, Halban PA, Wollheim CB, Blondel B, Strauss AJ, Renold AE (1983) Regulation of immunoreactive-insulin release from a rat cell line (RINm5F). Biochem J 210: 345–352

    PubMed  CAS  Google Scholar 

  • Santerre RF, Cook RA, Crisek RMD, Sharp JD, Schmidt RJ, William DC, Wilson CP (1981) Insulin synthesis in a clonal cell line of simian virus 40-transformed hamster pancreatic beta cells. Proc Natl Acad Sci USA 78:4339–4343

    PubMed  CAS  Google Scholar 

  • Geisen K, Hitzel V, Ôkonomopoulos R, Punter J, Weyer R, Summ HD (1985) Inhibition of 3H-glibenclamide binding to sulfonylurea receptors by oral antidiabetics. Arzneim Forsch/Drug Res 35:707–712

    CAS  Google Scholar 

  • Kaubisch N, Hammer R, Wollheim C, Renold AE, Offord R (1982) Specific receptors for sulfonylureas in brain and in a 13-cell tumor of the rat. Biochem Pharmacol 31:1171–1174

    PubMed  CAS  Google Scholar 

  • Müller G, Hartz D, Punter J, Okonomopulos R, Kramer W (1994) Differential interaction of glimepiride and glibenclamide with the 13-cell sulfonylurea receptor. I. Binding characteristics. Biochim Biophys Acta 1191:267–277

    PubMed  Google Scholar 

  • Aguilar-Bryan L, Nichols CG, Rajan AS, Parker Ch, Bryan J (1992) Co-expression of sulfonylurea receptors and KATP channels in hamster insulinoma tumor (HIT) cells. J Biol Chem 267:14934–14940

    PubMed  CAS  Google Scholar 

  • Angel I, Bidet S (1991) The binding site for [3H]glibenclamide in the rat cerebral cortex does nor recognize K-channel agonists or antagonists other than sulfonylureas. Fundam Clin Pharmacol 5:107–115

    PubMed  CAS  Google Scholar 

  • Ashcroft SJH, Ashcroft FM (1992) The sulfonylurea receptor. Biochem Biophys Acta 1175:45–59

    PubMed  CAS  Google Scholar 

  • Boyd III AE (1992) The role of ion channels in insulin secretion. J Cell Biochem 48:234–241

    CAS  Google Scholar 

  • Gaines KL, Hamilton S, Boyd III AE (1988) Characterization of the sulfonylurea receptor on beta cell membranes. J Biol Chem 263:2589–2592

    PubMed  CAS  Google Scholar 

  • Geisen K, Hitzel V, Ökonomopulos R, Punter J, Weyer R, Summ HD (1985) Inhibition of 3H-glibenclamide binding to sulfonylurea receptors by oral antidiabetics. Arzneim Forsch/Drug Res 35:707–712

    CAS  Google Scholar 

  • Masuda K, Okamoto Y, Tuura Y, Kato S, Miura T, Tsuda K, Horikoshi H, Ishida H, Seino Y (1995) Effects of troglitazone (CS-045) on insulin secretion in isolated rat pancreatic islets and HIT cells: an insulinotropic mechanism distinct from glibenclamide. Diabetologia 38:24–30

    PubMed  CAS  Google Scholar 

  • Müller G, Hartz D, Punter J, Okonomopulos R, Kramer W (1994) Differential interaction of glimepiride and glibenclamide with the 3-cell sulfonylurea receptor. I. Binding characteristics. Biochim Biophys Acta 1191:267–277

    PubMed  Google Scholar 

  • Panten U, Burgfeld J, Goerke F, Rennicke M, Schwanstecher M, Wallasch A, Zünkler BJ, Lenzen S (1989) Control of insulin secretion by sulfonylureas, meglitinide and diazoxide in relation to their binding to the sulfonylurea receptor in pancreatic islets. Biochem Pharmacol 8:1217–1229

    Google Scholar 

  • Panten U, Schwanstecher C, Schwanstecher M (1993) ATP-sensitive K+ channel: properties, occurrence, role in regulation of insulin secretion. In: Dickey BF, Birnbaumer L (eds) GTPases in Biology II, Handbook of Experimental Pharmacology Vol 108/I1, Springer Verlag Berlin, Heidelberg New York, pp 547–559

    Google Scholar 

  • Schmid-Antomarchi H, DeWeille J, Fosset M, Lazdunski M (1987) The receptor for the antidiabetic sulfonylureas controls the activity of the ATP-modulated K+ channel in insulin-secreting cells. J Biol Chem 262:15840–15844

    PubMed  CAS  Google Scholar 

  • Schmid-Antomarchi H, deWeille J, Fosset M, Lazdunski M (1987) The antidiabetic sulfonylurea glibenclamide is a potent blocker of the ATP-modulated K+ channel in insulin secreting cells. Biochem Biophys Res Commun 146:21–25

    PubMed  CAS  Google Scholar 

  • Sugiura M, Sawada Y, Yamada Y, Nakamura K, Iga T (1992) Prediction of therapeutic doses of sulfonylureas based on receptor occupancy theory. Xenobiot Metab Dispos 7: 233–241

    CAS  Google Scholar 

  • Aguilar-Bryan L, Nelson DA, Vu QA, Humphrey MB (1990) Photoaffinity labeling and partial purification of the b cell sulfonylurea receptor using a novel, biologically active glyburide analog. J Biol Chem 265:8218–8224

    PubMed  CAS  Google Scholar 

  • Bernardi H, Fosset M, Lazdunski M (1988) Characterization, purification, and affinity labeling of the brain [3Hlglibenclamide-binding protein, a putative neuronal ATP-regulated K* channel. Proc Natl Acad Sci USA 85:9816–9820

    PubMed  CAS  Google Scholar 

  • Boyd III AE, Aguilar-Bryan L, Bryan J, Kunze DL, Moss L, Nelson DA, Rajan AS, Raef H, Xiang H, Yaney GC (1991) Sulfonylurea signal transduction. Rec Progr Horm Res 47:299–317

    PubMed  CAS  Google Scholar 

  • Kramer W, Müller G, Girbig F, Gutjahr U, Kowalewski S, Hertz D, Summ HD (1994) Differential interaction of glimepiride and glibenclamide with the li-cell sulfonylurea receptor. II. Photoaffinity labeling. Biochem Biophys Acta 119:278–290

    Google Scholar 

  • Kramer W, Oekonomopulos R, Pünter J, Summ HD (1988) Direct photolabeling of the putative sulfonylurea receptor in rat b-cell tumor membranes by [3H]glibenclamide. FEBS Lett 229:355–359

