Skip to main content

Activity on the gastrointestinal tract

  • Chapter
Drug Discovery and Evaluation

Abstract

Symptoms of several human diseases are manifested as increased salivation (e.g., Parkinson’s disease) or decreased salivation (e.g., xerosis). Studies to find and to evaluate sialagogues, such as substance P and its synthetic derivatives, as well as to search for salivation inhibitors are necessary. Saliva excretion is greatly influenced by anesthetics. Wagner et al (1991) proposed a simple method to study saliva secretion in conscious rats and to evaluate sialagogues and sialagogue antagonists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bodner L, Qwarnstrom, Omnell KA, Hand AR, Baum BJ (1983) Rat submandibular gland secretion: a bilateral and longitudinal comparative study. Comp Biochem Physiol 74A: 829–831

    CAS  Google Scholar 

  • Bülbring E, Dawes GS (1945) A method for the assay of atropine substitutes on the salivary secretion. J Pharmacol Exp Ther 84: 177–183

    Google Scholar 

  • Guiliani S, Maggi CA, Regoli D, Drapeau G, Rovero P, Meli A (1988) NK-1 receptors mediate the tachykinin stimulation of salivary secretion: selective agonists provide further evidence. Eur J Pharmacol 150: 377–379

    Google Scholar 

  • Johansson I, Linder J, Bratt P (1989) Comparison of saliva secretion rate and composition in the rat using a pentobarbital or a neuroleptanalgesic type of anesthesia. Caries Res 23: 75–77

    PubMed  CAS  Google Scholar 

  • Kohn WG, Grossman E, Fox PC, Armando I, Goldstein DS, Baum BJ (1992) Effect of ionizing radiation on sympathetic nerve function in rat parotid glands. J Oral Pathol Med 21: 134–137

    PubMed  CAS  Google Scholar 

  • Martinez JR, Martinez AM (1981) Stimulatory and inhibitory effects of substance P on rat submandibular secretion. J Dent Res 60: 1031–1038

    PubMed  CAS  Google Scholar 

  • Martinez JR, Quissell DO, Wood DL, Giles M (1978) Secretory response to parasympathomimetic and sympathomimetic stimulation from the submaxillary gland of rats treated with reserpine. J Pharmacol Exper Ther 194: 384–395

    Google Scholar 

  • Murray CW, Cowan A, Wright DL, Vaught JL, Jacoby HI (1987) Neurokinin-induced salivation in the anesthetized rat: A three receptor hypothesis. J Pharmacol Exp Ther 242: 500–506

    Google Scholar 

  • Wagner LE; Tomczuk BE, Yanni JM (1991) Measurement of tachykinin-induced salivation in conscious rats. J Pharmacol Meth 26: 67–72

    CAS  Google Scholar 

  • Barrett AM (1966) Specific stimulation of gastric acid secretion by a pentapeptide derivative of gastrin. J Pharm Pharmac 18: 633–639

    CAS  Google Scholar 

  • Burn JH, Finney DJ, Goodwin LG (eds) (1952) Biological standardization, Chapter XVII, Gastric secretion, Oxford University Press, London, pp 332–334

    Google Scholar 

  • Gallo-Torres HE, Kuhn D, Witt C (1979) A method for the bioassay of antisecretory activity in the conscious rat with acute gastric fistula: Studies with cimetidine, somatostatin, and the prostaglandin E2-analog RO 21–6937. J Pharmacol Meth 2: 339–355

    CAS  Google Scholar 

  • Gosh MN, Schild HO (1958) Continuous recording of acid gastric secretion in the rat. Br J Pharmacol Chemother 13: 54–61

    Google Scholar 

  • Hammer RA, Ochoa A, Fernandez C, Ertan A, Arimura A (1992) Somatostatin as a mediator of the effect of neurotensin on pentagastrin-stimulated acid secretion in rats. Peptides 13: 1175–1179

    PubMed  CAS  Google Scholar 

  • Herling AW, Bickel M (1986) The stimulatory effect of forskolin on gastric acid secretion in rats. Eur J Pharmacol 125: 233–239

    PubMed  CAS  Google Scholar 

  • Herling AW, Bickel M, Lang Hi, Weidmann K, Rösner M, Metzger H, Rippe R, Nimmesgern H; Scheunemann KH (1988) A substituted thienol[3.4-d]imidazole versus substituted benzimidazoles as H’,1(’-ATPase inhibitors. Pharmacology 36: 289–297

    PubMed  CAS  Google Scholar 

  • Larsson H, Carlsson E, Junggren U, Olbe L, Sjöstrand SE, Skänberg I, Sundell G (1983) Inhibition of gastric acid secretion by omeprazole in the dog and rat. Gastroenterology 85: 900–907

    PubMed  CAS  Google Scholar 

  • Lawrence AJ, Smith GM (1974) Measurement of gastric acid secretion by conductivity. Eur J Pharmacol 25: 383–389

    PubMed  CAS  Google Scholar 

  • Smith GM, Lawrence AJ, Colin-Jones DG, Schild HO (1970) The assay of gastrin in the perfused rat stomach. Br J Pharmacol 38: 206–213

    PubMed  CAS  Google Scholar 

  • Wissmann H, Schleyerbach R, Schölkens B, Geiger R (1973) Struktur-Wirkungsbeziehungen beim Gastrin. Der Beitrag von Carboxylgruppen von 9- und 10-Glutaminsäure zur biologischen Aktivität. Hoppe-Seyler’s Z Physiol Chem 354: 1591–1598

    PubMed  CAS  Google Scholar 

  • Bunce KT, Parsons ME (1976) A quantitative study of metiamide, a histamine H2-antagonist on the isolated whole rat stomach J Physiol 258: 453–465

    CAS  Google Scholar 

  • Finney DJ (1964) Statistical Method in Biological Assay. 2nd ed., pp 99–128, Charles Griffin, London

    Google Scholar 

  • Shankley NP, Black JW, Ganellin CR, Mitchell RC (1988) Correlation between log Poem o and pKB estimates for a series of muscarinic and histamine H2-receptor antagonists. Br J Pharmacol 94: 264–274

    PubMed  CAS  Google Scholar 

  • Alphin RS, Lin TM (1959) Preparation of chronic denervated gastric pouches in the rat. Am J Physiol 197: 257–262

    PubMed  CAS  Google Scholar 

  • Komarow SA, Brawlow SP (1960) Studies on basal gastric secretion in chronic fistula rats. Effect of urethane and chlorpromazine. Physiologist 3: 96

    Google Scholar 

  • Komarow SA, Brawlow SP, Boyd E (1963) A permanent gastric fistula. Proc Soc Exp Biol Med. 112: 451–453

    Google Scholar 

  • Lane A, Ivy AC, Ivy EK (1957) Response of the chronic gas- tric fistula rat to histamine. Am J Physiol 190: 221–228

    PubMed  CAS  Google Scholar 

  • Larsson H, Carlsson E, Junggren U, Olbe L, Sjöstrand SE, Skgnberg I, Sundell G (1983) Inhibition of gastric acid secretion by omeprazole in the dog and rat. Gastroenterology 85: 900–907

    PubMed  CAS  Google Scholar 

  • Lin TM, Alphin RS (1958) Cephalic phase of gastric secretion in the rat. Am J Physiol 192: 23–26

    PubMed  CAS  Google Scholar 

  • Brittain Ri’, Daly MI (1981) A review of animal pharmacology of ranitidine — a new, selective histamine Hz antagonist. Scand J Gastroenterol 16, Suppl 69: 1–8

    CAS  Google Scholar 

  • Daly MI, Hartley RW, Stables R (1980) An improved apparatus for intragastric titration in the conscious dog. J Pharmacol Meth 3: 63–69

    CAS  Google Scholar 

  • Emus S (1960) Gastric secretory responses to repeated intravenous infusions of histamine and gastrin in non-anesthetized and anesthetized gastric fistula cats. Gastroenterology 39: 771–782

    Google Scholar 

  • Foschi D, Ferante F, Pagani F, Rovati V (1984) A new technique for preparing continent gastric fistulas in dogs. J Pharmacol Meth 12: 167–170

    CAS  Google Scholar 

  • Larsson H, Carlsson E, Junggren U, Olbe L, Sjöstrand SE, SkAnberg I, Sundell G (1983) Inhibition of gastric acid secretion by omeprazole in the dog and rat. Gastroenterology 85: 900–907

    PubMed  CAS  Google Scholar 

  • Thomas JE (1941) An improved cannula for gastric and intestinal fistulas. Proc Soc exp Biol Med 46: 260–261

    Google Scholar 

  • Alphin RS, Lin TM (1959) Preparation of chronic denervated gastric pouches in the rat. Am J Physiol 197: 257–262

    PubMed  CAS  Google Scholar 

  • Baker SA (1979) A new dog fundic pouch preparation. Pharmacologist 21: 176

    Google Scholar 

  • Bickel M, Herling AW, Rising TJ, Wirth K (1986) Antisecretory effects of two new histamine H2-receptor antagonists. Arzneitn Forsch/Drug Res 36: 1358–1363

    CAS  Google Scholar 

  • Carter DC, Grossman Ml (1978) Effect of luminal pH on acid secretion evoked by topical and parenteral stimulants. J Physiol (London) 281: 227–237

    CAS  Google Scholar 

  • deVito RV, Harkins HN (1959) Techniques in Heidenhain pouch experiments. J Appl Physiol 14: 138–140

    PubMed  CAS  Google Scholar 

  • Gregory RA, Tracy HJ (1964) The constitution and properties of two gastrins extracted from hog antral mucosa. Gut 5: 103–114

    PubMed  CAS  Google Scholar 

  • Heidenhain R (1878) Ueber die Pepsinbildung in den Pylorusdrüsen. Pflüger’s Arch ges Physiol 18: 169–171

    Google Scholar 

  • Herling AW, Bickel M, Lang HJ, Weidmann K, Rösner M, Metzger H, Rippel R, Nimmesgern H, Scheunemann KH (1988) A substituted thienol[3.4-dlimidazole versus substituted benzimidazoles as 11.,K-ATPase inhibitors. Pharmacology 36: 289–297

    PubMed  CAS  Google Scholar 

  • Jacobson ED, Linford RH, Grossman MI (1966) Gastric secretion in relation to mucosal blood flow studied by a clearance technique. J Clin Invest 45: 1–13

    PubMed  CAS  Google Scholar 

  • Jacobson ED, Swan KG, Grossman MI (1967) Blood flow and secretion in the stomach. Gastroenterology 52: 414–422

    PubMed  CAS  Google Scholar 

  • Kauffman Jr GL, Reeve JJ, Grossman MI (1980) Gastric bicarbonate secretion: Effect of topical and intravenous 16,16-dimethyl prostaglandin E2. Am J Physiol 239: G44 — G48

    PubMed  CAS  Google Scholar 

  • Larsson H, Carlsson E, Junggren U, Olbe L, Sjöstrand SE, Skanberg I, Sundell G (1983) Inhibition of gastric acid secretion by omeprazole in the dog and rat. Gastroenterology 85: 900–907

    PubMed  CAS  Google Scholar 

  • Roszkowski AP, Garay GL, Baker S, Schuler M, Carter H (1986) Gastric antisecretory and antiulcer properties of enprostil, (±)-11a,15a,dihydroxy-16-phenoxy-17,18,19,20tetranor-9-oxoprosta-4,5,13(t)-trienoic acid methyl ester. J Pharmacol Exper Ther 239: 382–389

    CAS  Google Scholar 

  • Rudick J, Szabo T (1976) The use of gastric pouches in gastric physiology: I. Techniques in the preparation of gastric pouches. Mt. Sinai J Med 43: 423–439

    Google Scholar 

  • Tracy HJ, Gregory RA (1964) Physiological properties of a series of synthetic peptides structurally related to gastrin I. Nature 204: 935–938

    PubMed  CAS  Google Scholar 

  • Barrett AM (1966) Specific stimulation of gastric acid secretion by a pentapeptide derivative of gastrin. J Pharm Pharmacol 18: 633–639

    PubMed  CAS  Google Scholar 

  • Chang RS, Lotti VJ (1984) Biochemical and pharmacological characterization of an extremely potent and selective non-peptide cholecystokinin antagonist. Proc Natl Acad Sci, USA 83: 4923–4926

    Google Scholar 

  • Gosh MN, Schild HO (1955) A method for the continuous recording of gastric secretion in the rat. J Physiol, Lond., 128: 97–109

    Google Scholar 

  • Gosh MN, Schild HO (1958) Continuous recording of acid gastric secretion in the rat. Br J Pharmacol Chemother 13: 54–61

    Google Scholar 

  • Jaffe BM, Walsh JH (1979) Gastrin and related peptides. In: Jaffe BM, Behrman HR (eds) Methods of Hormone Radioimmunoassay. Academic Press, New York, pp 455–477

    Google Scholar 

  • Lawrence Ai, Smith GM (1974) Measurement of gastric acid secretion by conductivity. Eur J Pharmacol 25: 383–389

    PubMed  CAS  Google Scholar 

  • Lotti VJ, Chang RSL (1987) A new potent and selective non-peptide gastrin antagonist and brain cholecystokinin receptor (CCKB) ligand: L-365260. Eur J Pharmacol 162: 273–280

    Google Scholar 

  • Smith GM, Lawrence AJ, Colin-Jones DG, Schild HO (1970) The assay of gastrin using the perfused rat stomach. Br J Pharmacol 38: 206–213

    PubMed  CAS  Google Scholar 

  • Wan BYC (1977) Metiamide and stimulated acid secretion from the isolated non-distended and distended mouse stomach. J Physiol (London) 226: 327–346

    Google Scholar 

  • Berglindh T, Obrink KJ (1976) A method for preparing isolated glands from the rabbit gastric mucosa. Acta Physiol Scand 96: 150–159

    PubMed  CAS  Google Scholar 

  • Brown J, Gallagher ND (1978) A specific gastrin receptor site in the rat stomach. Biochim Biophys Acta 538: 42–49

    PubMed  CAS  Google Scholar 

  • Gully D, Fréhel D, Marcy C, Spinazzé A, Lespy L, Neliat G, Maffrand JP, LeFur G (1993) Peripheral biological activity of SR 27897: a new potent non-peptide antagonist of CCKA receptors. Eur J Pharmacol 232: 13–19

    PubMed  CAS  Google Scholar 

  • Kopin AS, Lee YM, McBride EW, Miller Li, Lu M. Lin HY, Kolakowski Jr LF, Beinborn M (1992) Expression cloning and characterization of the canine parietal cell gastrin receptor. Proc Natl Acad Sci, USA, 89: 3605–3609

    Google Scholar 

  • Leveland PM, Waldum HL (1991) The gastrin receptor assay. Scand J Gastroenterol 26:Suppl 180, 62–69

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 13: 265–275

    Google Scholar 

  • Praissman M, Walden ME, Pellecchia C (1983) Identification and characterization of a specific receptor for cholecystokinin on isolated fundic glands from guinea pig gastric mucosa using a biologically active ‘251-CCK-8 probe. J Receptor Res 3: 647–665

    CAS  Google Scholar 

  • Main IHM, Pearce JB (1978) A rat isolated gastric mucosal preparation for studying the pharmacology of gastric secretion and the synthesis or release of endogenous substances. J Pharm Meth 1: 27–38

    CAS  Google Scholar 

  • Wan BYC, Assem KE, Schild HO (1974) Inhibition of in vitro stimulated gastric acid secretion by a histamine H2-receptor antagonist, metiamide. Eur J Pharmacol 29: 83–88

    PubMed  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55–63

    PubMed  CAS  Google Scholar 

  • Parish ChR, Müllbacher A (1983) Automated colorimetric assay for T cell cytotoxicity. J Immunol Methods 58: 225–237

    PubMed  CAS  Google Scholar 

  • Sundqvist K, Liu Y, Nair J, Bartsch H, Arvidson K, Grafström C (1989) Cytotoxic and genotoxic effects of areca nut-related compounds in cultured human buccal epithelial cells. Cancer Res 49: 5294–5298

    PubMed  CAS  Google Scholar 

  • Terano A, Ivey KJ, Stachura J, Sekhon S, Hosojima A, McKenzie WN, Krause WJ, Wyche JH (1982) Cell culture of rat gastric fundic mucosa. Gastroenterology 83: 12801291

    Google Scholar 

  • Zheng H, Shah PK, Audus KL (1994) Primary culture of rat gastric epithelial cells as an in Vitro model to evaluate antiulcer agents. Pharmaceut Res 11: 77–82

    CAS  Google Scholar 

  • Holzer P (1992) Reflex gastric motor inhibition caused by intraperitoneal bradykinin: Antagonism by Hoe 140, a bradykinin antagonist. Peptides 13: 1073–1077

    PubMed  CAS  Google Scholar 

  • Lotti VJ, Cerino DJ, Kling PJ, Chang RSL (1986) A new simple mouse model for the in vivo evaluation of cholecystokinin (CCK) antagonists: comparative potencies and durations of action of nonpeptide antagonists. Life Sci 39: 1631–1638

    PubMed  CAS  Google Scholar 

  • Arunlakshana O, Schild HO (1959) Some quantitative uses of drug antagonists. Br J Phannacol Chemother 14: 48–58

    CAS  Google Scholar 

  • Boyle SJ, Tang KW, Woodruff GN, McKnight AT (1993) Characterization of CCK receptors in a novel smooth muscle preparation from the guinea pig stomach by use of the selective antagonists CI-988, L-365,260 and devazepide. Br J Pharmacol 109: 913–917

    PubMed  CAS  Google Scholar 

  • Doluisio JT, Billups NF, Dittert LW, Sugita ET, Swintowsky JV (1969) Drug absorption I: An in situ rat gut technique yielding realistic absorption rates. J Pharm Sci 58: 11961200

    Google Scholar 

  • Welling PG (1977) Influence of food and diet on gastrointestinal drug absorption: a review. J Pharmacokinet Biopharm 5: 291–334

    PubMed  CAS  Google Scholar 

  • Worland PJ, Drummer OH, Jarrott B (1983) An in situ gastric pouch technique for direct measurement of the gastric absorption of drugs in the rat. J Pharmacol Meth 10: 215–221

    CAS  Google Scholar 

  • Clain JE, Malagelada JR, Chadwick VS, Hofmann AE (1977) Binding properties in vitro of antacids for conjugated bile salts. Gastroenterology 73: 556–559

    PubMed  CAS  Google Scholar 

  • DiJoseph JF, Borella LE, Nabi Mir G (1989) Activated aluminium complex derived from solubilized antacids exhibits enhanced cytoprotective activity in the rat. Gastroenterology 96: 730–735

    PubMed  CAS  Google Scholar 

  • Domschke W, Hagel J, Ruppin H, Kaduk B (1986) Antacids and gastric mucosal protection. Scand J Gastroenterol 21 (Suppl 125): 144–149

    CAS  Google Scholar 

  • Fordtran JS, Morawski SG, Richardson CT (1973) In vivo and in vitro evaluation of liquid antacids. N Engl J Med 288: 923–928

    PubMed  CAS  Google Scholar 

  • Goldberg HI, Dodds WJ, Gee S, Montgomery C, Zboralske FF (1968) Role of acid and pepsin in acute experimental esophagitis. Gastroenterology 56: 223–230

    Google Scholar 

  • Hollander D, Tarnawski A, Gergely H (1986) Protection against alcohol-induced gastric mucosal injury by aluminium-containing compounds — Sucralfate, antacids and aluminium sulfate. Scand J Gastroenterol 21 (Suppl 125): 151–153

    CAS  Google Scholar 

  • Konturek SJ (1993) New aspects of clinical pharmacology of antacids. J Physiol Pharmacol 44, Suppl 1: 5–21

    Google Scholar 

  • Konturek SJ, Brzozowski T, Drozdowicz D, Nauert C (1989) Gastroprotection by an aluminium-and magnesium-hydroxide-containing antacid in rats. Role of endogenous prostanoids. Scand J Gastroenterol 24: 1113–1120

    Google Scholar 

  • Konturek SJ, Brzozowski T, Majka J, Szlachcic A, Nauert C, Slomiany B (1992) Nitric oxide in gastroprotection by aluminium-containing antacids. Eur J Pharmacol 229: 155–162

    PubMed  CAS  Google Scholar 

  • Richardson CT, Peterson WL (1988) Clinical pharmacology of antacids In: Bianchi-Porro G, Richardson CT (eds) Antacids in Peptic Ulcer Disease. Raven Press, New York, pp 3–16

    Google Scholar 

  • Sepelyak RJ, Feldkamp JR, Regnier FE, White JL, Hem SL (1984) Adsorption of pepsin by aluminium hydroxide II. Pepsin inactivation. J Pharm Sci 73: 1517–1522

    Google Scholar 

  • Szelenyi I, Postius S, Engler H (1983) Evidence for a functional cytoprotective effect produced by antacids in the rat stomach. Eur J Pharmacol 88: 403–410.

    PubMed  CAS  Google Scholar 

  • Vergin H, Kori-Lindner C (1990) Putative mechanisms of cytoprotective effect of certain antacids and sulcralfate. Digest Dis Sci 35: 1320–1327

    PubMed  CAS  Google Scholar 

  • Bernheim L, Matie A, Hille B (1992) Characterization of muscarinic receptor subtypes inhibiting Ca’ current and M current in rat sympathetic neurons. Proc Natl Acad Sci USA 89: 9544–9548

    PubMed  CAS  Google Scholar 

  • Bickel M, Bal-Tempe S, Blumbach J, Dohadwalla AN, Lal B, Palm D, Rajagopalan R, Rupp RH, Schmidt D, Volz-Zang C (1990) HL 752, a new enteral active muscarinic receptor antagonist. Med Sci Res 18: 877–879

    CAS  Google Scholar 

  • Birdsall NJM, Burgen ASV, Hulme EC (1978) The binding of agonists to brain muscarinic receptors. Mol Pharmacol 14: 723–736

    PubMed  CAS  Google Scholar 

  • Bonner TI, Buckley NJ, Young AC, Brann MR (1987) Identification of a family of muscarinic receptor genes. Science 237: 527–532

    PubMed  CAS  Google Scholar 

  • Bonner TI, Young AC, Brann MR, Buckley NJ (1988) Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron 1: 403–410

    PubMed  CAS  Google Scholar 

  • Brown JH, Brown SL (1984) Agonists differentiate muscarinic receptors that inhibit cyclic AMP formation from those that stimulate phophoinositide metabolism. J Biol Chem 259: 3777–3781

    PubMed  CAS  Google Scholar 

  • Brown JH, Goldstein D, Brown Masters S (1985) The putative M, muscarinic receptor does not regulate phophoinositide hydrolysis. Studies with pirenzepine and McN-A343 in chick heart and astrocytoma cells. Mol Pharmacol 27: 525–531

    PubMed  CAS  Google Scholar 

  • Buckley NJ, Bonner TI, Buckley C, Brann MR (1989) Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. Mol Pharmacol 35: 469–476

    PubMed  CAS  Google Scholar 

  • Carmine AA, Brogden RN (1985) Pirenzepine: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in peptic ulcer disease and other allied diseases. Drugs 30: 85–126

    PubMed  CAS  Google Scholar 

  • Chen C, Okayama H (1987) High efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7: 27452752

    Google Scholar 

  • Cheng YC, Prussoff WH (1973) Relationship between the inhibition constant (K,) and the concentration of inhibitor which causes 50 per cent inhibition (1 50 ) of an enzymatic reaction. Biochem Pharmacol 22: 3099–3108

    PubMed  CAS  Google Scholar 

  • Doods HN, Mathy MJ, Davidesko D, van Charldorp KJ, de Jonge A, van Zwieten PA (1987) Selectivity of muscarinic antagonists in radioligand and in vivo experiments for the putative M,, M2 and M, receptors. J Pharm Exp Ther 242: 257–262

    Google Scholar 

  • Dörje F, Rettenmayr NM, Mutschler E, Lambrecht G (1991) Effect of extracellular calcium concentration on potency of muscarinic agonists at M, and M2 receptors in rabbit vas deferens. Eur J Pharmacol 203: 417–420

    PubMed  Google Scholar 

  • Dörje F, Wess J, Lambrecht G, Tacke R, Mutschler E, Brann MR (1991) Antagonistic binding profiles of five cloned human muscarinic receptor subtypes. J Pharm Exp Ther 256: 727–733

    Google Scholar 

  • El-Fakahani EE, Ramkumar V, Lai WS (1986) Multiple binding affinities of N-methylscopolamine to brain muscarinic acetylcholine receptors: Differentiation from M, and M2 receptor subtypes. J Pharm Exp Ther 238: 554–563

    Google Scholar 

  • Eltze M, Gmelin G, Wess J, Strohmann C, Tacke R, Mutschier E, Lambrecht G (1988) Presynaptic muscarinic receptors mediating inhibition of neurogenic contractions in rabbit vas deferens are of the ganglionic M,-type. Eur J Pharmacol 158: 233–242

    CAS  Google Scholar 

  • Ensinger HA, Doods HN, Immel-Sehr AR, Kuhn FJ, Lambrecht G, Mendla KD, Müller RE, Mutschler E, Sagrada A, Walther G, Hammer R (1993) WAL 2014 — a muscarinic agonist with preferential neuron-stimulating properties. Life Sci 52: 473–480

    PubMed  CAS  Google Scholar 

  • Giachetti A, Giraldo E, Ladinski H, Montagna E (1986) Binding and functional profiles of the selective M, muscarinic receptor antagonists trihexylphenidyl and dicyclomine. Br J Pharmacol 89: 83–90

    PubMed  CAS  Google Scholar 

  • Goya RK (1989) Muscarinic receptor subtypes. Physiology and clinical implications. New Engl J Med 321: 1022–1029

    Google Scholar 

  • Hulme EC, Birdsall NJM, Buckley NJ (1990) Muscarinic re- ceptor subtypes. Ann Rev Pharmacol Toxicol 30: 633–673

    CAS  Google Scholar 

  • Jones SVP, Levey AI, Weiner DM, Ellis J, Novotny E, Yu SH, Dorje F, Wess J, Brann MR (1992) Muscarinic acetylcholine receptors. In: Brann MR (ed) Molecular Biology of GProtein-Coupled Receptors. Applications of Molecular Genetics to Pharmacology, Vol 1, pp 170–197. Birkhäuser, Boston

    Google Scholar 

  • Kajimura M, Reuben MA, Sachs G (1992) The muscarinic receptor gene expressed in rabbit parietal cells is the m3 subtype. Gastroenterology 103: 870–875

    PubMed  CAS  Google Scholar 

  • Karlin A, McNamee MG, Weill CL (1976) Methods of isolation and characterization of the acetylcholine receptor. In: Blecher M (ed) Methods in Receptor Research, Part I, Marcel Dekker, Inc., New York and Basel, pp 1–35.

    Google Scholar 

  • Kashihara K, Varga EV, Waite SL, Roeske WR, Yamamura HI (1992) Cloning of the rat M3, M4 and M5 muscarinic acetylcholine receptor genes by the polymerase chain reaction ( PCR) and the pharmacological characterization of the expressed genes. Life Sci 51: 955–971

    Google Scholar 

  • Kebabian JW, Neumeyer JL (eds) (1994) The RBI Handbook of Receptor Classification. Research Biochemicals International, Natick, MA, pp 44–45

    Google Scholar 

  • Lambrecht G, Feifel R, Wagner-Röder M, Strohmann C, Zilch H, Tacke R, Waelbroeck M, Christophe J, Boddeke H, Mutschler E (1989) Affinity profiles of hexohydro-siladifenidol analogues at muscarinic receptor subtypes. Eur J Pharmacol 168: 71–80

    PubMed  CAS  Google Scholar 

  • Lambrecht G, Moser U, Grimm U, Pfaff O, Hermanni U, Hildebrandt C, Waelbroeck M, Christophe J, Mutschler E (1993) New functionally selective muscarinic antagonists. Life Sci 52: 481–488

    PubMed  CAS  Google Scholar 

  • Lazareno S, Buckley NJ, Roberts FF (1990) Characterization of muscarinic M4 binding sites in rabbit lung, chicken heart and NG108–15 cells. Mol Pharmacol 38: 805–815

    PubMed  CAS  Google Scholar 

  • Longdong W (1986) Present status and future perspectives of muscarinic receptor antagonists. Scand J Gastroenterol 21: 55–59

    Google Scholar 

  • Luthin GR, Wolfe BB (1984) Comparison of [5H]pirenzepine and [5H]quinuclidinylbenzilate binding to muscarinic cholinergic receptors in rat brain. J Pharmacol Exp Ther 228: 648–655

    PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • McConnell HM, Owicki JC, Parce JW, Miller DL, Baxter GT, Wada HG, Pitchford S (1992) The Cytosensor Microphysiometer: biological applications of silicon technology. Science 257: 1906–1912

    PubMed  CAS  Google Scholar 

  • McConnell HM, Rice P, Wada GH, Owicki JC, Parce JW (1991) The microphysiometer biosensor. Curr Opin Struct Biol 1: 647–652

    CAS  Google Scholar 

  • McKinney M (1993) Muscarinic receptor subtype-specific coupling to second messengers in neuronal systems. In: Cuello AC (ed) Progress in Brain Research, Vol 98, Chapter 40, pp 333–340.

    Google Scholar 

  • Michel AD, Delmendo R, Stefanich E, Whiting RL (1989) Binding characteristics of the muscarinic receptor subtype of the NG108–15 cell line. Naunyn-Schmiedeberg’s Arch Pharmacol 340: 62–67

    PubMed  CAS  Google Scholar 

  • Norcoss NL, Griffith II, Lettieri JA (1980) Measurement of acetylcholine receptor and anti-receptor antibodies by ELISA. Muscle Nerve 3: 345–349

    Google Scholar 

  • Owicki JC, Parce JW. (1992) Biosensors based on the energy metabolism of living cells: The physical chemistry and cell biology of extracellular acidification. Biosensors Bioelectronics 7: 255–272

    Google Scholar 

  • Parekh AB, Brading AF (1992) The M3 muscarinic receptor links to three different transduction mechanisms with different efficacies in circular muscle of guinea pig stomach. Br J Pharmacol 106: 639–643

    PubMed  CAS  Google Scholar 

  • Pitschner HF, Schlepper M, Schulte B, Volz C, Palm D, Well-stein A (1989) Selective antagonists reveal different functions of M cholinoceptor subtypes in humans. Trends Pharmacol Sci Suppl IV: 92–96

    Google Scholar 

  • Richards (1990) Rat hippocampal muscarinic autoreceptors are similar to the M2 (cardiac) subtype: comparison with hippocampal M„ atrial M2 and ileal M3 receptors. Br J Pharmacol 99: 753–761

    PubMed  CAS  Google Scholar 

  • Svensson AL, Alafuzoff I, Nordberg A (1992) Characteriza tion of muscarinic receptor subtypes in Alzheimer and control brain cortices by selective muscarinic antagonists. Brain Res 596: 142–148

    PubMed  CAS  Google Scholar 

  • Wamsley JK, Gehlert DR, Roeske WR, Yamamura HI (1984) Muscarinic antagonist binding site heterogeneity as evidenced by autoradiography after direct labeling with [3H]QNB and [3H]pirenzepine. Life Sci 34: 1395–1402

    PubMed  CAS  Google Scholar 

  • Watson M, Yamamura HI, Roeske WR (1983) A unique regulatory profile and regional distribution of [’H]pirenzepine binding in the rat provide evidence for distinct M, and M2 muscarinic receptor subtypes. Life Sci 32: 3001–3011

    PubMed  CAS  Google Scholar 

  • Wess J, Angeli P, Melchiorre C, Moser U, Mutschler E, Lambrecht G (1988) Methoctramine selectively blocks cardiac msucarinic M2 receptors in vivo. Naunyn-Schmiedeberg’s Arch Pharmacol 338: 246–249

    PubMed  CAS  Google Scholar 

  • Black JW, Duncan WAM, Durant CJ, Ganellin CR, Parsons EM (1972) Definition and antagonism of histamine H2 receptors. Nature 236: 385–390

    PubMed  CAS  Google Scholar 

  • Clapham J, Kilpatrick GJ (1992) Histamine H3 receptors modulate the release of [3H]-acetylcholine from slices of rat entorhinal cortex: evidence for the possible existence of H3 receptor subtypes. Br J Pharmacol 107: 919–923

    PubMed  CAS  Google Scholar 

  • Haaksma EEJ, Leurs R, Timmerman H (1990) Histamine receptors: subclasses and specific ligands. Pharmac Ther 47: 73–104

    CAS  Google Scholar 

  • Hill SJ (1990) Distribution, properties and functional characteristics of three classes of histamine receptor. Pharmacol Rev 42: 45–83

    PubMed  CAS  Google Scholar 

  • Leurs R, van der Goot H, Timmerman H (1991) Histaminergic agonists and antagonists. Recent Developments. Advanc Drug Res 20: 217–304