    PubMed  CAS  Google Scholar 

  • Wessel D, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143

    PubMed  CAS  Google Scholar 

  • Yip CC (1984) Photoaffinity probes for hormone receptor characterization. In: Lamer J, Pohl SL (eds) Methods in Diabetes Research Vol I: Laboratory Methods, Part A, pp 3–14, John Wiley and Sons, New York

    Google Scholar 

  • Boyd III AE, Aguilar-Bryan L, Bryan J, Kunze DL, Moss L, Nelson DA, Rajan AS, Raef H, Xiang H, Yaney GC (1991) Sulfonylurea signal transduction. Rec Progr Horm Res 47:299–317

    PubMed  CAS  Google Scholar 

  • Nicki I, Nicks JL, Ashcroft SJH (1990) The 13-cell glibenclamide receptor is an ADP-binding protein. Biochem J 268:713–718

    Google Scholar 

  • Niki I, Kelly RP, Ashcroft SJH, Ashcroft FM (1989) ATP-sensitive K-channels in HIT T15 13-cells studied by patch-clamp methods, R6Rb efflux and glibenclamide binding. Pflügers Arch 415:47–55

    PubMed  CAS  Google Scholar 

  • Schmid-Antomarchi H, De Weille J, Fosset M, Lazdunski M (1987) The receptor for antidiabetic sulfonylureas controls the activity of the ATP-modulated K+ channel in insulin secreting cells. J Biol Chem 262:15840–15844

    PubMed  CAS  Google Scholar 

  • Boyd III AE (1992) The role of ion channels in insulin secretion. J Cell Biochem 48:234–241

    CAS  Google Scholar 

  • Boyd III AE, Aguilar-Bryan L, Bryan J, Kunze DL, Moss L, Nelson DA, Rajan AS, Raef H, Xiang H, Yaney GC (1991) Sulfonylurea signal transduction. Rec Progr Horm Res 47:299–317

    PubMed  CAS  Google Scholar 

  • deWeille J, Schmid-Antomarchi H, Fosset, M, Lazdunski M (1988) ATP-sensitive K+ channels that are blocked by hypoglycemia-inducing sulfonylureas in insulin-secreting cells are activated by galanin, a hyperglycemia-inducing hormone. Proc Natl Acad Sci, USA, 85:1312–1316

    CAS  Google Scholar 

  • deWeille JR, Fossel M, Mourre C, Schmid-Antomarchi H, Bernardi H, Lazdunski M (1989) Pharmacology and regulation of ATP-sensitive K+ channels. Pflüger’s Arch 441 (Suppl 1) S80–S87

    Google Scholar 

  • Dunne MJ, Illot MC, Petersen OH (1987) Interaction of diazoxide, tolbutamide and ATP on nucleotide-dependent K+ channels in an insulin-secreting cell line. J Membrane Biol 99:215–224

    CAS  Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth RI (1981) Improved patch-clamp techniques for high-resolution current recordings from cells and cell-free membrane patches. Pflüger’s Arch 391:85–100

    CAS  Google Scholar 

  • Henquin JC, Meissner HP (1984) Effects of theophylline and dibutyryl cyclic adenosine monophosphate on the membrane potential of mouse pancreatic R-cells. J Physiol 351:595–612

    PubMed  CAS  Google Scholar 

  • Henquin JC, Schmeer W, Henquin M, Meissner HP (1984) Forskolin suppresses the slow cyclic variations of glucose-induced electrical activity in pancreatic ß cells. Biochem Biophys Res Commun 120:797–803

    PubMed  CAS  Google Scholar 

  • Henquin JC, Schmeer W, Henquin M, Meissner HP (1985) Effects of a calcium channel agonist on the electrical, ionic and secretory events in mouse pancreatic 13-cells. Biochem Biophys Res Commun 131:980–986

    PubMed  CAS  Google Scholar 

  • Kozlowski RZ, Sturgess NC, Hales CN, Ashford MU (1988) Inhibition of the ATP-K+ channel by glibenclamide in a rat insulinoma cell line. Br J Pharmacol 93:296P

    Google Scholar 

  • Lindau M, Neher E (1988) Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pflüger’s Arch 411:137–146

    CAS  Google Scholar 

  • Meissner HP (1990) Membrane potential measurements in pancreatic 13 cells with intracellular microelectrodes. Meth Enzymol 192:235–246

    PubMed  CAS  Google Scholar 

  • Nelson TY, Gaines KL, Rajan AS, Berg M, Boyd III AE (1987) Increased cytosolic calcium. A signal for sulfonylurea-stimulated insulin release from beta cells. J Biol Chem 262:2606–2612

    Google Scholar 

  • Niki I, Kelly RP, Ashcroft SJH, Ashroft FM (1989) ATP-sensitive K-channels in HIT T15 13-cells studied by patch-clamp methods, $“Rb efflux and glibenclamide binding. Pflügers Arch 415:47–55

    PubMed  CAS  Google Scholar 

  • Rajan AS, Aguilar-Bryan L, Nelson DA, Nichols CG, Wechsler SW, Lechago J, Bryan J (1993) Sulfonylurea receptors and ATP-sensitive K+ channels in clonal pancreatic 13 cells. Evidence for two high affinity sulfonylurea receptors. J Biol Chem 268:15221–15228

    PubMed  CAS  Google Scholar 

  • Rorsman P, Bokvist K, Ammälä C, Eliasson L, Renström E. Gäbel J (1994) Ion channels, electrical activity and insulin secretion. Diabete and Metabolisme (Paris) 20:138–145

    CAS  Google Scholar 

  • Rorsman P, Trube G (1985) Glucose dependent K’ channels in pancreatic B-cells are regulated by intracellular ATP. Pflüger’s Arch 405:305–309

    CAS  Google Scholar 

  • Rorsman P, Trube G (1986) Calcium and delayed potassium currents in mouse pancreatic 0-cells under voltage-clamp conditions. J Physiol 374:531–550

    PubMed  CAS  Google Scholar 

  • Schwanstecher C, Dickel C, Panten U (1992) Cytosolic nucleotides enhance the tolbutamide sensitivity of the ATP-dependent K+ channel in mouse pancreatic B cells by their combined actions at inhibitory and stimulatory receptors. Mol Pharmacol 41:480–486

    PubMed  CAS  Google Scholar 

  • Sturgess NC, Kozlowski RZ, Carrington CA, Hales CN, Ashford MU (1988) Effects of sulphonylureas and diazoxide on insulin secretion and nucleotide-sensitive channels in an insulin-secreting cell line. Br J Phannacol 95:83–94

    CAS  Google Scholar 

  • Trube G, Rorsman P, Ohno-Shosaku T (1986) Opposite effects of tolbutamide and diazoxide on the ATP-dependent K’ channel in mouse pancreatic 0-cells. Pflügers Arch 407:493–499

    PubMed  CAS  Google Scholar 

  • Wahl MA, Straub SG, Ammon HPT (1993) Vasoactive intestinal polypeptide-augmented insulin release: action on ionic fluxes and electrical activity of mouse islets. Diabetologia 36:920–925

    PubMed  CAS  Google Scholar 

  • Zünkler BJ, Lenzen S, Männer K, Panten U, Trube G (1988) Concentration-dependent effects of tolbutamide, meglitinide, glipizide, glibenclamide and diazoxide on ATP-regulated K+ currents in pancreatic B-cells. NaunynSchmiedeberg’ s Arch Pharmacol 337:225–230

    Google Scholar 

  • Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130

    CAS  Google Scholar 

  • Miller TB (1984) Use of liver perfusion for metabolic studies. In: Lamer J, Pohl SL (eds) Methods in Diabetes Research. Vol I: Laboratory Methods. Part A, John Wiley and Sons, New York, pp 143–151

    Google Scholar 

  • Ross BD (1972) Perfusion techniques in biochemistry. A laboratory manual in the use of isolated perfused organs in biochemical experimentation. Clarendon Press, Oxford. pp 135–220

    Google Scholar 

  • Sugano T, Suda K, Shimada M, Oshino N (1978) Biochemical and ultrastructural evaluation of isolated rat liver systems perfused with a haemoglobin-free medium. J Biochem 83: 995–1007

    PubMed  CAS  Google Scholar 

  • Berry MN, Friend DS (1969) High-yield preparation of isolated rat liver parenchymal cells. A biochemical and fine structural study. J Cell Biol 43:506–520

    PubMed  CAS  Google Scholar 

  • Caro JF, Poulos J, Ittoop 0, Pories WJ, Flickinger EG, Sinha MK (1988) Insulin-like growth factor I binding in hepatocytes from human liver, human hepatoma, and normal, regenerating and fetal rat liver. J Clin Invest 81:976–981

    PubMed  CAS  Google Scholar 

  • Chowdhury MH, Agius L (1987) Epidermal growth factor counteracts the glycogenic effect of insulin in parenchymal hepatocyte cultures. Biochem J 247:307–314

    PubMed  CAS  Google Scholar 

  • Ciaraldi TP, Gilmore A, Olefsky JM, Goldberg M, Heidenreich KA (1990) In vitro studies on the action of CS-045, a new antidiabetic agent. Metabolism 39:1056–1062

    PubMed  CAS  Google Scholar 

  • Czok R, Lamprecht W (1974) Pyruvate, phosphoenol-pyruvate and D-glycerate-2-phosphate. In: Bergmeyer HJ (ed) Methods of Enzymatic Analysis, Vol 3, Verlag Chemie Weinheim, Academic Press New York, London. pp 1446–1451

    Google Scholar 

  • Forsayeth JR, Maddux BA, Goldfine IA (1986) Biosynthesis and processing of the human insulin receptor. Diabetes 35: 837–846

    Google Scholar 

  • Forsayeth JR, Montemurro A, Maddux BA, DePirro R, Gold-fine ID (1988) Effect of monoclonal antibodies on human insulin receptor autophosphorylation, negative cooperativity, and down-regulation. J Biol Chem 262:4134–4140

    Google Scholar 

  • Fukuda H, Katsurada A, Iritani N (1992) Nutritional and hormonal regulation of mRNA levels of lipogenic enzymes in primary cultures of rat hepatocytes. J Biochem 111:25–30

    PubMed  CAS  Google Scholar 

  • Gliemann J (1965) Insulin-like activity of dilute human serum assayed by an isolated adipose cell method. Diabetes 14: 643–649

    PubMed  CAS  Google Scholar 

  • Gutmann I, Wahlefeld AM (1974) L-(+)-lactate determination with lactate dehydrogenase and NAD. In: Bergmeyer HJ (ed) Methods of Enzymatic Analysis, Vol 3, Verlag Chemie Weinheim, Academic Press New York, London. pp 1464–1468

    Google Scholar 

  • Kobayashi M, Hotta N, Komori T, Haga T, Koh N, Sakakibara F, Sakamoto N (1991) Antigluconeo-genetic effect of a new potent sulfonylurea drug, Hoe 490, in isolated hepatocytes from normal, fasted rats. J Japan Diab Soc 34: 767–774

    Google Scholar 

  • Mellanby J, Williamson DH (1974) Acetoactetate. In: Bergmeyer HJ (ed) Methods of Enzymatic Analysis, Vol 4, Verlag Chemie Weinheim, Academic Press New York, London. pp 1840–1843

    Google Scholar 

  • Podskalny JM, Takeda S, Silverman RE, Tran D, Carpentier JL, Orci L, Gorden P (1985) Insulin receptors and bioresponses in a human liver cell line (Hep G-2). Eur J Biochem 150:401–407

    Google Scholar 

  • Seglen PO (1976) Preparation of isolated rat liver cells. In: Prescott DM (ed) Methods in Cell Biology, Vol XIII, Academic Press, New York, pp 29–83

    Google Scholar 

  • Verspohl EJ, Maddux BA, Goldfine IA (1988) Insulin and insulin-like growth factor regulate the same biological functions in Hep G2 cells via their own specific receptors. J Clin Endocrin Metab 67:169–174

    CAS  Google Scholar 

  • Wade DP, Knight BL, Soutar AK (1988) Hormonal regulation of low-density lipoprotein (LDL) receptor activity in human hepatoma Hep G2 cells. Insulin increases LDL receptor activity and diminishes its suppression by exogenous LDL. Eur J Biochem 174:213–218

    PubMed  CAS  Google Scholar 

  • Williamson DH, Mellanby J (1974) D-(-)-3-hydroxybutyrate. In: Bergmeyer HJ (ed) Methods of Enzymatic Analysis, Vol 4, Verlag Chemie Weinheim, Academic Press New York, London. pp 1836–1839

    Google Scholar 

  • Aoki M, Kaku K, Inoue H, Matsutani A, Kaneko T (1992) Tolbutamide inhibits cAMP-dependent phosphorylation of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Diabetes 41:334–338

    Google Scholar 

  • Furuya E, Uyeda K (1980) An activation factor of liver phos- phofructokinase. Proc Natl Acad Sci USA 77:5861–5864

    PubMed  CAS  Google Scholar 

  • Gabbay RA, Lardy HA (1987) Insulin inhibition of hepatic cAMP-dependent protein kinase: Decreased affinity of protein kinase for cAMP and possible differential regulation of interchain sites 1 and 2. Proc Nat] Acad Sci USA 84:2218–2222