    Google Scholar 

  • West RE Jr, Zweig A, Shih NY, Siegel MI, Egan RW, Clark MA (1990) Identification of two H3-histamine receptor subtypes. Mol Pharmacol 38: 610–613

    PubMed  CAS  Google Scholar 

  • Bickel M, Herling AW, Rising TJ, Wirth K (1986) Antisecretory effects of two new histamine H2-receptor antagonists. Arzneim Forsch/Drug Res 36: 1358–1363

    CAS  Google Scholar 

  • Eriks JCh, van der Goot H, Sterk GJ, Timmerman H (1992) Histamine H2-receptor agonists. Synthesis, in vitro pharmacology, and qualitative structure-activity relationships of substituted 4- and 5-(2-aminoethyl)-thiazoles. J Med Chem 35: 3239–3246

    PubMed  CAS  Google Scholar 

  • Gajtkowski GA, Norris DB, Rising TJ, Wood TP (1983) Specific binding of [3H]-tiotidine to histamine H2 receptors in guinea pig cerebral cortex. Nature 304: 65–67

    PubMed  CAS  Google Scholar 

  • Gantz I, Schäfer M, Del Valle J, Logsdon C, Campell V, Uhler M, Yamada T (1991) Molecular cloning of a gene encoding the histamine H2 receptor

    Google Scholar 

  • Hill SJ (1990) Distribution, properties and functional characteristics of three classes of histamine receptor. Pharmacol Rev 42: 45–83

    PubMed  CAS  Google Scholar 

  • Hirschfeld J, Buschauer A, Elz S, Schunack W, Ruat M, Traiffort E, Schwartz J-Ch (1992) Iodoaminopotentidine and related compounds: A new class of ligands with high affinity and selectivity for the histamine H2 receptor. J Med Chem 35: 2231–2238

    PubMed  CAS  Google Scholar 

  • Martinez-Mir MI, Pollard H, Moreau J, Arrang JM, Ruat M, Traiffort E, Schwartz JC, Palacios JM (1990) Three histamine receptors (H„ H2, and H3) visualized in the brain of human and non-human primates. Brain Res 526: 322–327

    PubMed  CAS  Google Scholar 

  • McPherson GA (1985) Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Meth 14: 213–228

    CAS  Google Scholar 

  • Norris DB, Gajtkowski GA, Rising TJ (1984) Histamine H2 binding studies in the guinea-pig brain. Agents Actions 14: 543–545

    PubMed  CAS  Google Scholar 

  • Traiffort E, Pollard H, Moreau J, Ruat M, Schwartz IC, Martinez-Mir MI, Palacios JM (1992) Pharmacological characterization and autoradiographic localization of histamine H2 receptors in human brain identified with [125I]iodoaminopotentidine. J Neurochem 59: 290–299

    PubMed  CAS  Google Scholar 

  • West RE Jr, Zweig A, Shih NY, Siegel MI, Egan RW, Clark MA (1990) Identification of two H3-histamine receptor subtypes. Mol Pharmacol 38: 610–613

    PubMed  CAS  Google Scholar 

  • Arunlakshana O, Schild HO (1959) Some quantitative uses of drug antagonists. Br J Pharmacol Chemother 14: 48–58

    PubMed  CAS  Google Scholar 

  • Daly MJ, Humphray JM, Stables R (1981) Some in vitro and in vivo actions of the new histamine H2-receptor antagonist, ranitidine. Br J Pharmac 72: 49–54

    CAS  Google Scholar 

  • Hattori YS, Nakaya H, Endou M, Kanno M (1990) Inotropic, electrophysiological and biochemical responses to histamine in rabbit papillary muscles: evidence for coexistence of H,- and H2-receptors. J Pharm Exp Ther 253: 250–256

    CAS  Google Scholar 

  • Hirschfeld J, Buschauer A, Elz S, Schunack W, Ruat M, Traiffort E, Schwartz J-Ch (1992) Iodoaminopotentidine and related compounds: A new class of ligands with high affinity and selectivity for the histamine H2 receptor. J Med Chem 35: 2231–2238

    PubMed  CAS  Google Scholar 

  • Reinhardt D, Wagner J, Schumann HJ (1974) Differentiation of H1- and H2-receptors mediating positive chronotropic and inotropic responses to histamine on atrial preparations of the guinea-pig. Agents Actions 4: 217–221

    PubMed  CAS  Google Scholar 

  • Tarutani M, Sakuma H, Shiratsuchi K, Mieda M (1985) Histamine H2-receptor antagonistic action of N-{3-[3-(1piperidinyl)phenoxy]propyl}acetoxyacetamide hydrochloride (TZU-0460). Arzneim Forsch/Drug Res 35: 703–706

    CAS  Google Scholar 

  • Ariens EJ, van Rossum JM (1957) pDx, pAx and pD’x values in the analysis of pharmacodynamics. Arch Int Pharmacodyn 110:275–299

    Google Scholar 

  • Ash ASF, Schild HO (1966) Receptors mediating some actions of histamine. Br J Pharmacol Chemother 27: 427–439

    PubMed  CAS  Google Scholar 

  • Eltze M (1979) Proestrus and metestrus rat uterus, a rapid and simple method for detecting histamine H2-receptor antagonism. Arzneim Forsch/Drug Res 29: 1107–1112

    CAS  Google Scholar 

  • Owen DAA, Pipkin MA (1985) A simple technique to simultaneously assess activity at histamine H,- and H2-receptors in vivo. J Pharmacol Meth 13: 309–315

    CAS  Google Scholar 

  • Brown BL, Albano JDM, Ekins RP, Sgherzi AM (1971) A simple and sensitive assay method for the measurement of adenosine 3’,5’-cyclic monophosphate. Biochem J 121: 561–562

    PubMed  CAS  Google Scholar 

  • Hegstrand LR, Kanof PhD, Greengard P (1976) Histamine-sensitive adenylate cyclase in mammalian brain. Nature 260: 163–165

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 13: 265–275

    Google Scholar 

  • Sewing KF, Beil W, Hannemann H (1988) Comparative pharmacology of histamine H2-receptor antagonists. Drugs 33 (Suppl 3): 25–29

    Google Scholar 

  • Sewing KF, Beil W, Hannemann H, Hackbarth 1 (1985) The adenylate cyclase-cyclic AMP-protein kinase system in different cell populations of the guinea-pig gastric mucosa. Life Sci 12: 1097–1106

    Google Scholar 

  • Brändström PA, Wallmark B, Mattsson H, Rikner L, Hoffmann KJ (1990) Omeprazole: The first proton pump inhibitor. Medicin Res Rev 10: 1–54

    Google Scholar 

  • Herling AW, Weidmann K (1994) Gastric K`/H+-ATPase inhibitors. In: Ellis GP, Luscombe DK (eds) Progress in Medicinal Chemistry, Vol 31, Elsevier Science BV, pp 233–264

    Google Scholar 

  • Sachs G. Shin JM, Besancon M, Pinz C (1993) The continuing development of gastric acid pump inhibitors. Aliment Pharmacol Ther 7 (Suppl 1): 4–12

    PubMed  Google Scholar 

  • Shull GE, Lingrel JB (1986) Molecular cloning of the rat stomach ( H+/K+)-ATPase. J Biol Chem 261: 16788–16791

    Google Scholar 

  • Beil W, Sewing KF (1984) Inhibition of partially purified K’/H’ATPase from guinea-pig isolated and enriched parietal cells by substituted benzimidazoles. Br J Pharmacol 82: 651–657

    PubMed  CAS  Google Scholar 

  • Beil W, Staar U, Sewing KF (1990) Substituted thieno[3,4d]imidazoles, a novel group of K’/H`-ATPase inhibitors. Differentiation of their inhibition characteristics from those of omeprazole. Eur J Pharmacol 187: 455–457

    Google Scholar 

  • Carter SG, Karl DW (1982) Anorganic phosphate assay with malachite green: an improvement and evaluation. J Biochem Biophys Meth 7: 7–13

    PubMed  CAS  Google Scholar 

  • Herling AW, Weidmann K (1994) Gastric K+/1’-ATPase inhibitors. In: Ellis GP, Luscombe DK (eds) Progress in Medicinal Chemistry, Vol 31, Elsevier Science BV, pp 233–264

    Google Scholar 

  • LeBel D, Poirier GG, Beaudoin AR (1978) A convenient method for the ATPase assay. Anal Biochem 85: 86–89

    PubMed  CAS  Google Scholar 

  • Lee HC, Forte JG (1978) A study of H* transport in gastric microsomal vesicles using fluorescent probes. Biochim Biophys Acta 508: 339–356

    PubMed  CAS  Google Scholar 

  • Ljungström M, Norberg L, Olaisson H, Wernstedt C, Vega FV, Arvidson G, Mârdh S (1984) Characterization of proton-transporting membranes from resting pig gastric mucosa. Biochem Biophys Acta 769: 209–219

    PubMed  Google Scholar 

  • Saccomani G, Stewart HB, Shaw D, Lewin M, Sachs G (1977) Characterization of gastric mucosal membranes. IX. Fractionation and purification of K*-ATPase-containing vesicles by zonal centrifugation and free-flow electrophoresis technique. Biochim Biophys Acta 465: 311–330

    Google Scholar 

  • Sewing KF, Beil W, Hackbarth I, Hannemann H (1986) Effect of substituted benzimidazoles on H*/K*ATPase of isolated guinea-pig parietal cells. Scand J Gastroenterol 21, Suppl 118: 52–53

    Google Scholar 

  • Wallmark B, Jaresten BM, Larsson H, Ryberg B, Brandström A, Fellenius E (1973) Differentiation among inhibitory actions of omeprazole, cimetidine and SCN on gastric secretion. Am J Physiol 245: G64 — G71

    Google Scholar 

  • Arnold R, Koop H, Schwarting H, Tuch K, Willemer B (1986) Effect of acid inhibition on gastric endocrine cells. Scand J Gastroenterol 21 (Suppl 125): 14–19

    CAS  Google Scholar 

  • Creutzfeldt W, Stöckmann F, Conlon JM, Fölsch UR, Bonatz G, Wülfrath M (1986) Effect of short-and long-term feeding of omeprazole on rat gastric endocrine cells. Digestion 35 (Suppl 1): 84–97

    PubMed  CAS  Google Scholar 

  • Ekman L, Hansson E, Havu N, Carlsson E, Lundberg C (1985) Toxicological studies on omeprazole. Scand J Gastroenterol 20 (Suppl 108): 53–69

    Google Scholar 

  • Katz LB, Schoof RA, Shriver DA (1987) Use of a five-day test to predict the long-term effects of gastric antisecretory agents on serum gastrin in rats. J Pharmacol Meth 18: 275–282

    CAS  Google Scholar 

  • Larsson H, Carlsson E, Mattsson H, Lundell L, Sundler F, Sundell G, Wallmark B, Watanabe T, Hikanson R (1986) Plasma gastrin and gastric enterochromaffin-like cell activation and proliferation. Studies with omeprazole and ranitidine in intact and antrectomized rats. Gastroenterology 90: 391–399

    Google Scholar 

  • Beil W, Staar U, Sewing KF (1990) Substituted thieno[3.4d]imidazoles, a novel group of 1’/K+-ATPase inhibitors. Differentiation of their inhibition characteristics from those of omeprazole. Eur J Pharmacol 187: 455–467

    Google Scholar 

  • Berglindh T, Helander HF, Öbrink KJ (1976) Effects of secretagogues on oxygen consumption, aminopyrine accumulation and morphology in isolated gastric glands. Acta physiol Scand 97: 401–414

    PubMed  CAS  Google Scholar 

  • Berglindh, T, Öbrink KJ (1976) A method for preparing isolated glands from the rabbit gastric mucosa. Acta physiol Scand 96: 150–159

    PubMed  CAS  Google Scholar 

  • Fryklund J, Wallmark B (1986) Sulfide and sulfoxide derivatives of substituted benzimidazoles inhibit acid formation in isolated gastric glands by different mechanisms. J Pharm Exp Ther 236: 248–253

    CAS  Google Scholar 

  • Herling AW, Becht M, Kelker W, Ljungström M, Bickel M (1987) Inhibition of 14C-aminopyrine accumulation in isolated rabbit gastric glands by the H2-receptor antagonist Hoe 760 (TZU-0460) Agents Actions 20: 35–39

    PubMed  CAS  Google Scholar 

  • Herling AW, Becht M, Lang Hi, Scheunemann KH, Weidmann K, Scholl Th, Rippe R (1990) The inhibitory effect of Hoe 731 in isolated rabbit gastric glands. Biochem Pharmacol 40: 1809–1814

    PubMed  CAS  Google Scholar 

  • Herling AW, Bickel M, Lang Hi, Weidmann K, Rösner M. Metzger H, Rippel R, Nimmesgern H; Scheunemann KH (1988) A substituted thieno[3.4-d]imidazole versus substituted benzimidazoles as H+.1(*-ATPase inhibitors. Pharmacology 36: 289–297

    CAS  Google Scholar 

  • Sack J, Spenney JG (1982) Aminopyrine accumulation by mammalian gastric glands: an analysis of the technique. Am J Physiol 243: G313 — G319

    PubMed  CAS  Google Scholar 

  • Sewing KF, Beil W, Hackbarth I, Hannemann H (1986) Effect of substituted benzimidazoles on H’K’ATPase of isolated guinea-pig parietal cells. Scand J Gastroenterol 21, Suppl 118: 52–53

    Google Scholar 

  • Sewing KF, Harms P, Schulz G, Hannemann H (1983) Effect of substituted benzimidazoles on acid secretion in isolated and enriched guinea pig parietal cells. Gut 24: 557–560

    PubMed  CAS  Google Scholar 

  • Soll AH (1978) The actions of secretagogues on oxygen uptake by isolated mammalian parietal cells. J Clin Invest 61: 370–378

    PubMed  CAS  Google Scholar 

  • Bickel M, Herling AW, Rising TJ, Wirth K (1986) Antisecretory effects of two new histamine H2-receptor antagonists. Arzneim Forsch/Drug Res 36: 1358–1363

    CAS  Google Scholar 

  • Herling AW, Bickel M, Lang HJ, Weidmann K, Rösner M, Metzger H, Rippel R, Nimmesgern H, Bickel Scheunemann KH (1988) A substituted thienol[3.4-djimidazole versus substituted benzimidazoles as H*,K*-ATPase inhibitors. Pharmacology 36: 289–297

    PubMed  CAS  Google Scholar 

  • Selve N, Friderichs E, Graudums 1 (1992) EM 405: a new compound with analgesic and anti-inflammatory properties and no gastrointestinal side-effects. Agents Actions. Special Conference Issue, C84 — C85

    Google Scholar 

  • Shay H, Komarow SA, Fels SS, Meranze D, Gruenstein M, Siplet H (1945) A simple method for the uniform production of gastric ulceration in the rat. Gastroentero] 5: 43–61

    Google Scholar 

  • Shay H, Sun DCH, Gruenstein M (1954) A quantitative method for measuring spontaneous gastric secretion in the rat. Gastroenterology 26: 906–913

    PubMed  CAS  Google Scholar 

  • Bonfils S, Perrier JP, Caulin Ch (1966) L’ulcère de contrainte du rat blanc. Méthode de pathologie expérimentale et test pharmacologique. Rev Franc Etud Clin Biol 11: 343–356

    Google Scholar 

  • Hanson HM, Brodie DA (1960) Use of the restrained rat technique for study of the antiulcer effect of drugs. J Appl Physiol 15: 291–294

    PubMed  CAS  Google Scholar 

  • Selye H (1936) A syndrome produced by various noxious agents. Nature 138: 32

    Google Scholar 

  • Selve N, Friderichs E, Graudums I (1992) EM 405: a new compound with analgesic and anti-inflammatory properties and no gastrointestinal side-effects. Agents Actions. Special Conference Issue, C84 — C85

    Google Scholar 

  • Takagi K, Kasuya Y, Watanabe K (1964) Studies on the drugs for peptic ulcer. A reliable method for producing stress ulcer in rats. Chem Pharm Bull 12: 465–472

    Google Scholar 

  • West GB (1982) Testing for drugs inhibiting the formation of gastric ulcers. J Pharmacol Meth 8: 33–37

    CAS  Google Scholar 

  • Djahanguiri B (1969) The production of acute gastric ulceration by indomethacin in the rat. Scand J Gastroenterol 4: 265–267

    PubMed  CAS  Google Scholar 

  • Konturek SJ, Piastucki I, Brzozowski T, Radecki T, Dembinska-Kiec A, Zmuda A, Gryglewski R (1981) Role of Prostaglandins in the formation of aspirin-induced gastric ulcers. Gastroenterology 80: 4–9

    PubMed  CAS  Google Scholar 

  • Selve N, Friderichs E, Graudums 1 (1992) EM 405:a new compound with analgesic and anti-inflammatory properties and no gastrointestinal side-effects. Agents Actions. Special Conference Issue, C84 — C85.