    CAS  Google Scholar 

  • Hatao K, Kaku K, Matsuda M, Tsuchiya M, Kaneko T (1985) Sulfonylurea stimulates liver fructose-2,6-bisphosphate formation in proportion to its hypoglycemic action. Diab Res Clin Pract 1:49–53

    CAS  Google Scholar 

  • Kaku K, Matsuda M, Matsutani A, Kaneko T (1986) Effect of tolbutamide on fructose-6-phosphate-2-kinase and fructose2,6-bisphosphatase in rat liver. Biochem Biophys Res Commun 139:687–692

    PubMed  CAS  Google Scholar 

  • Mori K, Kaku K, Inoue H, Aoki M, Marsutani A, Kaneko T (1992) Effects of tolbutamide on fructose-2,6-bisphosphate formation and ketogenesis in hepatocytes from diabetic rats. Metabolism 41:706–710

    PubMed  CAS  Google Scholar 

  • Murano K, Inoue Y, Emoto M, Kaku K, Kaneko T (1994) CS-045, a new oral antidiabetic agent, stimulates fructose-2,6bisphosphate production in rat hepatocytes. Eur J Pharmacol 254:257–262

    PubMed  CAS  Google Scholar 

  • Pilkis SJ, El-Maghrabi MR (1988) Hormonal regulation of hepatic gluconeogenesis and glycolysis. Ann Rev Biochem 57:755–783

    PubMed  CAS  Google Scholar 

  • Richards CS, Uyeda K (1982) The effect of insulin and glucose on fructose-2,6-P2 in hepatocytes. Biochem Biophys Res Commun 109:394–401

    PubMed  CAS  Google Scholar 

  • Van Schaftingen E (1993) Glycolysis revisited. Diabetologia 36:581–588

    PubMed  Google Scholar 

  • Vaulont S, Kahn A (1994) Transcriptional control of metabolic regulation genes by carbohydrates. FASEB J 8:28–35

    Google Scholar 

  • Daniels EL, Lewis SB (1982) Acute tolbutamide administration alone and combined with insulin enhances glucose uptake in the perfused rat hindlimb. Endocrinology 110:1840–1842

    PubMed  CAS  Google Scholar 

  • Geisen K (1988) Special pharmacology of the new sulfonylurea glimepiride. Arzneim Forsch/Drug Res 38:1120–1130

    CAS  Google Scholar 

  • Ruderman NB, Houghton CRS, Hems R (1971) Evaluation of the isolated perfused rat hindquarter for the study of muscle metabolism. Biochem J 124:639–651

    PubMed  CAS  Google Scholar 

  • Bahr M, von Holtey M, Müller G, Eckel J (1995) Direct stimulation of myocardial glucose transport and glucose transporter-1 (GLUT1) and GLUT4 protein expression by the sulfonylurea glimepiride. Endocrinology 136:2547–2553

    PubMed  CAS  Google Scholar 

  • Calderhead DM, Kitagawa K, Lienhard GE, Gould GW (1990) Translocation of the brain-type glucose transporter largely accounts for insulin stimulation of glucose transport in BC3H-1 myocytes. Biochem J 269:597–601

    PubMed  CAS  Google Scholar 

  • Cooper DR, Vila MC, Watson JE, Nair G, Pollet RJ, Standaert M, Farese RV (1990) Sulfonylurea-stimulated glucose transport association with diacylglycerol-like activation of protein kinase C in BC3H1 myocytes. Diabetes 39:1399–1407

    PubMed  CAS  Google Scholar 

  • Davidson MB, Molnar IG, Furman A, Yamaguchi D (1991) Glyburide-stimulated glucose transport in cultured muscle cells via protein kinase C-mediated pathway requiring new protein synthesis Diabetes 40:1531–1538

    CAS  Google Scholar 

  • Eckel J, Asskamp B, Reinauer H (1991) Induction of insulin resistance in primary cultured adult cardiac myocytes. Endocrinology 129:345–352

    PubMed  CAS  Google Scholar 

  • Eckel J, Pandalis G, Reinauer H (1983) Insulin action on the glucose transport system in isolated cardiocytes from adult rat. Biochem J 212:385–392

    PubMed  CAS  Google Scholar 

  • Kayalar C, Wong WT, Hendrickson L (1990) Differentiation of BC3H1 and primary skeletal muscle cells and the activity of their endogenous insulin-degrading enzyme are inhibited by the same metalloendoprotease inhibitors. J Cell Biochem 44:137–151

    PubMed  CAS  Google Scholar 

  • Klip A, Marette A (1992) Acute and chronic signals controlling glucose transport in skeletal muscle. J Cell Biochem 48:51–60

    PubMed  CAS  Google Scholar 

  • Klip A, Ramlal RJ (1987) T, Douen AG, Burdett E, Young D, Cartee GD, Holloszy JO (1988) Insulin-induced decrease in 5’-nucleotidase activity in skeletal muscle membranes. FEBS Lett 238:419–423

    Google Scholar 

  • McCusker RH, Clemmons DR (1994) Effects of cytokines on insulin-like growth factor-binding protein secretion by muscle cells in vitro. Endocrinology 134:2095–2102

    PubMed  CAS  Google Scholar 

  • McMahon DK, Anderson PAW, Nassar R, Bunting JB, Saba Z, Oakeley AE, Malouf NN (1994) C2C12cells: biophysical, biochemical, and immunocytochemical properties. Am J Physiol Cell Physiol 266:C1795–C1802

    CAS  Google Scholar 

  • Mitsumoto Y, Burdett E, Grant A, Klip A (1991) Differential expression of the GLUT1 and GLUT4 glucose transporters during differentiation of L6 muscle cells. Biochem Biophys Res Commun 175:652–659

    PubMed  CAS  Google Scholar 

  • Munson R, Calswell KL, Glaser L (1982) Multiple control for the synthesis of muscle-specific proteins in BC3H1 cells. J Cell Biol 92:350–356

    PubMed  CAS  Google Scholar 

  • Pardrige WM, Davidson MB, Casanello-Ertl D (1978) Glucose and amino acid metabolism in an established cell line of skeletal muscle cells. J Cell Physiol 96:309–317

    Google Scholar 

  • Rogers BJ, Standaert ML, Pollet (1987) Direct effects of sulfonylurea agents on glucose transport in the BC3H1 myocyte. Diabetes 39:1292–1296

    Google Scholar 

  • Rosen KM, Wentworth BM, Rosenthal N, Villa-Komaroff L (1993) Specific, temporally regulated expression of the insulin-like growth factor II gene during muscle cell differentiation. Endocrinology 133:474–481

    PubMed  CAS  Google Scholar 

  • Saltiel AR, Fox JA, Sherline P, Cuatrecasas P (1986) Insulin-stimulated hydrolysis of a novel glycolipid generates modulators of cAMP phosphodiesterase. Science 233:967–972