    Google Scholar 

  • Tarutani M, Sakuma H, Shiratsuchi K, Mieda M (1985) Histamine H2-receptor antagonistic action of N-{3-[3-(1piperidinyl)phenoxylpropyl}acetoxyacetamide hydrochloride (TZU-0460). Arzneim Forsch/Drug Res 35: 703–706

    CAS  Google Scholar 

  • West GB (1982) Testing for drugs inhibiting the formation of gastric ulcers. J Pharmacol Meth 8: 33–37

    CAS  Google Scholar 

  • Borella LE, DiJoseph JF, Nabi Mir G (1989) Cytoprotective and antiulcer activities of the antacid Magaldrate in the rat. Arzneim Forsch/Drug Res 39: 786–789

    CAS  Google Scholar 

  • Franzone JS, Cirillo R, Cravanzola C (1988) Cytoprotective activity of deboxamet: a possible interference with prostaglandin and prostacyclin metabolism in rat gastric mucosa. Int J Tiss Reac 10: 149–158

    CAS  Google Scholar 

  • Herling AW, Weidmann K (1994) Gastric K*/H*-ATPase inhibitors. In: Ellis GP, Luscombe DK (eds) Progress in Medicinal Chemistry, Vol 31, Elsevier Science BV, pp 233–264

    Google Scholar 

  • Lindberg P, Brändström A, Wallmark B, Mattson H, Rikner L, Hoffmann KJ (1990) Med Res Rev 10: 1–54

    PubMed  CAS  Google Scholar 

  • Long JF, Chiu PJS, Derelanko MJ, Steinberg M (1983) Gastric antisecretory and cytoprotective activities of SCH 28080. J Pharmacol Exp Ther 226: 1 14–120

    Google Scholar 

  • Robert A (1979) Cytoprotection by prostaglandins. Gastroenterology 77: 761–767

    PubMed  CAS  Google Scholar 

  • Robert A, Nezamis JE, Lancaster C, Hanchar AJ (1979) Cytoprotection by prostaglandins in rats. Prevention of gastric necrosis produced by alcohol, HCI, NaOH, hypertonic NaCI, and thermal injury. Gastroenterology 77: 433–443

    Google Scholar 

  • Starrett JE, Montzka TA, Crosswell AR, Cavanagh RL (1989) Synthesis and biological activity of 3-substituted imidazo[1,2-a]pyridines as antiulcer agents. J Med Chem 32: 2204–2210

    PubMed  CAS  Google Scholar 

  • Szabo S, Trier JS, Frankel PW (1981) Sulfhydryl compounds may mediate gastric cytoprotection. Science 214: 200–202

    PubMed  CAS  Google Scholar 

  • Witt CG, Will PC, Gaginella TS (1985) Quantification of ethanol-induced gastric mucosal injury by transmission densitometry. J Pharmacol Meth 13: 109–116

    CAS  Google Scholar 

  • Ezer E (1988) Novel method for producing standard subacute gastric ulcer in rats and for the quantitative evaluation of the healing process. J Pharmacol Meth 20: 279–291

    CAS  Google Scholar 

  • Szelenyi I, Engler H, Herzog P, Postius S, Vergin H, Holtermüller KH (1982) Influence of nonsteroidal anti-inflammatory compounds on healing of chronic gastric ulcers. Agents Actions 12: 180–182

    PubMed  CAS  Google Scholar 

  • Takagi K, Okabe S, Saziki R (1969) A new method for production of chronic gastric ulcer in rats and the effect of several drugs on its healing. Jap J Pharmac 19: 418–426

    CAS  Google Scholar 

  • Dzan VJ, Haith LR Jr, Szabo S, Reynolds ES (1975) Effect of metiamide on the development of duodenal ulcers produced by cysteamine or propionitrile in rats. Clin Res 23: 576A

    Google Scholar 

  • Herling AW, Weidmann K (1994) Gastric K’/H’-ATPase inhibitors. In: Ellis GP, Luscombe DK (eds) Progress in Medicinal Chemistry, Vol 31, Elsevier Science BV, pp 233–264

    Google Scholar 

  • Roszkowski AP, Garay GL, Baker S, Schuler M, Carter H (1986) Gastric antisecretory and antiulcer properties of enprostil, (±)-11a,I5a,dihydroxy-l6-phenoxy-17,18,19,20tetranor-9-oxoprosta-4,5,13(t)-trienoic acid methyl ester. J Pharmacol Exper Ther 239: 382–389

    CAS  Google Scholar 

  • Szabo S, Haith LR Jr, Reynolds ES (1979) Pathogenesis of duodenal ulceration produced by cysteamine or propionitrile. Influence of vagotomy, sympathectomy, histamine depletion, H-2 receptor antagonists and hormones. Dig Dis Sci 24: 471–477

    PubMed  CAS  Google Scholar 

  • Leng-Peschlow E (1986) Acceleration of large intestine transit time in rats by sennosides and related compounds. J Pharm Pharmacol 38: 369–373

    PubMed  CAS  Google Scholar 

  • Leng-Peschlow E (1986) Dual effect of orally administered sennosides on large intestine transit and fluid absorption in the rat. J Pharm Pharmacol 38: 606–610

    PubMed  CAS  Google Scholar 

  • Beubler E, Badhri P (1990) Comparison of the antisecretory effects of loperamide and loperamide oxide in the jejunum and the colon of rats in vivo. J Pharm Pharmacol 42: 689–692

    PubMed  CAS  Google Scholar 

  • Pillai NR (1992) Anti-diarrhoeal activity of Punica granatum in experimental animals. lnt J Pharmacognosy 30: 201–204.

    Google Scholar 

  • Robert A, Nezamis JE, Lancaster C, Hanchar AJ, Klepper MS (1976) Enteropooling assay: a test for diarrhea produced by prostaglandins. Prostaglandins 11: 809–828

    PubMed  CAS  Google Scholar 

  • Shook JE, Burks TF, Wasley JWF, Norman JA (1989) Novel calmodulin antagonist CGS 9343B inhibits secretory diarrhea. J Pharmacol Exp Ther 251: 247–252

    PubMed  CAS  Google Scholar 

  • Binder HJ, Sandle GI (1987) Electrolyte absorption and secretion in the mammalian colon. In: LR Johnson (ed.) Physiology of the Gastrointestinal Tract, Raven Press New York, pp 1389–1418

    Google Scholar 

  • Frizzell RA, Koch MJ, Schultz SG (1976) Ion transport by rabbit colon. I. Active and passive components. J Membr Biol 27: 297–316

    Google Scholar 

  • Greger R, Schlatter E, Gögelein H (1985) Cl— channels in the apical cell membrane of the rectal gland “induced” by cAMP. Pflügers Arch 403: 446–448

    PubMed  CAS  Google Scholar 

  • Koefoed-Johnsen V, Ussing HH (1958) The nature of the frog skin potential. Acta Physiol Scand 42 298–308

    PubMed  CAS  Google Scholar 

  • Ammon HV, Thomas PJ, Phillips S (1974) Effects of oleic and ricinoleic acids on net jejuna) water and electrolyte movement. J Clin Invest 53: 374–379

    PubMed  CAS  Google Scholar 

  • Awouters F, Megens A, Verlinden M, Schuurkes J, Niemegeers C, Janssen PAJ (1993) Loperamide. Survey on mechanisms of its antidiarrheal activity. Dig Dis Sci 38: 977–995

    Google Scholar 

  • Iwao I, Terada Y (1962) On the mechanism of diarrhea due to castor oil. Jpn J Pharmacol 12: 137–145

    PubMed  CAS  Google Scholar 

  • Megens AAHP, Canters LLJ, Awouters FHL, Niemegeers CJE (1990) Normalization of small intestinal propulsion with loparamide-like antidiarrheals in rats. Eur J Pharmacol 17: 357–364

    Google Scholar 

  • Niemegeers CJE, Awouters F, Janssen PAJ (1984) The castor oil test in rats: An in vivo method to evaluate antipropulsive and antisecretory activity of antidiarrheals? Drug Dev Res 4: 223–227

    CAS  Google Scholar 

  • Niemegeers CJE, Colpaert FC, Awouters FHL (1981) Pharmacology and antidiarrheal effect of Loperamide. Drug Dev Res 1: 1–20

    CAS  Google Scholar 

  • Niemegeers CJE, Lenaerts FM, Janssen PAJ (1974) Loperamide (R 18 553), a novel type of antidiarrheal agent. Part 1: In vivo oral pharmacology and acute toxicity. Comparison with morphine, codeine, diphenoxylate and difenoxine. Arzneim Forsch/Drug Res 24: 1633–1635

    Google Scholar 

  • Pillai NR (1992) Anti-diarrhoeal activity of Punica granatum in experimental animals. hit J Pharmacognosy 30: 201–204

    Google Scholar 

  • Shook JE, Burks TF, Wasley JWF, Norman JA (1989) Novel calmodulin antagonist CGS 9343B inhibits secretory diarrhea. J Pharmacol Exp Ther 251: 247–252

    PubMed  CAS  Google Scholar 

  • Shook JE, Lemcke PK, Gehring CA, Hruby VJ, Burks TF (1989) Antidiarrheal properties of supraspinal nau, delta and kappa opioid receptors: Inhibition of diarrhea without constipation. J Pharmacol Exp Ther 249: 83–90

    Google Scholar 

  • Van Nuetten JM, Schuurkes JAJ (1988) Pharmakologie der Motilitätstherapeutika. Z Gastroenterologie 26, Suppl 4: 4–8

    Google Scholar 

  • Watson WC, Gordon RS (1962) Studies on the digestion, absorption and metabolism of castor oil. Biochem Pharmacol 11: 229–236

    PubMed  CAS  Google Scholar 

  • Ambuhl S, Williams VJ, Senior W (1979) Effects of cecectomy in the young adult female rat on digestibility of food offered ad libitum and in restricted amounts. Aust J Biol Sci 32: 205–213

    PubMed  CAS  Google Scholar 

  • Dharmsathaphorn K; Yamshiro DJ, Lindeborg D, Mandel KG, McRoberts J, Ruffolo RR (1984) Effects of structure-activity relationships of a-adrenergic compounds on electrolyte transport in the rabbit ileum and rat colon. Gastroenterology 86: 120–128

    PubMed  CAS  Google Scholar 

  • DiJoseph JF, Taylor JA, Nabi Mir G (1984) Alpha-2 receptors in the gastrointestinal system: A new therapeutic approach. Life Sci 35: 1031–1042

    Google Scholar 

  • Doherty NS, Hancock AA (1983) Role of alpha-2-adrenergic receptors in the control of diarrhea and intestinal motility. J Pharmacol Exp Ther 225: 269–274

    PubMed  CAS  Google Scholar 

  • Fondacaro JD, Kolpak DC, Burnham DB, McCafferty GP (1990) Cecectomiced rat. A model of experimental secretory diarrhea in conscious animals. J Pharmacol Meth 24: 59–71

    Google Scholar 

  • Fondacaro JD, McCafferty GP, Kolpak DC, Smith PhL (1989) Antidiarrheal activity of alpha-2 adrenoceptor agonist SK&F 35886. J Pharmacol Exp Ther 249: 221–228

    PubMed  CAS  Google Scholar 

  • Magnus R (1915) Die stopfende Wirkung des Morphins. Pfhigers Arch ges Physiol 115: 316–330

    Google Scholar 

  • Nakaki T, Nakadate T, Yamamoto S, Kato R (1982) Alpha-2adrenergic inhibition of intestinal secretion induced by prostaglandin E„ vasoactive intestinal peptide. and dibutyryl cyclic AMP in rat jejunum. J Pharmacol Exp Ther 220: 637–641

    PubMed  CAS  Google Scholar 

  • Williams VJ, Senior W (1982) Effects of caecetomy on the digestibility of food and rate of passage of digesta in the rat. Aust J Biol Sci 35: 373–379

    PubMed  CAS  Google Scholar 

  • Barone FC, Deegan JF, Price WJ, Fowler PJ, Fondacaro JD, Ormsbee III HS (1990) Cold-restraint stress increases rat fecal output and colonic transit. Am J Physiol Gastrointest Liver Physiol 258: G329 — G337

    CAS  Google Scholar 

  • Barnette MS, Grous M, Manning CD, Callahan JF, Barone FC (1990) Inhibition of neuronally induced relaxation of canine lower esophageal sphincter by opioid peptides. Eur J Pharmacol 182: 363–368

    PubMed  CAS  Google Scholar 

  • Bickel M, Bal-Tembe S, Blumbach J, Dohadwalla AN, Lal B, Palm D, Rajagopalan R, Rupp RH, Schmidt D, Volz-Zang C (1990) HL 752, a new enteral active muscarinic receptor antagonist. Med Sci Res 18: 877–879

    CAS  Google Scholar 

  • De Graaf JS, de Vos CJ; Steenbergen RI (1983) Fully automated experiments with isolated organs in vitro. J Pharmacol Meth 10: 113–135

    Google Scholar 

  • Furukuwa K, Nomoto T, Tonoue T (1980) Effects of thyrotropin-releasing hormone ( TRH) on the isolated small intestine and taenia coli of the guinea pig. Eur J Pharmacol 64: 2179–287

    Google Scholar 

  • Goldenberg MM, Burns RH (1973) Effectiveness of a unique antispasmodic 3,4-dihydro-5-phenoxy-benzo[b][1,7naphtyridin-1(2H)-one EU-1086, in vivo and in vivo. Arch Int Pharmacodyn 203: 55–66

    PubMed  CAS  Google Scholar 

  • Griesbacher T, Lembeck F (1992) Analysis of the antagonistic actions of HOE 140 and other novel bradykinin analogues in the guinea-pig ileum. Eur J Pharmacol 211: 393–398

    PubMed  CAS  Google Scholar 

  • Hew RW, et al (1990) Characterization of histamine H,-receptor in guinea pig ileum with H3-selective ligands. Br J Pharmacol 101: 621–624

    PubMed  CAS  Google Scholar 

  • Kachur JF et al (1987) Bradykinin receptors: functional similarities in guinea pig muscle and mucosa. Regul Pept 17: 63–70

    PubMed  CAS  Google Scholar 

  • Koelle GB, Koelle ES, Friedenwald JD (1950) The effect of inhibition of specific and non-specific cholinesterase on the motility of the isolated ileum. J Pharm Exp Ther 100: 180–191

    CAS  Google Scholar 

  • Magnus R (1904) Versuche am überlebenden Dünndarm von Säugethieren. Pflügers Arch 102: 123–151

    Google Scholar 

  • Moritoki H, Morita M, Kanbe T (1976) Effects of methylxanthines and imidazole on the contractions of guinea-pig ileum induced by transmural stimulation. Eur J Pharmacol 35: 185–198

    PubMed  CAS  Google Scholar 

  • Munro AF (1951) The effect of adrenaline on the guinea-pig intestine. J Physiol 112: 84–94

    PubMed  CAS  Google Scholar 

  • Okwuasaba FK, Cook MA (1980) The effect of theophylline and other methylxanthines on the presynaptic inhibition of the longitudinal smooth muscle of the guinea pig ileum induced by purine nucleotides. J Pharmacol Exp Ther 215: 704–709

    PubMed  CAS  Google Scholar 

  • Paiva TB, Paiva ACM, Shimuta SI (1988) Role of sodium ions in angiotensin tachyphylaxis in the guinea-pig ileum and taenia coli. Naunyn-Schmiedeberg’s Arch Pharmacol 337: 656–660

    PubMed  CAS  Google Scholar 

  • Paton WDM (1957) The action of morphine and related substances on contraction and on acetylcholine output of coaxially stimulated guinea-pig ileum. Br J Pharmacol 12: 119–127

    CAS  Google Scholar 

  • Paton WDM, Zar MA (1968) The origin of acetylcholine released from guinea-pig intestine and longitudinal muscle strips. J Physiol 194: 13–33

    PubMed  CAS  Google Scholar 

  • Postius S, Szelenyi I (1983) In vivo rat bladder: a new model to screen spasmolytic compounds. J Pharmacol Meth 9: 53–61

    CAS  Google Scholar 

  • Rubin B, Laffan RJ, Kotler DG, O’Keefe EH, Demaio DA, Goldberg ME (1978) SQ 14,225 (D-3-mercapto-2-methylropanoyl-L-proline), a novel orally active inhibitor of angiotensin I-converting enzyme. J Pharmacol Exp Ther 204: 71–280

    Google Scholar 

  • Van Rossum JM, van den Brink (1963) Cumulative dose- response curves. Arch Int Pharmacodyn 143: 240–246

    PubMed  Google Scholar 

  • Bult H, Parnham MJ, Bonta IL (1977) Bioassay by cascade superfusion using a highly sensitive laminar flow technique. J Pharm Pharmacol 29: 369–370

    PubMed  CAS  Google Scholar 

  • Elliott GR, Adolfs MJP (1984) Continuous monitoring of prostacyclin production by the isolated, intact, rat aorta using a bioassay technique. J Pharmacol Meth 11: 253–261

    CAS  Google Scholar 

  • Ferreira SH, de Souza Costa F (1976) A laminar flow superfusion technique with much increased sensitivity for the detection of smooth muscle stimulating substances. Eur J Pharmacol 39: 379–381

    PubMed  CAS  Google Scholar 

  • Ferreira SH, Vane JR (1967) Prostaglandins: Their disappearance from and release into the circulation. Nature (Lond) 216: 868–876

    Google Scholar 

  • Fournau P, Bonnet P, Bourgue MF, Paris J (1984) Prostacyclin bioassays using inhibition of platelet aggregation and relaxation of rabbit coeliac artery. J Pharmacol Meth 11: 53–60

    CAS  Google Scholar 

  • Gaddum JH (1953) The technique of superfusion. Br J Pharmacol 8. 321–326

    CAS  Google Scholar 

  • Gilmore N, Vane JR, Wyllie JH (1968) Prostaglandins released by the spleen. Nature (Lond) 218: 1135–1140

    CAS  Google Scholar 

  • Henman MC, Naylor IL, Leach GHD (1978) A critical evaluation of the use of a cascade superfusion technique for the detection and estimation of biological activity. J Pharmacol Meth 1: 13–26

    CAS  Google Scholar 

  • Herman MC, Naylor IL, Leach GHD (1983) Comparison of bioassay methods for the estimation of wound-released prostaglandin-like activity. J Pharmacol Meth 9: 77–82

    Google Scholar 

  • Hong E (1974) Differential pattern of activity of some prostaglandins in diverse superfused tissues. Prostaglandins 8: 213–220

    PubMed  CAS  Google Scholar 

  • Vane JR (1964) The use of isolated organs for detecting active substances in the circulating blood. Br J Pharmacol Che-mother 23: 360–373

    CAS  Google Scholar 

  • Arunlakshana O, Schild HO (1959) Some quantitative use of drug antagonists. Br J Pharmacol 14: 48–58

    CAS  Google Scholar 

  • Daly MJ, Flook JJ, Levy GP (1975) The selectivity of badrenoceptor antagonists on cardiovascular and bronchodilator responses to isoprenaline in the anaesthetized dog. Br J Pharmacol 53: 173–181

    PubMed  CAS  Google Scholar 

  • Khairallah PA, Page LH (1961) Mechanism of action of angiotensin and bradykinin on smooth muscle in situ. Am J Physiol 200: 51–54

    CAS  Google Scholar 

  • Litchfield JT, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J Pharm Exp Ther 96: 99–113

    CAS  Google Scholar 

  • Maggi CA, Meli A (1982) An in vivo procedure for estimating spasmolytic activity in the rat by measuring smooth muscle contractions to topically applied acetylcholine. J Pharmacol Meth 8: 39–46

    CAS  Google Scholar 

  • Bickel M (1983) Stimulation of colonic motility in dogs and rats by an enkephalin analogue pentapeptide. Life Sci 33, Suppl 1: 469–472

    Google Scholar 

  • Bickel M, Bal-Tempe S, Blumbach J, Dohadwalla AN, Lal B, Palm D, Rajagopalan R, Rupp RH, Schmidt D, Volz-Zang C (1990) HL 752, a new enteral active muscarinic receptor antagonist. Med Sci Res 18: 877–879

    CAS  Google Scholar 

  • Maggi CA, Meli A (1984) Eserine-induced hypertone of guinea pig distal colon in vivo: a new pharmacological procedure for testing smooth muscle relaxants. J Pharmacol Meth 12: 91–96

    CAS  Google Scholar 

  • Théodorou V, Fioramonti J, Hachet T, Buéno L (1991) Absorptive and motor components of the antidiarrhoeal action of loperamide: an in vivo study in pigs. Gut 32: 1355–1359

    PubMed  Google Scholar 

  • Bueno L, Ferre JP, Ruckebusch M, Genton M, Pascaud X (1981) Continuous electrical and mechanical activity recording in the gut of the conscious rat. J Pharmacol Meth 6: 129–136

    CAS  Google Scholar 

  • Pascaud XB, Genton MJH, Bass P (1978) A miniature transducer for recording intestinal motility in unrestrained chronic rats. Am J Physiol 235:E523—E 538

    Google Scholar 

  • Ruckebusch M, Fioramonti J (1975) Electrical spiking activity and propulsion in small intestine in fed and fasted rats. Gastroenterology 68: 1500–1508

    Google Scholar 

  • Wright JW, Healy TEJ, Balfour TW, Hardcastle JD (1981) A method for long-term recording of intestinal mechanical and electrical activity in the unrestrained rat. J Pharmacol Meth 6: 233–242

    CAS  Google Scholar 

  • Goldenberg MM, Burns RH (1973) Effectiveness of an unique antispasmotic 3,4-dihydro-5-phenoxy-benzol [b] [1,7)naphthyridin-1(2H)-one EU-1086, in vivo and in vitro. Arch Int Pharmacodyn 203: 55–66

    PubMed  CAS  Google Scholar 

  • Leng-Peschlow E (1986) Acceleration of large intestine transit time in rats by sennosides and related compounds. J Pharm Pharmacol 38: 369–373

    PubMed  CAS  Google Scholar 

  • Macht DI, Barba-Gose J (1931) Two new methods for the pharmacological comparison of insoluble purgatives. J Am Pharm Ass 20: 558–564

    CAS  Google Scholar 

  • Megens AAHP, Canters LLJ, Awouters FHL, Niemegeers CJE (1989) Is in vivo dissociation between the antipropulsive and antidiarrheal properties of opioids in rats related to gut selectivity? Arch Im Pharmacodyn 298: 220–229

    CAS  Google Scholar 

  • Miller MS; Galligan JJ, Burks TF (1981) Accurate measurement of intestinal transit in the rat. J Pharmacol Meth 6: 211–217

    CAS  Google Scholar 

  • Niemegeers CJE, Lenaerts FM, Janssen PAJ (1974) Loperanude (R18 553), a novel type of antidiarrheal agent. Part 2: In vivo parenteral pharmacology and acute toxicity in mice. Comparison with morphine, codeine and diphenoxylate. Arzneim Forsch/Drug Res 24: 1636–1638

    Google Scholar 

  • Shook JE, Lemcke PK, Gehring CA, Hruby VJ, Burks TF (1989) Antidiarrheal properties of supraspinal mu, delta and kappa opioid receptors: Inhibition of diarrhea without constipation. J Pharmacol Exp Ther 249: 83–90

    Google Scholar 

  • Finkelman B (1930) On the nature of inhibition in the intestine. J Physiol 70: 145–157

    Google Scholar 

  • Fox DA, Bauer R, Bass P (1985) Use of gut cyclic motor activity to evaluate a stimulant (narcotic) and inhibitor (anticholinergic) of gastrointestinal-tract activity in the unanesthetized dog. J Pharmacol Meth 13: 147–155

    CAS  Google Scholar 

  • Goldenberg MM, Burns RH (1973) Effectiveness of an unique antispasmotic 3,4-dihydro-5-phenoxy-benzol[b][I,7)naphthyridin-I(21–1)-one EU-1086, in vivo and in vitro. Arch Int Pharmacodyn 203: 55–66

    PubMed  CAS  Google Scholar 

  • Mann FC, Bollman JL (1931) A method for making a satisfactory fistula at any level of the gastro-intestinal tract. Ann Surg 93: 794–797

    Google Scholar 

  • Tasaka K, Farrar JT (1976) Intraluminal pressure of the small intestine of the unanesthetized dog. Pflüger’s Arch 364: 35–44

    PubMed  CAS  Google Scholar 

  • Anthone GJ, Zinner MJ, Yeo CJ (1993) Small bowel origin and caloric dependence of a signal for meal-induced jejuna] absorption. Ann Surg 217: 57–63

    PubMed  CAS  Google Scholar 

  • Bastidas JA, Orandle MS, Zinner MJ, Yeo CJ (1990) Small-bowel origin of the signal for meal-induced jejunal absorption. Surgery 108: 376–383

    PubMed  CAS  Google Scholar 

  • Bastidas JA, Zinner Mi, Bastidas JA, Orandle MS, Yeo CJ (1992) Influence of meal composition on canine jejuna] water and electrolyte absorption. Gastroenterology 102: 486–492

    PubMed  CAS  Google Scholar 

  • Gianotti L, Tchervenkov JI (1992) Stimulatory effect of intraluminal nutriment on burned guinea pig intestinal mucosa. Rivista Italiana Nutrizione Parent Enter 10: 112–118

    Google Scholar 

  • Konturek SJ, Radecki T, Thor P (1974) Comparison of endogenous release of secretin and cholecystokinin in proximal and distal duodenum in the dog. Scand J Gastroenterol 9: 153–157

    PubMed  CAS  Google Scholar 

  • McFadden DW, Jaffe BM, Ferrara A, Zinner MJ (1984) Jejunal absorptive response to a test meal and its modification by cholinergie and calcium channel blockade in the awake dog. Surg Forum 35: 174–176

    Google Scholar 

  • Philpott DJ, Kirk DR, Butzner JD (1993) Luminal factors stimulate intestinal repair during refeeding of malnourished infant rabbits. Canad J Physiol Pharmacol 71: 650–656

    CAS  Google Scholar 

  • Remie R, Rensema JW, Van Dongen JJ (1990) Perfusion of the isolated gut in vivo. In: Van Dongen JJ, Rensema JW, Van Wunnik (eds) Manual of microsurgery in the rat. Part I. Elsevier Science Publ., pp 255–274

    Google Scholar 

  • Sarr MG, Kelly KA, Phillips SF (1981) Feeding augments canine jejunal absorption via a hormonal mechanism. Dig Dis Sci 26: 961–965

    PubMed  CAS  Google Scholar 

  • Thiry L (1864) Über eine neue Methode, den Dünndarm zu isolieren. Natur K150: 77–79

    Google Scholar 

  • Tracy HI, Gregory RA (1964) Physiological properties of a series of synthetic peptides structurally related to gastrin I. Nature 204: 935–938

    PubMed  CAS  Google Scholar 

  • Yeo CJ, Bastidas JA, Schmieg RE, Zinner MJ (1990) Meal-stimulated absorption of water and electrolytes in canine jejunum. Am J Physiol 259, G402 — G409

    PubMed  CAS  Google Scholar 

  • Bass P, Wiley JN (1972) Contractile force transducer for recording muscle activity in unanesthetized animals. J Appl Physiol 32: 567–570

    PubMed  CAS  Google Scholar 

  • Bickel M, Alpermann HG, Roche M, Schemann M, Ehrlein HJ (1985) Pharmacology of a gut motility stimulating enkephalin analogue: Arzneim Forsch/Drug Res 35: 1417–1426

    CAS  Google Scholar 

  • Bickel M, Belz U (1985) Initiation of the interdigestive migrating motor complex by a synthetic enkephalin analogue in the dog. IRCS Med Sci 13: 525–526

    CAS  Google Scholar 

  • Bickel M, Beiz U (1988) Motilin and a synthetic enkephalin induce colonic motor complexes ( CMC) in the conscious dog. Peptides 9: 501–507

    Google Scholar 

  • Ehrlein Hi, Hiesinger E (1982) Computer analysis of mechanical activity of gastroduodenal junction in unanesthetized dogs. Quart J Exp Physiol 67: 17–29

    Google Scholar 

  • Fioramonti J, Garcia-Villar R, Bueno L, Ruckebusch Y (1980) Colonic myoelectrical activity and propulsion in the dog. Digest Dis Sci 25: 641–646

    PubMed  CAS  Google Scholar 

  • Ormsbee Ill HS, Bass P (1976) Gastroduodenal motor gradients in the dog after pyloroplasty. Am J Physiol 230: 389–397

    PubMed  Google Scholar 

  • Ormsbee III HS, Telford GL, Suter CM, Wilson PD, Mason GR (1981) Mechanism of canine migrating motor complex — a reappraisal. Am J Physiol 240: G141 — G146

    PubMed  Google Scholar 

  • Sarna SK (1985) Cyclic motor activity migrating complex. Gastroenterology 89: 894–913

    PubMed  CAS  Google Scholar 

  • Sarna SK, Condon R, Cowles V (1984) Colonic migrating and nonmigrating motor complexes in dogs. Am J Physiol 246: G355 — G360

    PubMed  CAS  Google Scholar 

  • Sarna SK, Condon RE (1984) Morphine-initiated migrating myoelectric complexes in the fed state in dogs. Gastroenterology 86: 662–669

    PubMed  CAS  Google Scholar 

  • Schemann M, Ehrlein HJ. Sahyoun H (1985) Computerised method for pattern recognition of intestinal motility: functional significance of the spread of contractions. Med Biol Eng Comput 23:143–149

    Google Scholar 

  • Szurszewski JH (1969) A migrating electric complex of the canine small intestine. Am J Physiol 217: 1757–1763

    PubMed  CAS  Google Scholar 

  • Fujioka Y, Mizuno N, Morita E, Motozono H, Takahashi K, Yamanaka Y, Shinkuma D (1991) Effect of age on the gastrointestinal absorption of acyclovir in rats. J Pharm Pharmacol 43: 465–469

    PubMed  CAS  Google Scholar 

  • Goerg KJ, Wanitschke R, Diener M, Rummel W (1992) Inhibition of neuronally mediated secretion in rat colonic mucosa by prostaglandin D2. Gastroenterology 103: 781–788

    PubMed  CAS  Google Scholar 

  • Harnett KM, Walsh CT, Zhang L (1989) Effects of Bay o 2752, a hypocholesterolemic agent, on intestinal taurocholate absorption and cholesterol esterification. J Pharm Exp Ther 251: 502–509

    CAS  Google Scholar 

  • Madar Z (1983) Demonstration of amino acid and glucose transport in chick small intestine everted sac as a student laboratory exercise. Biochem Educ 11 9–11

    CAS  Google Scholar 

  • Turner JC, Osborn PJ, McVeagh (1990) Studies on selenate and selenite absorption by sheep ileum using an everted sac method and an isolated, vascular perfused system. Comp Biochem Physiol 95A: 297–301

    CAS  Google Scholar 

  • Wilson TH, Wiseman G (1954) The use of sacs of everted small intestine for the study of transfer of substances from the mucosal to the serosal surface. J Physiol 123: 1 16–125

    Google Scholar 

  • Witkowska D, Sendrowicz L, Oledzka R, Szablicka E, Garszel J (1992) The study of leucine and methionine transport in the gut of rats intoxicated with Thiram. Arch Toxicol 66: 267–271

    PubMed  CAS  Google Scholar 

  • Brighton SW, Dormehl IC, du Pleussis M, Maree M (1987) The effect of an oral gold preparation on the gastrointestinal tract motility in two species of experimental animals. J Pharmacol Meth 17: 185–188

    CAS  Google Scholar 

  • Droppleman DA, Gregory RL, Alphin RS (1980) A simplified method for assessing drug effects on gastric emptying in rats. J Pharmacol Meth 4: 227–230

    CAS  Google Scholar 

  • Megens AAHP, Canters LLJ, Awouters FHL, Niemegeers CJE (1990) Normalization of small intestinal propulsion with loperamide-like antidiarrheal agents. Eur J Pharmacol 17: 357–364

    Google Scholar 

  • Reynell PC, Spray GH (1956) The simultaneous measurement of absorption and transit in the gastro-intestinal tract of the rat. J Physiol 131: 452–462

    PubMed  CAS  Google Scholar 

  • Doluisio JT, Billups NF, Dittert LW, Sugita ET, Swintowsky JV (1969) Drug absorption I: An in situ rat gut technique yielding realistic absorption rates. J Pharm Sci 58: 11961200

    Google Scholar 

  • Ochsenfahrt H (1979) The relevance of blood flow for the absorption of drugs in the vascularly perfused, isolated intestine of the rat. Naunyn-Schmiedeberg’s Arch Pharmacol 306: 105–112