    PubMed  CAS  Google Scholar 

  • Sarabia V, Lam L, Burdett E, Leiter LA, Klip A (1992) Glucose transport in human skeletal muscle cells in culture. Stimulation by insulin and metformin. J Clin Invest 90: 1386–1395

    PubMed  CAS  Google Scholar 

  • Schubert D, Harris AJ, Devine CE, Heinemann S (1974) Characterization of a unique muscle cell line. J Cell Biol 61: 398–413

    PubMed  CAS  Google Scholar 

  • Standaert ML, Shimmel SD, Pollet RJ (1984) The development of insulin receptors and responses in the differentiating nonfusing muscle cell line BC3H1. J Biol Chem 259: 2337–2345

    PubMed  CAS  Google Scholar 

  • Wang PH, Beguinot F, Smith RJ (1987) Augmentation of the effects of insulin and insulin-like growth factors I and II on glucose uptake in cultured rat skeletal muscle cells by sulfonylureas. Diabetologia 30:797–803

    PubMed  CAS  Google Scholar 

  • Wang PH, Moller D, Flier JS, Nayak RC, Smith RJ (1989) Coordinate regulation of glucose transporter function, number, and gene expression by insulin and sulfonylureas in L6 skeletal muscle cells. J Clin Invest 84:62–67

    PubMed  CAS  Google Scholar 

  • Yaffe D (1986) Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc Natl Acad Sci USA 61:477–483

    Google Scholar 

  • Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature, Lond. 270:725–727

    CAS  Google Scholar 

  • Bischoff H (1991) Wirkung von Acarbose auf diabetische Spätkomplikationen und Risikofaktoren — Neue tierexperimentelle Ergebnisse. Akt Endokrin Stoffw 12:25–32

    Google Scholar 

  • Bischoff H (1994) Pharmacology of a-glucosidase inhibition Eur J Clin Invest 24, Suppl 3:3–10

    Google Scholar 

  • Bischoff H, Puls W, Krause HP, Schutt H, Thomas G (1985) Pharmacological properties of the novel glucosidase inhibitors BAY M1099 (Miglitol) and BAY 0 1248. Diab Res Clin Pract Suppl 1:S53

    Google Scholar 

  • Lembcke B, Lamberts R, Creutzfeldt W (1991) Lysosomal storage of glycogen as a sequel of a-glucosidase inhibition by the absorbed deoxynojirimycin derivative emiglitate (BAYo1248). A drug-induced pattern of hepatic glycogen storage mimicking Pompe’s disease (glycogenosis type II). Res Exp Med 191:389–404

    CAS  Google Scholar 

  • Shainkin R, Birk Y (1970) a-Amylase inhibitors from wheat. Isolation and characterization. Biochim Biophys Acta 221:502–513

    Google Scholar 

  • Rick W, Stegbauer HP (1970) cc-Amylase. Messung der reduzierenden Gruppen. In: Bergmeyer H (ed) Methoden der enzymatischen Analyse, Vol II, 2nd ed., pp 848–853

    Google Scholar 

  • Dahlqvist A (1964) Method for assay of intestinal disaccharidases. Anal Biochem 7:18–25

    PubMed  CAS  Google Scholar 

  • Matsuo T, Odaka H, Ikeda H (1992) Effect of an intestinal disaccharidase inhibitor (AO-128) on obesity and diabetes. Am J Clin Nutr 55, Suppl 1:3145–317S

    Google Scholar 

  • Madar Z (1983) Demonstration of amino acid and glucose transport in chicken small intestine everted sac as a student laboratory exercise. Biochem Educ 1 L:9–1 1

    Google Scholar 

  • Madar Z, Omusky Z (1991) Inhibition of intestinal etglucosidase activity and postprandial hyperglycemia by etglucosidase inhibitors in fa/fa rats. Nutr Res 11:1035–1046

    CAS  Google Scholar 

  • Lembcke B, Fölsch UR, Creutzfeldt W (1985) Effect of 1desoxynojirimycin derivatives on small intestinal disaccharidase activities and on active transport in vitro. Digestion 31:120–127

    PubMed  CAS  Google Scholar 

  • Glick Z, Bray GA (1983) Effects of acarbose on food intake, body weight and fat depots in lean and obese rats. Pharmacol Biochem Behav 19:71–78

    PubMed  CAS  Google Scholar 

  • Ho RS, Aranda CG (1979) The influence of 2,2-dimethyl-l-(4methylphenyl)-1-propanone (SaH 50–283) on food efficiency in rats. Arch Int Pharmacodyn 237:98–109

    PubMed  CAS  Google Scholar 

  • Ikeda H, Odaka H, Matsuo T (1991) Effect of a disaccharidase inhibitor, AO-128, on a high sucrose-diet-induced hyperglycemia in female Wistar fatty rats. Jpn Pharmacol Ther 19:155–150

    Google Scholar 

  • Le Marchand-Brustel Y, Rochet N, Grémeaux T, Marot I, Van Obberghen E (1990) Effect of an a-glycosidase inhibitor on experimentally induced obesity in mice. Diabetologia 33: 24–30

    PubMed  Google Scholar 

  • Madar Z, Omusky Z (1991) Inhibition of intestinal aglucosidase activity and postprandial hyperglycemia by aglucosidase inhibitors in fa/fa rats. Nutr Res 11:1035–1046

    CAS  Google Scholar 

  • Matsuo T, Odaka H, Ikeda H (1992) Effect of an intestinal disaccharidase inhibitor (AO-128) on obesity and diabetes. Am J Clin Nutr 55, Suppl 1:314S–317S

    Google Scholar 

  • Okada H, Shino A, Ikeda H, Matsuo T (1992) Anti-obesity and antidiabetic actions of a new potent disaccharidase inhibitor in genetically obese-diabetic mice, KKAr. J Nut Sci Vitaminol 38:27–37

    Google Scholar 

  • Puls W, Keup U (1973) Influence of an a-amylase inhibitor (BAY d 7791) on blood glucose, serum insulin and NEFA in starch loading tests in rats, dogs and man. Diabetologia 9:97–101

    PubMed  CAS  Google Scholar 

  • Puls W, Keup U, Krause HP, Thomas G, Hoffmeister F (1977) Glucosidase inhibition. A new approach to the treatment of diabetes, obesity, and hyperlipoproteinaemia. Naturwiss 64:536–537

    PubMed  CAS  Google Scholar 

  • Takami K, Okada H, Tsukuda R, Matsuo T (1991) Antidiabetic actions of a disaccharidase inhibitor, AO-128, in spontaneously diabetic (GK) rats. Jpn J Pharmacol Ther 19: 161–171

    Google Scholar 

  • Cameron NE, Cotter MA, Robertson S (1989) Contractile properties of cardiac papillary muscle in streptozotocindiabetic rats and the effects of aldose reductase inhibition. Diabetologia 32:365–370

    PubMed  CAS  Google Scholar 

  • Clements RS (1979) Diabetic neuropathy — new concepts in its etiology. Diabetes 28:604–611

    PubMed  CAS  Google Scholar 

  • Geisen K, Utz R, Grötsch H, Lang HJ, Nimmesgern H (1994) Sorbitol-accumulating pyrimidine derivatives. Arzneim Forsch/Drug Res 44:1032–1043

    CAS  Google Scholar 

  • Kador PF, Robison WG, Kinoshita JH (1985) The pharmacology of aldose reductase inhibitors. Ann Rev Pharmacol Toxicol 25:691–714

    CAS  Google Scholar 

  • Pugliese G, Tilton RG, Speedy A, Chang K, Province MA, Kilo C, Williamson JR (1990) Vascular filtration function in galactose-fed versus diabetic rats: the role of polyol pathway activity. Metabolism 39:690–697

    PubMed  CAS  Google Scholar 

  • Rathbun WB (1980) Biochemistry of the lens and cataractogenesis: Current concepts. Symposium on Ophthalmology. Veterinary Clinics of North America: Small Animal Practice 10:377–398

    PubMed  CAS  Google Scholar 

  • Sarges R, Oates PJ (1993) Aldose reductase inhibitors: Recent developments. Progr Drug Res 40:99–161

    CAS  Google Scholar 

  • Tilton RG, Chang K, Pugliese G, Eades DM, Province MA, Sherman WR, Kilo C, Williamson JR (1989) Prevention of hemodynamic and vascular filtration changes in diabetic rats by aldose reductase inhibitors. Diabetes 38:1258–1270

    PubMed  CAS  Google Scholar 

  • Tilton RG, Chang K, Weigel C, Eades D, Sherman WR, Kilo C, Williamson JR (1988) Increased ocular blood flow and ‘25I-albumin permeation in galactose-fed rats: Inhibition by sorbinil. Invest Ophthalm Vis Sci 29:861–868

    CAS  Google Scholar 

  • van Heyningen R (1959) Formation of polyols by the lens of the rat with “sugar” cataract. Nature 184:194–195

    Google Scholar 

  • Williamson JR, Chang K, Tilton RG, Prater C, Jeffrey JR, Weigel C, Sherman WR, Eades DM, Kilo C (1987) Increased vascular permeability in spontaneously diabetic BB/W rats and rats with mild versus severe streptozotocininduced diabetes. Diabetes 36:813–821

    PubMed  CAS  Google Scholar 

  • Yue DK, Hanwell MA, Satchell PM, Tuftle JR (1982) The effect of aldose reductase inhibition on motor nerve conduction velocity in diabetic rats. Diabetes 31:789–794

    PubMed  CAS  Google Scholar 

  • Billon F, Delchambre Ch, Cloarec A, Sartori E, Teulon JM (1990) Aldose reductase inhibition by 2,4-oxo and thioxo derivates of 1,2,3,4-tetrahydroquinazoline. Eur J Med Chem 25:121–126

    CAS  Google Scholar 

  • Hayman S, Kinoshita JH (1965) Isolation and properties of lens aldose reductase. J Biol Chem 240:877–882

    PubMed  CAS  Google Scholar 

  • Jacobson M, Sharma YR, Cotlier E, Hollander JD (1983) Diabetic complications in lens and nerve and their prevention by Sulindac or Sorbinil: Two novel aldose reductase inhibitors. Invest Ophthalmol Vis Sci 24:1426–1429

    PubMed  CAS  Google Scholar 

  • Peterson MJ, Sarges R, Aldinger CE, MacDonald DP (1979) CP 45,634: A novel aldose reductase inhibitor that inhibits polyol pathway activity in diabetic and galactosemic rats. Metabolism 28:456–461

    PubMed  CAS  Google Scholar 

  • Terashima H, Hama K, Yamamoto R, Tsuboshima M, Kikkawa R, Hatanaka I, Shigeta Y (1984) Effects of a new aldose reductase inhibitor on various tissues in vitro. J Pharmacol Exp Ther 229:226–230

    PubMed  CAS  Google Scholar 

  • Terashima H, Tanaka M, Motoishi M, Yamamoto R, Hama K, Okegawa T, Kawasaki A (1988) Biochemical studies of a new aldose reductase inhibitor, ONO-2235. In: Sakamoto N, Kinoshita JH, Kador PF, Hotta N (eds) Polyol pathway and its role in diabetic complications. Excerpta Medica, Amsterdam, pp 82–87

    Google Scholar 

  • Varma S, Kinoshita JH (1976) Inhibition of lens aldose reductase by flavonoids — their possible role in the prevention of diabetic cataracts. Biochem Pharmacol 25:2505–2513

    PubMed  CAS  Google Scholar 

  • Calcutt NA, Mizisin AP, Kalichman MW (1994) Aldose reductase inhibition, Doppler flux and conduction in diabetic rat nerve. Eur J Pharmacol 251:27–33

    PubMed  CAS  Google Scholar 

  • Cameron NE, Cotter MA, Low AP (1991) Nerve blood flow in early experimental diabetes in rats: relation to conduction deficits. Am J Physiol 261 EI-E8

    Google Scholar 

  • Cameron NE, Cotter MA, Robertson S (1989) The effect of aldose reductase inhibition on the pattern of nerve conduction deficits in diabetic rats. Quart J Exp Physiol 74:917–926

    CAS  Google Scholar 

  • Cameron NE, Leonard MB, Ross IS, Withing PH (1986) The effects of Sorbinil on peripheral nerve conduction velocity, polyol concentrations and morphology in the streptozotocin-diabetic rat. Diabetologia 29:168–174

    PubMed  CAS  Google Scholar 

  • Carrington AL, Ettlinger CB, Calcutt NA, Tomlinson DR (1991) Aldose reductase inhibition with imirestat—effects on impulse conduction and insulin-stimulation of Na’/K’adenosine triphosphatase activity in sciatic nerves of streptozotocin-diabetic rats. Diabetologia 34:397–401

    PubMed  CAS  Google Scholar 

  • Gillon KRW, Hawthorne JN, Tomlinson DR (1983) Myoinositol and sorbitol metabolism in relation to peripheral nerve function in experimental diabetes in the rat: The effect of aldose reductase inhibition. Diabetologia 25:365–371