    PubMed  CAS  Google Scholar 

  • Adler R, Hendrickx A, Rush J, Fondacaro JD (1990) Chronic colitis of juvenile rhesus macaques: mucosal tissue levels of interleukin-1 (IL-1) and leucotriene B4 (LTB-4). Gastroenterol 98: A436

    Google Scholar 

  • Aparigio-Pages MN, Verspaget HW, Pena AS, Weterman IT, de Bruin PA, Mierement-Ooms MA, van der Zon JM, van Tol EA, Lamers CB (1989) In vitro cellular cytotoxicity in Crohn’s disease and ulcerative colitis: Relation with disease activity and treatment, and the effect of recombinant gamma interferon. J Clin Lab Immunol 29: 119–124

    Google Scholar 

  • Bach MK, Brashler JR, Jahnson MA (1985) Inhibition by sulfasalazine of LTC synthetase and of rat liver glutathione Stransferases. Biochem Pharmacol 34: 2695–2704

    PubMed  CAS  Google Scholar 

  • Benitz KF, Goldberg L, Coulston F (1973) Intestinal effects of carrageenan in the rhesus monkeys. Food Cosmet Toxicol 11: 565–575

    PubMed  CAS  Google Scholar 

  • Chalifoux LV. Bronson RT (1981) Colonic adenocarcinoma associated with chronic colitis in cotton-top marmosets, Saguinus oedipus. Gastroenterol 80: 942–946

    Google Scholar 

  • Fiocchi C (1990) Immune events associated with inflammatory bowel disease. Gastroenterol 25, Suppl 172: 4–12

    CAS  Google Scholar 

  • Fretland DJ, Widomski DL, Levin S, Gaginella TS (1990) Colonic inflammation in the rabbit induced by phorbol-12myristate-13-acetate. Inflammation 14: 143–150

    PubMed  CAS  Google Scholar 

  • Kim HS, Berstadt A (1992) Experimental colitis in animal models. Scand J Gastroenterol 27: 529–537

    PubMed  CAS  Google Scholar 

  • LeDuc LE, Nast CC (1990) Chemotactic peptide-induced colitis in rabbits. Gastroenterol 98: 929–935

    CAS  Google Scholar 

  • MacPherson B, Pfeiffer CJ (1976) Experimental colitis. Digestion 14: 42–452

    Google Scholar 

  • MacPherson BR, Pfeiffer CJ (1978) Experimental production of diffuse colitis in rats. Digestion 17: 136–150

    Google Scholar 

  • Magnusson KE, Dahlgren C, Sjolander A (1985) Effect of Nformylated-methionyl-leucyl-phenylalanine on gut permeability. Inflammation 9: 365–373

    PubMed  CAS  Google Scholar 

  • Marcus R, Watt J (1969) Seaweeds and ulcerative colitis in laboratory animals. Lancet 2: 489–490

    PubMed  CAS  Google Scholar 

  • Mitchell IC, Turk JL (1990) Effect of the immune modulating agents cyclophosphamide, methotrexate, hydrocortisone, and cyclosporin A on an animal model of granulomatous bowel disease. Gut 31: 674–678

    PubMed  CAS  Google Scholar 

  • Morris CP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace HI (1989) Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 96: 795–803

    PubMed  CAS  Google Scholar 

  • Norris AA (1989) Animal models of inflammatory bowel disease. In: Pharmacological Methods in the Control of Inflammation. Alan R. Liss, Inc. pp 321–342

    Google Scholar 

  • Norris AA, Lewis AJ, Zeitlein IJ (1982) Changes in colonic tissue levels of inflammatory mediators in a guinea-pig model of immune colitis. Agents Actions 12: 239–242

    PubMed  CAS  Google Scholar 

  • Ohkusa T (1985) Production of experimental ulcerative colitis in hamsters by dextran sulfate sodium and change in intestinal microflora. Jpn J Gastroenterol 82: 1327–1336

    CAS  Google Scholar 

  • Okayasu I, Hatekeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R (1990) A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterol 98: 694–702

    CAS  Google Scholar 

  • Ritzpatrick R, Bostwick JSD, Renzetti M, Pendleton RG, Decktor DL (1990) Antiinflammatory effects of various drugs on acetic acid induced colitis in the rat. Agents Actions 30: 393–402

    Google Scholar 

  • Rosenberg EW, Fischer RW (1964) DNCB allergy in the guinea-pig colon. Arch Dermatol 89: 99–112

    PubMed  CAS  Google Scholar 

  • Selve N, Wöhrmann T (1992) Intestinal inflammation in TNBS sensitized rats as a model of chronic inflammatory bowel disease. Mediat Inflamm 1: 121–126

    CAS  Google Scholar 

  • von Herbay A, Gebbers JO, Otto HF (1990) lmmunopatholgy of ulcerative colitis: A review. Hepato-Gastroenterol 37: 99–107

    Google Scholar 

  • Watt J, Marcus R (1972) Ulceration of the colon in rabbits fed sulfated amylopectin. J Pharm Pharmacol 24: 68–69

    PubMed  CAS  Google Scholar 

  • Burkman AM (1982) Assessment of emetic and antiemetic activity. J Pharmacol Meth 8: 165–171

    CAS  Google Scholar 

  • Abadie JM, Wright B, Correa G, Browne ES, Porter JR, Svec F (1993) Effect of dihydro-epiandrosterone on neurotransmitter levels and appetite regulation of the obese Zucker rat. Diabetes 42: 662–669

    PubMed  CAS  Google Scholar 

  • Anelli M, Bizzi A, Caccia S, Codegoni AM, Fracasso C, Garattini S (1992) Anorectic activity of fluoxetine and norfluoxetine in mice, rats, and guinea pigs. J Pharm Pharmacol 44: 696–698

    PubMed  CAS  Google Scholar 

  • Antelman SM, Szechtman H (1975) Tail pinch induces eating in sated rats which appears to depend on nigrostriatal dopamine. Science 189: 731–733

    PubMed  CAS  Google Scholar 

  • Bowden CR, Karkanias CD, Bean Ai (1988) Re-evaluation of histidyl-proline diketopiperazine [cyclo(his-pro)] effects on food intake in the rat. Pharmacol Biochem Behav 29: 357–363

    PubMed  CAS  Google Scholar 

  • Clark JM, Clark AJM, Winn P (1992) N-methyl-D-aspartate lesions of the lateral hypothalamus do not reduce amphetamine or fenfluramine anorexia but enhance the acquisition of eating in response to tail pinch in the rat. Psychopharmacology 109: 331–337

    PubMed  CAS  Google Scholar 

  • Cooper SJ, Dourish CT, Barber DJ (1990 a) Fluoxetine reduces food intake by a cholecystokinin-independent mechanism. Pharmacol Biochem Behav 35: 51–54

    Google Scholar 

  • Cooper SJ, Dourish CT, Barber DJ (1990 b) Reversal of the anorectic effect of (+)-fenfluramine in the rat by the selective cholecystokinin receptor antagonist MK-329. Br J Pharmacol 99: 65–70

    Google Scholar 

  • Cooper SJ, Francis J, Barber Dj (1993) Selective dopamine DI receptor antagonists, SK&F 38393 and CY 208–243 reduce sucrose sham-feeding in the rat. Neuropharmacol 32: 101–102

    CAS  Google Scholar 

  • Cooper SJ, Francis J, Rusk IN (1990 c) The anorectic effect of SK&F 38393, a selective dopamine D, agonist: a micro-structural analysis of feeding and related behavior. Psycho-pharmacology 100: 182–187

    Google Scholar 

  • Eberle-Wang K, Simansky KJ (1992) The CCK-A receptor antagonist, devazipide, blocks the anorectic action of CCK but not peripheral serotonin in rats. Pharmacol Biochem Behav 43: 943–947

    PubMed  CAS  Google Scholar 

  • Ferrari F, Pelloni F, Giuliani D (1992) B-HT 920 stimulates feeding and antagonizes anorexia induced by ACTH and immobilisation. Eur J Pharmacol 210: 17–22

    PubMed  CAS  Google Scholar 

  • Fray PJ, Koob GF, Iversen SD (1982) Tail-pinch-elicited behavior in rats: preference, plasticity and learning. Behav Neural Biol 36: 108–136

    PubMed  CAS  Google Scholar 

  • Garattini S, Bizzi A, Codegoni AM, Caccia S, Mennini T (1992) Progress report on the anorexia induced by drugs believed to mimic some of the effects of serotonin on the central nervous system. Am J Clin Nutr 55: 160S - 1665

    PubMed  CAS  Google Scholar 

  • Hammer VA, Gietzen DW, Beverly JL, Rogers QR (1990) Serotonin, receptor antagonists block anorectic responses to amino acid imbalance. Am J Physiol, Regul Integr Comp Physiol 259: R627 — R636

    CAS  Google Scholar 

  • Hull KM, Maher TJ (1990) L-Tyrosine potentiates the anorexia induced by mixed-acting sympathomimetic drugs in hyperphagic rats. J Pharm Exp Ther 255: 403–409

    CAS  Google Scholar 

  • Leung PMB, Rogers QR (1969) Food intake: regulation by plasma amino acid pattern. Life Sci 8: 1–9

    PubMed  CAS  Google Scholar 

  • Maher TJ, Hull KM (1990) Effects of L-tyrosine on the anorectic activity of mixed-acting sympathomimetics in hyperphagic rats. Eur J Pharmacol 183: 429–430

    Google Scholar 

  • Mennini T, Bizzi A, Caccia S, Codegoni A, Fracasso C, Frittoli E, Guiso G, Padura IM, Taddei C, Uslenghi A, Garattini S (1991) Comparative studies on the anorectic activity of dfenfluramine in mice, rats and guinea pigs. Naunyn Schmiedeberg’s Arch Pharmacol 343: 483–490

    PubMed  CAS  Google Scholar 

  • Rosofsky M, Geary N (1989) Phenylpropanolamine and amphetamine disrupt postprandial satiety in rats. Pharmacol Biochem Behav 34: 797–803

    PubMed  CAS  Google Scholar 

  • Simansky KJ, Vaidya AH (1990) Behavioral mechanisms for the anorectic action of the serotonin (5-HT) uptake inhibitor sertaline in rats: comparison with directly acting 5-HT agonists. Brain Res Bull 25: 953–960

    PubMed  CAS  Google Scholar 

  • Simmons RD, Blosser JC, Rosamond JR (1994) FPL 14294: A novel CCK-8 agonist with potent intranasal anorectic activity in the rat. Pharmacol Biochem Behav 47: 701–708

    PubMed  CAS  Google Scholar 

  • Vergoni AV, Poggioli R, Manama D, Bertolini A (1990) Inhibition of feeding by ACTH-(1–24): behavioral and pharmacological aspects. Eur J Pharmacol 179: 347–355

    PubMed  CAS  Google Scholar 

  • Voigt JP, Fink H, Marsden CA (1995) Evidence for the involvement of the 5-HT,,, receptor in CCK induced satiety in rats. Naunyn-Schmiedeberg’s Arch Pharmacol 351: 217–220

    PubMed  CAS  Google Scholar 

  • Gully D, Fréhel D, Marcy C, Spinazzé A, Lespy L, Neliat G, Maffrand JP, LeFur G (1993) Peripheral biological activity of SR 27897: a new potent non-peptide antagonist of CCKA receptors. Eur J Pharmacol 232: 13–19

    PubMed  CAS  Google Scholar 

  • Litvinchuk MD (1976) Rapid method for standardization cholagogues in mice. Byul Eksp Biol Med 82: 889–890

    CAS  Google Scholar 

  • Makovec FL, Revel L, Rovati L, Setnikar I (1986) In vivo spasmodic activity on the gall bladder of the mouse of new glutamic acid derivatives with CCK antagonistic activity. Gastroenterol 90: 1531–1535

    Google Scholar 

  • Cohen DE, Leighton LS, Carey MC (1992) Bile salt hydrophobicity controls vesicle secretion rates and transformation in native bile. Am J Physiol Gastrointest Liver 263:G 386—G 395

    Google Scholar 

  • Pesson M, Salle J, Auffret C (1959) Activités cholérétique et cholagogue des dérivés del l’acide cinnamique et de l’acide a-phénylcinnamique. Arch Im Pharmacodyn 119: 443–482

    CAS  Google Scholar 

  • Roda A, Aldini R, Grigolo B, Simoni P, Roda E, Pellicciari R, Lenzi PL, Natalini B (1988) 23-Methyl-3a,7b-dihydroxy5b-cholan-24-oic acid: Dose-response study of biliary secretion in rat. Hepatol 8: 1571–1576

    Google Scholar 

  • Castilho LN, Sipahi AM, Bettarello A, Quintäo ECR (1990) Bile acids do not regulate the intestinal mucosal cholesterol synthesis: Studies in the chronic bile duct-ureter fistula rat model. Digestion 45: 147–152

    Google Scholar 

  • Duane WC, Gilberstadt ML Wiegand DM (1979) Diurnal rhythms of bile acid production in the rat. Am J Physiol 236:R175—RI79

    Google Scholar 

  • Gebhard RL; Prigge WF (1992) Thyroid hormone differentially augments biliary sterol secretion in the rat. 11. The chronic bile fistula model. J Lipid Res 33: 1467–1473

    Google Scholar 

  • Pandak WM, Vlahcevic ZR, Heilman DM. Hylemon PB (1990) Regulation of bile acid synthesis. V. Inhibition of conversion of 7-dehydrocholesterol to cholesterol is associated with down-regulation of cholesterol 7a-hydoxylase activity and inhibition of bile acid synthesis. J Lipid Res 31:2149–2158

    Google Scholar 

  • Remie R, Rensema JW, Havinga R, Kuipers F (1991) The permanent bile fistula rat model. Progr Pharmacol Clin Pharmacol 8: 127–145

    Google Scholar 

  • Remie R, Rensema JW, van Wunnik GHJ, van Dongen JJ (1990) Permanent double bile fistula (with intact enterohepatic circulation). In: van Dongen JJ, Remie R, Rensema JW. van Wunnik GHJ (eds) Manual of microsurgery on the laboratory rat. Vol I, Elsevier. Amsterdam. pp 201–212

    Google Scholar 

  • Herrera F, Kemp DR, Tsukamoto M, Woodward ER, Dragstedt LR (1968) A new cannula for the study of pancreatic function. J Appl Physiol 25: 207–209

    PubMed  CAS  Google Scholar 

  • Cabrini DA, Silva AM, Calixto JB (1995) Mechanisms of bradykinin-induced contraction of the guinea-pig gall bladder in vitro. Br J Pharmacol 114: 1549–1556

    PubMed  CAS  Google Scholar 

  • Chowdhury JR, Berkowitz JM, Praissman M, Fara JW (1975) Interaction between octapeptide-cholecystokinin, gastrin, and secretin on cat gall bladder in vitro. Am J Physiol 229: 1311–1315

    PubMed  CAS  Google Scholar 

  • Fara JW, Erde SM (1978) Comparison of in vivo and in vitro responses to sulfated and non-sulfated ceruletide. Eur J Pharmacol 47: 359–363

    PubMed  CAS  Google Scholar 

  • Ryan J, Cohen S (1976) Gallbladder pressure-volume response to gastrointestinal hormones. Am J Physiol 230: 1461–1465

    PubMed  CAS  Google Scholar 

  • Amer MS, Becvar WE (1969) A sensitive in-vitro method for the assay of cholecystokinin. J Endocrin 43: 637–642

    CAS  Google Scholar 

  • Barthol L, Holzer P (1987) Evaluation of a new and potent cholecystokinin antagonist on motor response of the guinea pig intestine. Br J Pharmacol 90: 753–761

    Google Scholar 

  • Chang RS, Lotti VJ (1984) Biochemical and pharmacological characterization of an extremely potent and selective non-peptide cholecystokinin antagonist. Proc Natl Acad Sci, USA, 83: 4923–4926

    Google Scholar 

  • Fara JW, Erde SM (1978) Comparison of in vivo and in vitro responses to sulfated and non-sulfated ceruletide. Eur J Pharmacol 47: 359–363

    PubMed  CAS  Google Scholar 

  • Makovec F, Revel L, Rovati L, Setnikar I (1986) In vivo antispasmotic activity on the gall bladder of the mouse of new glutamic acid derivatives with CCK-antagonistic activity. Gastroenterology 90: 1531

    Google Scholar 

  • Paton WDM, Zar MA (1968) The origin of acetylcholine released from guinea-pig intestine and longitudinal muscle strips. J Physiol (London) 194: 13–33

    CAS  Google Scholar 

  • Zetler G (1984) Ceruletide, ceruletide analogues and cholecystokinin octapeptide (CCK-8): Effects on isolated intestinal preparations and gallbladders of guinea pigs and mice. Peptides 5: 729–736

    PubMed  CAS  Google Scholar 

  • Zetler G, Cannon D, Powell D, Skrabanek P, Vanderhaeghen JJ (1979) A cholecystokinin-like peptide in crude substance P from human and bovine brain. Arch intern Pharmacodyn 238: 128–141

    Google Scholar 

  • Alphin RS, Lin TM (1959) Effect of feeding and sham feeding on pancreatic secretion of the rat. Am J Physiol 197: 260–262

    PubMed  CAS  Google Scholar 

  • Alvarez C, Lopez MA (1989) The effect of alloxan diabetes on exocrine pancreatic secretion in the anesthetized rabbit. Intern J Pancreatol 5: 229–238

    CAS  Google Scholar 

  • Colwell AR (1950) The relation of bile loss to water balance in the rat. Am J Digest Dis 17: 270–276

    PubMed  Google Scholar 

  • Guan D, Maouyo D, Sarfati P, Morisset J (1990) Effects of SMS 201–995 on basal and stimulated pancreatic secretion in rats. Endocrinology 127: 298–304

    PubMed  CAS  Google Scholar 

  • Kim CD. Li P, Lee KY, Coy DH, Chey WY (1993) Effect of [(CH2NH)4,51secretin on pancreatic exocrine secretion in guinea pigs and rats. Am J Physiol, Gastrointest Liver Physiol 265:G805—G810

    Google Scholar 

  • Lin TM, Ivy AC (1957) Relation of secretin to the parasympathetic mechanism for pancreatic secretion. Am J Physiol 187: 361–368

    Google Scholar 

  • Lin TM, Karvinen E, Ivy AC (1957) Role of pancreatic diges- don in cholesterol absorption. Am J Physiol 190: 214–220

    PubMed  CAS  Google Scholar 

  • Niederau M, Niederau G, Strohmeyer G, Grendell JH (1989) Comparative effects of CCK receptor antagonists on rat pancreatic secretion in vivo. Am J Physiol (Gastrointest Liver Physiol) 19:G 150

    Google Scholar 

  • Ivy AC, Janecek HM (1959) Assay of Jorpes-Mutt secretin and cholecystokinin. Acta Physiol Scand 45: 220–230

    PubMed  CAS  Google Scholar 

  • Keller PJ, Cohen E, Neurath H (1958) The proteins of bovine pancreatic juice. J Biol Chem 233: 344–349

    PubMed  CAS  Google Scholar 

  • Lehnert P, Stahlheber H, Forell MM, Dost FH, Fritz H, Hutzel M, Werle E (1969) Bestimmung der Halbwertszeit von Se-cretin. Klin Wschr 47: 1200–1204

    PubMed  CAS  Google Scholar 

  • Lin TM, Ivy AC (1957) Relation of secretin to the parasympathetic mechanism for pancreatic secretion. Am J Physiol 187: 361–368

    Google Scholar 

  • Herrera F, Kemp DR, Tsukamoto M, Woodward ER, Dragstedt LR (1968) A new cannula for the study of pancreatic function. J Appl Physiol 25: 207–209

    PubMed  CAS  Google Scholar 

  • Hosotani R, Chowdhury P, Rayford PhL (1989) L-364,718, a new CCK antagonist, inhibits postprandial pancreatic secretion and PP release in dogs. Dig Dis Sci 34: 462–467

    PubMed  CAS  Google Scholar 

  • Konturek SJ, Cieszkowski M, Kwiecien N, Konturek J, Tasler J, Bilski J (1984) Effects of omeprazole, a substituted benzimidazole, on gastrointestinal secretions, serum gastrin, and gastric mucosal blood flow in dogs. Gastroenterol 86: 71–77

    CAS  Google Scholar 

  • Konturek SJ, Pucher A, Radecki T (1976) Comparison of vasoactive intestinal peptide and secretin in stimulation of pancreatic secretion. J Physiol 255: 497–509

    PubMed  CAS  Google Scholar 

  • Konturek SJ, Radecki T, Thor P (1974) Comparison of endogenous release of secretin and cholecystokinin in proximal and distal duodenum in the dog. Scand J Gastroenterol 9: 153–157

    PubMed  CAS  Google Scholar 

  • Preshaw RM, Grossman Ml (1965) Stimulation of pancreatic secretion by extracts of the pyloric gland area of the stomach. Gastroenterology 48: 36–44

    PubMed  CAS  Google Scholar 

  • Arimura A, Sato H, Coy DH, Schally AV (1975) Radioimmunoassay for GH-release inhibiting hormone. Proc Soc Exp Biol Med 148: 784–789

    PubMed  CAS  Google Scholar 

  • Cai RZ, Szoke B, Lu R, Fu D, Redding TW, Schally AV (1986) Synthesis and biological activity of highly potent octapeptide analogs of somatostatin. Proc Natl Acad Sci, USA, 83: 1896–1900

    Google Scholar 

  • Chariot J Roze C, Vaille C, Debray C (1978) Effects of somatostatin on the external secretion of the pancreas in the rat. Gastroenterology 75:832–837

    Google Scholar 

  • Fölsch UR, Lankisch PG, Creutzfeldt W (1978) Effect of somatostatin on basal and stimulated pancreatic secretion in the rat. Digestion 17: 194–203

    PubMed  Google Scholar 

  • Gerich J Greene K, Hara M, Rizza R, Patton G (1979) Radio-immunoassay of somatostatin and its application in the study of pancreatic somatostatin secretion in vitro. J Lab Clin Med 93:1009–1017

    Google Scholar 

  • Green GM, Nasset ES (1980) Importance of bile in regulation of intraluminal proteolytic enzyme activities in the rat. Gastroenterology 79: 695–702

    PubMed  CAS  Google Scholar 

  • Guan D, Maouyo D, Sarfati P, Morisset J (1990) Effects of SMS 201–995 on basal and stimulated pancreatic secretion in rats. Endocrinology 127: 298–304

    PubMed  CAS  Google Scholar 

  • Konturek SJ, Cieskowski M, Bilski J, Konturek j, Bielansky W, Schally AV (1985) Effects of cyclic hexapeptide analog of somatostatin on pancreatic secretion in dogs. Proc Soc Exp Biol Med 178: 68–72

    PubMed  CAS  Google Scholar 

  • Meyers CA, Murphy WA, Redding TW, Coy DH, Schally AV (1980) Synthesis and biological actions of prosomatostatin. Proc Natl Acad Sci USA, 77: 6171–6174

    PubMed  CAS  Google Scholar 

  • Patel YC (1984) Radioimmunoassay of somatostatin-related peptides. In: Lamer J, Pohl SL (eds) Methods in Diabetes Research, Vol I: Laboratory Methods, Part B, John Wiley & Sons, New York, pp 307–327

    Google Scholar 

  • Patel YC, Reichlin S (1979) Somatostatin. In: Jaffe BM, Behrman HR (eds) Methods of Hormone Radioimmunoassay. Second Edition, Academic Press, New York, pp 77–99

    Google Scholar 

  • Srikant CB, Heisler S (1985) Relationship between receptor binding and biopotency of somatostatin-14 and somatostatin-28 in mouse pituitary tumor cells. Endocrinology 117: 271–278

    PubMed  CAS  Google Scholar 

  • Susini C, Esteve JP, Vaysse N, Pradayrol L, Ribet A (1980) Somatostatin 28: effect on exocrine pancreatic secretion in conscious dogs. Gastroenterology 79: 720–724

    PubMed  CAS  Google Scholar 

  • Vale W, Brazeau P, Rivier C, Brown M, Boss M, Rivier J, Burgus R, Ling N, Guillemin R (1974) Somatostatin. Rec Progr Horm Res 31: 365–397

    Google Scholar 

  • Bakker WH, Krenning EP, Breeman WA, Koper JW, Kooij PP, Reubi JC, Klijn JG, Visser ThJ, Docter R, Lamberts SW (1990) Receptor scintigraphy with a radioiodinated somatostatin analogue: Radiolabeling, biologic activity, and in vivo application in animals. J Nucl Med 31: 15011509

    Google Scholar 

  • Bell GI, Reisine T (1993) Molecular biology of somatostatin receptors. Trends Neurosci 16: 34–38

    PubMed  CAS  Google Scholar 

  • Breder CD, Yamada Y, Yasuda K, Seino S, Saper CB, Bell GI (1992) Differential expression of somatostatin receptors subtypes in brain. J Neurosci 12: 3920–3934

    PubMed  CAS  Google Scholar 

  • Bruno JF, Xu Y, Song J, Berelowitz M (1992) Molecular cloning and functional expression of a brain-specific somatostatin receptor. Proc Natl Acad Sci, USA 89: 1151–1155

    Google Scholar 

  • Murphy WA, Taylor JE, Moreau JP, Coy DH (1989) Novel heptapeptide somatostatin analog displays anti-tumor activity independent of effects on growth hormone secretion. Peptide Res 2: 128–132

    CAS  Google Scholar 

  • O’Carroll AM, Lolait SU, König M, Mahan LC (1992) Molecular cloning and expression of a pituitary somatostatin receptor with preferential affinity for somatostatin-28. Molecul Pharmacol 42: 936–946

    Google Scholar 

  • Pinski J, Milanovic S, Yano T, Hamaoui A, Radulovic S, Cai RZ, Schally AV (1992) Biological activity and receptor binding characteristics to various human tumors of acetylated somatostatin analogs. Proc Soc Exp Biol Med 200: 49–56

    PubMed  CAS  Google Scholar 

  • Raynor K, Coy DC, Reisine T (1992) Analogues of somatostatin bind selectively to brain somatostatin receptor subtypes. J Neurochem 59: 1241–1250

    PubMed  CAS  Google Scholar 

  • Raynor K, Lucke I, Reisine T (1993a) Somatostatin, receptors in the nucleus accumbens selectively mediate the stimulatory effect of somatostatin on locomotor activity in rats. J Pharmacol Exp Ther 265: 67–73

    PubMed  CAS  Google Scholar 

  • Raynor K, Murphy WA, Coy DH, Taylor JE, Moreau JP, Yasuda K Bell GI, Reisine T (1993b) Cloned somatostatin receptors: Identification of subtype-selective peptides and demonstration of high affinity binding of linear peptides. Molecul Pharmacol 43: 838–844

    Google Scholar 

  • Raynor K, O’Carroll AM, Kong H, Yasuda K, Mahan LC, Bell GI, Reisine T (1993c) Characterization of cloned somatostatin receptors SSTR4 and SSTR5. Molecul Pharmacol 44: 385–392

    CAS  Google Scholar 

  • Raynor K, Reisine T (1992) Somatostatin receptors. Crit Rev Neurobiol 6: 273–289

    PubMed  CAS  Google Scholar 

  • Rens-Domiano S, Law SF, Yamada Y, Seino S, Bell GI, Reisine T (1992) Pharmacological properties of two cloned somatostatin receptors. Molec Pharmacol 42: 28–34

    CAS  Google Scholar 

  • Schonbrunn A, Lee AB, Brown PJ (1993) Characterization of a biotinylated somatostatin analog as a receptor probe. Endocrinology 132: 146–154

    PubMed  CAS  Google Scholar 

  • Simon MA, Romero B, Calle C (1988) Characterization of somatostatin binding sites in isolated rat adipocytes. Regulatory Peptides 23: 261–270

    PubMed  CAS  Google Scholar 

  • Thermos K, Reisine T (1988) Somatostatin receptor subtypes in the clonal anterior pituitary cell lines AtT-20 and GH3. Mol Pharmacol 33: 370–377

    PubMed  CAS  Google Scholar 

  • Vanetti M, Kouba M, Wang X, Vogt G, Höllt V (1992) Cloning and expression of a novel mouse somatostatin receptor (SSTR 2B). FEBS Lett 311: 290–294

    PubMed  CAS  Google Scholar 

  • Yamada Y, Post SR, Wang K, Tager HS, Bell GI, Seino S (1992) Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract, and kidney. Proc Nat] Acad Sci, USA, 879: 251–255

    Google Scholar 

  • Yasuda R, Rens-Damiano S, Breder ChD, Law SR, Saper CB, Reisine T, Bell GI (1992) Cloning of a novel somatostatin receptor, SSTR3, coupled to adenyl cyclase. J Biol Chem 267: 20422–20428

    PubMed  CAS  Google Scholar 

  • Burn JH, Finney DJ, Goodwin LG (1952) Biological Standardization, Oxford University Press, London, New York, Toronto, Chapter XVIII, Secretin and Pancreozymin. pp 335–339

    Google Scholar 

  • Herrera F, Kemp DR, Tsukamoto M, Woodward ER, Dragstedt LR (1968) A new cannula for the study of pancreatic function. J Appl Physiol 25: 207–209

    PubMed  CAS  Google Scholar 

  • Izzo RS, Chen AI, Pellecchia C, Praisman M (1989) Secretin internalization and adenosine 3’,5’-monophosphate levels in pancreatic acinar cells. Endocrinology 124: 2252–2260

    PubMed  CAS  Google Scholar 

  • Preshaw RM, Grossman MI (1965) Stimulation of pancreatic secretion by extracts of the pyloric gland area of the stomach. Gastroenterology 48: 36–44

    PubMed  CAS  Google Scholar 

  • Bawab W, Chastre E, Gespach C (1991) Functional and structural characterization of the secretin receptors in rat gastric glands: desensitization and glycoprotein nature. Biosci Rep 11: 33–42

    PubMed  CAS  Google Scholar 

  • Boden G, Wilson RM (1979) Secretin. In: Jaffe BM, Behrman HR (eds) Methods of Hormone Radioimmunoassay. Academic Press, New York, pp 479–494

    Google Scholar 

  • Chang TM, Chey WY (1980) Radioimmunoassay of secretin. A critical review and current status. Dig Dis Sci 25: 529–552

    Google Scholar 

  • Haffar BM, Hocart SJ, Coy DH, Mantey S, Chiang HCV, Jensen RT (1991) Reduced peptide bond pseudopeptide analogues of secretin. A new class of secretin receptor antagonists. J Biol Chem 266: 316–322

    Google Scholar 

  • Ishihara T, Nakamura AS, Kaziro Y, Takahashi T, Takahashi K, Nagata S (1991) Molecular cloning and expression of a cDNA encoding the secretin receptor. EMBO J 10: 1635–1641

    Google Scholar 

  • Jensen RT, Charlton CG, Adachi H, Jones SW, O’Donohue TL, Gardner JD (1983) Use of 1251-secretin to identify and characterize high-affinity secretin receptors on pancreatic acini. Am J Physiol 245: G186 — G195

    PubMed  CAS  Google Scholar 

  • Jensen, RT, Lemp GF, Gardner JD (1982) Interactions of COOH-terminal fragments of cholecystokinin with receptors on dispersed acini from guinea pig pancreas. J Biol Chem 257: 5554–5559

    PubMed  CAS  Google Scholar 

  • Peikin SR, Rottman AJ, Batzri S, Gardner JD (1978) Kinetics of amylase release by dispersed acini prepared from guinea pig pancreas. Am J Physiol 235: E743 — E749

    PubMed  CAS  Google Scholar 

  • Steiner TS, Mangel AW, McVey DC, Vigna SR (1993) Secretin receptors mediating rat stomach relaxation. Am J Physiol, Gastrointest Liver Physiol 264: G863 — G867

    CAS  Google Scholar 

  • Ulrich II CD, Pinon DI, Hadac EM, Holicki EL, Chang-Miller A, Gates LK, Miller LJ, (1993) Intrinsic photoaffinity labeling of native and recombinant rat pancreatic secretin receptors. Gastroenterology 105: 1534–1543

    PubMed  CAS  Google Scholar 

  • Vilardaga JP, Ciccarelli E, Dubeaux C, de Neff P, Bollen A, Robberecht P (1994) Properties and regulation of the coupling to adenylate cyclase of secretin receptors stably transfected in Chinese hamster ovary cells. Mol Pharmacol 45: 1022–1028

    PubMed  CAS  Google Scholar 

  • Zhou Z-C, Gardner JD, Jensen RT (1989) Interaction of peptides related to VIP and secretin with guinea pig pancreatic acini. Ani J Physiol 256: G283 — G290

    CAS  Google Scholar 

  • Amsterdam A, Jamieson JD (1972) Structural and functional characterization of isolated pancreatic exocrine cells. Proc Natl Acad Sci, USA 69: 3028–3032

    Google Scholar 

  • Deyer JC, Thorn P, Bountra C, Jordan CC (1993) Acetylcholine and cholecystokinin induced acid extrusion in mouse isolated pancreatic acinar cells as measured by the microphysiometer. J Physiol 459: 390 P

    Google Scholar 

  • Höcker M, Schmidt WE, Wilms HM, Lehnhoff F, Nustede R, Schafmayer A, Fölsch UR (1990) Measurement of tissue cholecystokinin (CCK) concentrations by bioassay and specific radioimmmunoassay. Characterization of the bioactivity of CCK-58 before and after tryptic cleavage. Eur J Clin Invest 20 (Suppl 1): S45 — S50

    PubMed  Google Scholar 

  • Lewis LD, Williams JA (1990) Regulation of cholecystokinin secretion by food, hormones, and neural pathways in the rat. Am J Physiol 258 (Gastrointest Liver Physiol 21): G512 — G518

    PubMed  CAS  Google Scholar 

  • Liddle RA, Goldfine ID, Williams JA (1984) Bioassay of plasma cholecystokinin in rats: effects of food, trypsin inhibitor, and alcohol. Gastroenterology 87: 542–549

    PubMed  CAS  Google Scholar 

  • Schmidt WE, Creutzfeldt C, Höcker M, Nustede R, Choudhury AR, Schleser A, Rovati LC, Fölsch UR (1991) Cholecystokinin receptor antagonist loxiglumide modulates plasma levels of gastro-entero-pancreatic hormones in man. Eur J Clin Invest 21: 501–511

    PubMed  CAS  Google Scholar 

  • Bertrand P, Böhme GA, Durieux C, Guyon C, Capet M, Jeantaud B, Boudeau P, Ducos B, Pendley CE, Martin GE, Floch A, Doble A (1994) Pharmacological properties of ureidoacetamides, new potent and selective non-peptide CCK,Igastrin receptor antagonists. Eur J Pharm 262: 233–245

    CAS  Google Scholar 

  • Blevins Jr GT, Doi R, Tangoku A, Chowdhury P, McKay D, Rayford PL (1992) Simultaneous measurement of cholecystokinin-stimulated amylase release and cholecystokinin receptor binding in rat pancreatic acini. J Lab Clin Med. 119: 566–573

    PubMed  CAS  Google Scholar 

  • Boden PR, Higginbottom M, Hill DR, Norwell DC, Hughes J, Rees DC, Roberts E, Singh L, Suman-Chauhan N, Wooruff GN (1993) Cholecystokinin dipeptoid antagonists: Design. synthesis, and anxiolytic profile of some novel CCK-A and CCK-B selective and “mixed” CCK-A/CCK-B antagonists. J Med Chem 36: 552–565

    Google Scholar 

  • Chang RS, Lotti VJ (1986) Biochemical and pharmacological characterization of an extremely potent and selective non-peptide cholecystokinin antagonist. Proc Natl Acad Sci, USA, 83: 4923–4926

    Google Scholar 

  • Chang RS, Lotti VJ, Chen TB, Kunkel KA (1986) Characterization of the binding of [3H]-(±)-L-364,718: a new potent, nonpeptide cholecystokinin antagonist radioligand selective for peripheral receptors. Mol Pharmacol 30: 212–217

    PubMed  CAS  Google Scholar 

  • Chang RSL, Lotti VJ, Martin GE, Chen TB (1983) Increase in brain 125I-cholecystokinin (CCK) receptor binding following chronic haloperidol treatment, intracisternal 6- hydroxydopamine or ventral tegmental lesions. Life Sci 32: 871–878

    PubMed  CAS  Google Scholar 

  • Doi R, Hosotani R, Inoue K, Fujii N, Najima H, Rayford PhL, Tobe T (1990) Receptor binding of cholecystokinin analogues in isolated rat pancreatic acini. Biochem Biophys Res Commun 166: 286–292

    PubMed  CAS  Google Scholar 

  • Durieux C, Corringer JP, Bergeron F, Roques BP (1989) [3H]pBC 264, first highly potent and very selective radioligand for CCK-B receptors. Eur J Pharmacol 168: 269–270

    Google Scholar 

  • Evans BE (1993) MK-329: A non-peptide cholecystokinin A antagonist. Drug Dev Res 29: 255–261

    CAS  Google Scholar 

  • Gaisano HY, Klueppelberg UG, Pinon DI, Pfenning MA, Powers StP, Miller LJ (1989) Novel tool for the study of cholecystokinin-stimulated pancreatic enzyme secretion. J Clin Invest 83: 321–325

    PubMed  CAS  Google Scholar 

  • Gully D, Fréhel D, Marcy C, Spinazzé A, Lespy L, Neliat G. Maffrand JP, LeFur G (1993) Peripheral biological activity of SR 27897: a new potent non-peptide antagonist of CCKA receptors. Eur J Pharmacol 232: 13–19

    PubMed  CAS  Google Scholar 

  • Harvey RF (1979) Cholecystokinin — Pancreozymin. In: Jaffe BM, Behrman HR (eds) Methods of Hormone Radioimmunoassay. Academic Press, New York, pp 495–526

    Google Scholar 

  • Hill DR, Woodruff GN (1990) Differentiation of central cholecystokinin receptor binding sites using the non-peptide antagonists MK-329 and L-365,260. Brain Res 526: 276–283

    PubMed  CAS  Google Scholar 

  • Innis RB, Snyder SH (1980) Distinct cholecystokinin receptors in brain and pancreas. Proc Natl Acad Sci, USA, 77: 69176921

    Google Scholar 

  • Kachur JF, Wang SX, Gullikson GW, Gaginella TS (1991) Cholecystokinin-mediated ileal electrolyte transport in the guinea pig. Gastroenterology 101: 1428–1431

    PubMed  CAS  Google Scholar 

  • Kaufmann R, Lindschau C, Henklein P, Boomgaarden M, Haller H, Schöneberg T. Arnswald A, Kölske C, Ott T (1993) Studies with succinylated CCK-4 derivatives: characterization of CCK„ receptor binding and measurement of [Ca’-’], mobilization. Mol Neuropharmacol 3: 147–151

    CAS  Google Scholar 

  • Lin CW, Miller T (1985) Characterization of cholecystokinin receptor sites in guinea-pig cortical membranes using [1251]Bolton-Hunter cholecystokinin octapeptide. J Pharmacol Exp Ther 232: 755–780

    Google Scholar 

  • Makovec F, Revel L, Rovati L, Setnikar 1 (1986) In vivo antispasmodic activity on the gall bladder of the mouse of new glutamic acid derivatives with CCK antagonistic activity. Gastroenterol 90: 1531

    Google Scholar 

  • Maletinska L, Lignon MF, Galas MCh, Bernad N, Pirkovâ J, Hlavacek J, Slaninovâ J, Martinez J (1992) Pharmacological characterization of new cholecystokinin analogues. Eur J Pharmacol 222: 233–240

    PubMed  CAS  Google Scholar 

  • Ohtsuka T, Kotaki H, Nakayama N, Itezono Y, Shimma N, Kudoh T, Kuwahara T. Arisawa M, Yokose K (1993) Tetronothiodin, a novel cholecystokinin Type-B receptor antagonist produced by Streptomyces sp. NR0489. I1. Isolation, characterization and biological activities. J Antibiotics 46: 11–17

    Google Scholar 

  • Pendley ChE, Fitzpatrick LR, Ewing RW, Molino BF, Martin GE (1993) The gastrin/cholecystokinin-B receptor antagonist L-365,260 reduces basal acid secretion and prevents gastrointestinal damage induced by aspirin, ethanol and cysteamine in the rat. J Pharmacol Exp Ther 265: 1348 1354

    Google Scholar 

  • Poirot SS, Dufresne M, Jiménez J, Vaysse N, Fourmy D (1992) Biochemical characterization of a subtype pancreatic cholecystokinin receptor and its agonistic binding domain. J Receptor Res 12: 233–253

    CAS  Google Scholar 

  • Praissman M, Martinez PA, Saladino CF, Berkowitz JM, Steggles AW, Finkelstein JA (1983) Characterization of cholecystokinin binding sites in rat cerebral cortex using a 125I-CCK-8 probe resistant to degradation. J Neurochem 40: 1406–1413

    PubMed  CAS  Google Scholar 

  • Praissman M, Walden ME, Pellecchia C (1983) Identification and characterization of a specific receptor for cholecystokinin on isolated fundic glands from guinea pig gastric mucosa using a biologically active 1251-CCK-8 probe. J Receptor Res 3: 647–665

    CAS  Google Scholar 

  • Saito A, Goldfine ID, Williams JA (1981) Characterization of receptors for cholecystokinin and related peptides in mouse cerebral cortex. J Neurochem 37: 483–490

    PubMed  CAS  Google Scholar 

  • Schäfer U, Harhammer R, Boomgaarden M, Sohr R, Ott T, Henklein P, Repke H (1994) Binding of cholecystokinin-8 (CCK-8) peptide derivates to CCKA and CCKB receptors. J Neurochem 62: 1426–1431

    PubMed  Google Scholar 

  • Sethi T, Herget T, Wu SV, Walsh JH, Rozengurt E (1993) CCKA and CCKB receptors are expressed in small cell lung cancer lines and mediate Ca’ mobilization and clonal growth. Cancer Res 53: 5208–5213

    PubMed  CAS  Google Scholar 

  • Smith JP, Rickabaugh CA, Mc Laughlin PJ, Zagon IS (1993) Cholecystokinin receptors and PANC-1 human pancreatic cancer cells. Am J Physiol, Gastrointest Liver Physiol 265: G149 — G155

    CAS  Google Scholar 

  • Steigerwalt RW, Goldfine ID, Williams JA (1984) Characterization of cholecystokinin receptors on bovine gallbladder membranes. Am J Physiol 247: G709 — G714

    PubMed  CAS  Google Scholar 

  • Tilley JW, Danho W, Shiuey SJ, Kulesha I, Sarabu R, Swistok J, Makofske R, Olson GL, Chiang E, Rusiecki VK, Wagner R, Michalewsky J, Triscari J, Nelson D, Chiruzzo FY, Weatherford S (1992) Structure activity of C-terminal modified analogs of Ac-CCK-7. Int J Peptide Protein Res 39: 322–336

    CAS  Google Scholar 

  • Van Dijk A, Richard JG, Trzeciak A, Gillessen D, Möhler H (1984) Cholecystokinin receptors: biochemical demonstration and autoradiographical localization in rat brain and pancreas using [’HIcholecystokininx as radioligand. J Neurosci 4: 1021–1033

    PubMed  Google Scholar 

  • Wank SA, Harkins R, Jensen JT, Shapira H, deWeerth A; Slattery T (1992a) Purification, molecular cloning, and functional expression of the cholecystokinin receptor from rat pancreas. Proc Natl Acad Sci, USA, 89: 3125–3129

    Google Scholar 

  • Wank SA, Pisegna JR, deWeerth A (1992b) Brain and gastrointestinal cholecystokinin receptor family: structure and functional expression. Proc Natl Acad Sci, USA, 89: 86918695

    Google Scholar 

  • Zhou W, Povovski SP, Longnecker DS, Bell RH Jr (1992) Novel expression of gastrin (cholestystokinin B) receptors in azaserine-induced rat pancreatic carcinoma: Receptor determination and characterization. Cancer Res 52: 6905–6911

    Google Scholar 

  • Adler G, Hupp T, Kern HF (1979) Course and spontaneous regression of acute pancreatitis in the rat. Virchow’s Arch 382: 31–37

    CAS  Google Scholar 

  • Amsterdam A, Jamieson JD (1972) Structural and functional characterization of isolated pancreatic exocrine cells. Proc Natl Acad Sci, USA 69: 3028–3032

    Google Scholar 

  • Griesbacher T, Lembeck F (1992) Effects of the bradykinin antagonist, HOE 140, in experimental acute pancreatitis. Br J Pharmacol 107: 356–360

    PubMed  CAS  Google Scholar 

  • Griesbacher T, Tiran B, Lembeck F (1993) Pathological events in experimental acute pancreatitis prevented by the bradykinin antagonist, Hoe 140. Br J Pharmacol 108: 405–411

    PubMed  CAS  Google Scholar 

  • Herman L, Fitzgerald PJ (1962) Restitution of pancreatic acinar cells following ethionine. J Cell Biol 12: 279–312

    Google Scholar 

  • Ito T, Kimura T, Furukawa M, Yamaguchi H, Nakano I, Nawata H (1991) Effects of cyclosporin A on caeruleininduced pancreatitis in rats. Med Sci Res 19: 585–586

    CAS  Google Scholar 

  • Lampel M, Kern HF (1987) Acute interstitial pancreatitis in the rat induced by excessive doses of a pancreatic secretagogue. Virchow’s Arch A Path Anat Histol 373: 97–117

    Google Scholar 

  • Lombardi B, Estes LW, Longnecker DS (1975) Acute hemorrhagic pancreatitis (massive necrosis) with fat necrosis induced in mice by DL-ethionine fed with a choline-deficient diet. Am J Pathol 79: 464–480

    Google Scholar 

  • Niederau C, Ferrell LD, Grendell JH (1985) Caerulein-induced acute necrotizing pancreatitis in mice: Protective effects of proglumide, benzotript, and secretin. Gastroenterology 88: 1192–1204

    Google Scholar 

  • Niederau C, Niederau M, Lüthen R, Strohmeyer G, Ferrell LD (1990) Pancreatic exocrine secretion in acute experimental pancreatitis. Gastroenterology 99: 1120–1127

    PubMed  CAS  Google Scholar 

  • Renner IG, Wisner JR, Lavingne BC (1986) Partial restoration of pancreatic function by exogenous secretin in rats with caeruletide-induced acute pancreatitis. Dig Dis Sci 31: 305–313

    PubMed  CAS  Google Scholar 

  • Watanabe S, Nishino T, Chang JH, Shiratori K. Moriyoshi Y, Takeuchi T (1993) Effect of Hoe 140, a new potent bradykinin antagonist, on experimental acute pancreatitis in rats. Gastroenterol 104, Suppl: A342

    Google Scholar 

  • Yazu T, Kimura T, Sumii T, Nawata H (1991) Alteration of cholecystokinin receptor binding after caerulein-induced pancreatitis in rats. Digestion 50: 142–148

    PubMed  CAS  Google Scholar 

  • Lankisch PG, Winckler K, Bokermann M, Schmidt H, Creutzfeldt W (1974) The influence of glucagon on acute experimental pancreatitis in the rat. Scand J Gastroenterol 9: 725–729

    PubMed  CAS  Google Scholar 

  • Niederau C, Niederau M, Lüthen R, Strohmeyer G, Ferrell LD (1990) Pancreatic exocrine secretion in acute experimental pancreatitis. Gastroenterology 99: 1120–1127

    PubMed  CAS  Google Scholar 

  • Baader E, Bickel M, Brocks D, Engelbart K, Günzler V, Schmidts HL, Vogel G (1990) Liver selective fibrosuppression in the rat by HOE 077, an inhibitor of prolyl-4hydroxylase. Hepatology 12: 947

    Google Scholar 

  • Bickel M, Baader E, Brocks D, Burghard H, Günzler V, Engelbart K, Hanauske-Abel M, Vogel HG (1990) Liver selective fibrosuppression in the rat by a derivative of pyridine-2,4-dicarboxylate. Gastroenterology 98:A 570

    Google Scholar 

  • Bickel M, Baader E, Brocks DG. Engelbart K, Günzler V, Schmidts HL. Vogel HG (1991) Beneficial effects of inhibitors of prolyl-4-hydroxylase in CCI4-induced fibrosis of the liver in rats. J Hepatol 13, Suppl 3:S26—S34

    Google Scholar 

  • Kervar SS, Felix AM (1976) Effect of L-3,4-dehydroproline on collagen synthesis and prolyl hydroxylase activity in mammalian cell cultures. J Biol Chem 251: 503–509

    Google Scholar 

  • Kervar SS, Oronsky AL, Choe D, Alvarez B (1976) Studies on the effect of 3,4-dehydroproline on collagen metabolism in carbon tetrachloride-induced hepatic fibrosis. Arch Biochem Biophys 182: 118–123

    Google Scholar 

  • Nolan JC, Ridge S, Oronsky AL, Kervar SS (1978) Studies on the mechanism of reduction of prolyl hydroxylase activity by D,L-3,4 dehydroproline. Arch Biochem Biophys 189: 448–453

    PubMed  CAS  Google Scholar 

  • Prockop DJ, Berg RA, Kivirikko KI, Uitto J (1976) Intracellular steps in the biosynthesis of collagen. In: Ramachandran GN, Reddi AH (eds) Biochemistry of Collagen. Plenum Press, New York and London, pp 163–273

    Google Scholar 

  • Vogel HG (1969) Zur Wirkung von Hormonen auf physikalische and chemische Eigenschaften des