    PubMed  CAS  Google Scholar 

  • Greene DA, Chakrabarti S, Lattimer SA, Sima AAF (1987) Role of sorbitol accumulation and myo-inositol depletion in paranodal swelling of large myelinated nerve fibres in the insulin-deficient spontaneously diabetic Bio-breeding rat. J Clin Invest 79:1479–1485

    PubMed  CAS  Google Scholar 

  • Greene DA, DeJesus PV, Winegrad AI (1975) Effects of insulin and dietary myoinositol on impaired peripheral motor nerve conduction velocity in acute streptozotocin diabetes. J Clin Invest 55:1326–1336

    PubMed  CAS  Google Scholar 

  • Hirata Y, Fujimori S, Okada K (1988) Effect of a new aldose reductase inhibitor, 8’-chloro-2’,3’-dihydrospiro[pyrrolidine-3,6’(5 ‘H)-pyrrolo[1,2,3-de] [1,4]benzoxazine]-2,5,5’trione (ADN-138), on delayed motor conduction velocity in streptozotocin-diabetic rats. Metabolism 37:159–163

    PubMed  CAS  Google Scholar 

  • Hotta N, Sigimura K, Kakuta H, Fukasawa H, Kimura M, Koh N, Matsumae H, Kitoh R, Sakamoto N (1988) Effects of a fructose-rich diet and an aldose reductase inhibitor on the development of diabetic neuropathy in streptozotocintreated rats. In: Sakamoto N, Kinoshita JH, Kador PF, Hotta N (eds) Polyol pathway and its role in diabetic complications. Excerpta Medica, Amsterdam, pp 505–511

    Google Scholar 

  • Kikkawa R, Hatanaka I, Yasuda H, Kobayashi N, Shigeta Y, Terashima H, Morimura T, Tsuboshima M (1983) Effect of a new aldose reductase inhibitor, (E)-3-Carboxymethyl-5[(2E)-methyl-3-phenylpropylidene]rhodanine (ONO-2235) on peripheral nerve disorders in streptozotocin-diabetic rats. Diabetologia 24:290–292

    PubMed  CAS  Google Scholar 

  • Miyoshi T, Goto I (1973) Serial in vivo determinations of nerve conduction velocity in rat tails. Physiological and pathological changes. Electroencephalogr Clin Neurophysiol 35:125–131

    PubMed  CAS  Google Scholar 

  • Price DE, Airey CM, Alani SM, Wales JK (1988) Effect of aldose reductase inhibition on nerve conduction velocity and resistance to ischemic conduction block in experimental diabetes. Diabetes 37:969–973

    PubMed  CAS  Google Scholar 

  • Schmidt RE, Plurad SB, Coleman BD, Williamson JR, Tilton RG (1991) Effects of sorbinil, dietary myo-inositol supplementation, and insulin on resolution of neuroaxonal dystrophy in mesenteric nerves of streptozotocin-induced diabetic rats. Diabetes 40:573–582

    Google Scholar 

  • Sharma AK, Thomas PK (1974) Peripheral nerve structure and function in experimental diabetes. J Neurol Sci 23:1–15

    PubMed  CAS  Google Scholar 

  • Sima AAF, Prashar A, Zhang WX, Chakrabarti S, Greene DA (1990) Preventive effect of long-term aldose reductase inhibition (Ponalrestat) on nerve conduction and sural nerve structure in the spontaneously diabetic Bio-Breeding rat. J Clin Invest. 85:1410–1420

    PubMed  CAS  Google Scholar 

  • Stribling D, Mirrlees DJ, Harrison HE, Earl DCN, (1985) Properties of ICI 128,436, a novel aldose reductase inhibitor and its effects on diabetic complications in the rat. Metabolism 34:336–344

    PubMed  CAS  Google Scholar 

  • Calcutt NA, Mizisin AP, Kalichman MW (1994) Aldose reductase inhibition, Doppler flux and conduction in diabetic rat nerve. Eur J Pharmacol 251:27–33

    PubMed  CAS  Google Scholar 

  • Engerman RL (1989) Pathogenesis of diabetic retinopathy. Diabetes 38:1203–1206

    PubMed  CAS  Google Scholar 

  • Funada M, Okamoto I, Fujinaga Y, Yamana T (1987) Effects of aldose reductase inhibitor (M79175) on ERG oscillatory potential abnormalities in streptozotocin fructose-induced diabetes in rats. Jpn J Ophthalm 31:305–314

    CAS  Google Scholar 

  • Hotta N, Kakuta H, Fukasawa H, Koh N, Matsumae H, Kimura M, Sakamoto N (1988) Prevention of diabetic neuropathy by an aldose reductase inhibitor in fructose-fed streptomycin-diabetic rats. In: Sakamoto N, Kinoshita JH, Kador PF, Hotta N (eds) Polyol pathway and its role in diabetic complications. Excerpta Medica, Amsterdam, pp 311–318

    Google Scholar 

  • Kozak WM, Marker NA, Elmer KK (1986) Effects of aldose reductase inhibition on the retina and health indices of streptozotocin-diabetic rats. Docum Ophthalm 64:355–377

    CAS  Google Scholar 

  • Kuwabara T, Cogan DG (1960) Studies on retinal vascular patterns. Arch Ophthalm 64:904–911

    CAS  Google Scholar 

  • Lightman S, Rechthand E, Terubayashi H, Palestine A, Rapoport A, Kador P (1987) Permeability changes in blood-retinal barrier of galactosemic rats are prevented by aldose reductase inhibitors. Diabetes 36:1271–1275

    PubMed  CAS  Google Scholar 

  • Nagata M, Robison WG (1988) Basement membrane thickening in retina and muscle of animal models of diabetes. In: Sakamoto N, Kinoshita JH, Kador PF, Hotta N (eds) Polyol pathway and its role in diabetic complications. Excerpta Medica. Amsterdam, pp 276–285.

    Google Scholar 

  • Segawa M, Hirata Y, Fujimori S, Okada K (1988) The development of electroretinogram abnormalities and the possible role of polyol pathway activity in diabetic hyperglycemia and galactosemia. Metabolism 37:454–460

    PubMed  CAS  Google Scholar 

  • Segawa M, Takahashi N, Namiki H, Masuzawa K (1988) Electrophysiological abnormalities and polyol accumulation in retinas of diabetic and galactosemic rats. In: Sakamoto N, Kinoshita JH, Kador PF, Hotta N (eds) Polyol pathway and its role in diabetic complications. Excerpta Medica, Amsterdam, pp 306–310

    Google Scholar 

  • Akagi Y, Tasaka H, Terubayashi H, Kador PF, Kinoshita JH (1988) Aldose reductase localization in rat sugar cataract. In: Sakamoto N, Kinoshita JH, Kador PF, Hotta N (eds) Polyol pathway and its role in diabetic complications. Excerpta Medica, Amsterdam, pp 170–181

    Google Scholar 

  • Ao S, Shingu Y, Kikuchi C, Takano Y, Nomura K, Fujiwara T, Ohkubo Y, Notsu Y, Yamaguchi I (1991) Characterization of a novel aldose reductase inhibitor, FR74366, and its effects on diabetic cataract and neuropathy in the rat. Metabolism 40:77–87

    PubMed  CAS  Google Scholar 

  • Dvornik D, Simard-Duquesne, Krami M, Sestanj K, Gabbay KH, Kinoshita JH, Varma SD, Merola LO (1973) Polyol accumulation in galactosemic and diabetic rats: Control by an aldose reductase inhibitor. Science 182:1146–1148

    PubMed  CAS  Google Scholar 

  • Griffin BW, Chandler ML, DeSantis L (1984) Prevention of diabetic cataract and neuropathy in rats by two new aldose reductase inhibitors. Invest Ophthal Vis Sci 25:136

    Google Scholar 

  • Hockwin O, Wegener A, Sisk DR, Dohrmann B, Kruse M (1985) Efficacy of AL-1576 in preventing naphthalene cataract in three rat strains. Slit lamp and Scheimpflug photographic study. Lens Res 2:321–335

    Google Scholar 

  • Kinoshita JH (1965) Cataracts in galactosemia. Invest Ophthal 4:786–799

    PubMed  CAS  Google Scholar 

  • Kinoshita JH (1974) Mechanisms initiating cataract formation. Invest Ophthal 13:713–724

    PubMed  CAS  Google Scholar 

  • Kinoshita JH, Fukushi S, Kador P, Merola LO (1979) Aldose reductase in diabetic complications of the eye. Metabolism 28 (Suppl 1):462–469

    PubMed  CAS  Google Scholar 

  • Müller P, Hockwin O, Ohrloff C (1985) Comparison of aldose reductase inhibitors by determination of IC50 with bovine and rat lens extracts. Ophthal Res 17:115–119

    Google Scholar 

  • Nishimura C, Akagi Y, Robison WG, Kador PF, Kinoshita JH (1988) Increased aldose reductase in galactosemic lens. In: Sakamoto N, Kinoshita JH, Kador PF, Hotta N (eds) Polyol pathway and its role in diabetic complications. Excerpta Medica, Amsterdam, pp 182–188

    Google Scholar 

  • Pirie A, van Heyningen R (1964) Effect of diabetes on the content of sorbitol, glucose, fructose and inositol in the human lens. Exp Eye Res 3:124–131

    PubMed  CAS  Google Scholar 

  • van Heyningen R (1959) Formation of polyols by the lens of the rat with “sugar” cataract. Nature 184:194–195

    Google Scholar 

  • Varma SD. Kinoshita JH (1976) Inhibition of lens aldose reductase by flavonoids - their possible role in the prevention of diabetic cataracts. Biochem Pharmacol 25:2505–2513

    PubMed  Google Scholar 

  • Wegener A, Hockwin 0 (1991) Benefit/risk assessment of ophthalmic anti-infectives. Chibret Intern J Ophthalmol 8: 43–45

    Google Scholar 

  • Billon F, Delchambre Ch, Cloarec A, Sartori E, Teulon JM (1990) Aldose reductase inhibition by 2,4-oxo and thioxo derivates of 1,2,3,4-tetrahydroquinazoline. Eur J Med Chem 25:121–126

    CAS  Google Scholar 

  • Gonzales AM, Sochor M, Hothersall JS, McLean P (1986) Effect of aldose reductase inhibitor (sorbinil) on integration of polyol pathway, pentose phosphate pathway and glycolytic route in diabetic rat lens. Diabetes 35:1200–1205

    Google Scholar 

  • Griffin BW, McNatt LG, Chandler ML, York BM (1987) Effects of two new aldose reductase inhibitors, AL-1567 and AL-1576, in diabetic rats. Metabolism 36:486–490

    PubMed  CAS  Google Scholar 

  • Hockwin 0 (1989) Die Scheimpflug-Photographie der Linse. Fortschr Ophthalmol 86:304–311

    Google Scholar 

  • Hu TS, Datiles M, Kinoshita JH (1983) Reversal of galactose cataract with sorbinil in rats. Invest Ophthalmol Vis Sci 24:640–644

    PubMed  CAS  Google Scholar 

  • Keller HW, Koch HR (1978) Experimental arabinose cataracts. Interdiscipl Topics Gerontol 12:141–146

    CAS  Google Scholar 

  • Lee SM; Schade SZ, Doughty CC (1985) Aldose reductase, NADPH, and NADP+ in normal, galactose-fed and diabetic rat lens. Biochem Biophys Acta 841:247–253

    PubMed  CAS  Google Scholar 

  • Müller P, Hockwin 0, Ohrloff C (1985) Comparison of aldose reductase inhibitors by determination of IC50 with bovine and rat lens extracts. Ophthal Res 17:115–119

    Google Scholar 

  • Naeser et al (1988) Sorbitol metabolism in the retina, optic nerve, and sural nerve of diabetic rats treated with an aldose reductase inhibitor

    Google Scholar 

  • Sekiguchi M, Watanabe K, Eto M, Iwashima Y, Morikawa A, Oshima E, Chonan N, Takebe R, Ishii K (1988) The effect of the aldose reductase inhibitor ON0–2235 on the polyol pathway in diabetic Chinese hamsters. In: Sakamoto N, Kinoshita JH, Kador PF, Hotta N (eds) Polyol pathway and its role in diabetic complications. Excerpta Medica, Amsterdam, pp 88–92

    Google Scholar 

  • Varma S, Kinoshita JH (1976) Inhibition of lens aldose reductase by flavonoids — their possible role in the prevention of diabetic cataracts. Biochem Pharmacol 25:2505–2513

    PubMed  CAS  Google Scholar 

  • Hockwin O, Wegener A, Sisk DR, Dohrmann B, Kruse M (1985) Efficacy of AL-1576 in preventing naphthalene cataract in three rat strains. Slit lamp an Scheimpflug photographic study. Lens Res 2:321–335

    Google Scholar 

  • Hockwin O (1989) Die Scheimpflug-Photographie der Linse. Fortschr Ophthalmol 86:304–311

    PubMed  CAS  Google Scholar 

  • Wegener A, Hockwin O (1991) Benefit/risk assessment of ophthalmic anti-infectives. Chibret Intern J Ophthalmol 8: 43–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vogel, H.G., Vogel, W.H. (1997). Antidiabetic activity. In: Vogel, H.G., Vogel, W.H. (eds) Drug Discovery and Evaluation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03333-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03333-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03335-7

  • Online ISBN: 978-3-662-03333-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics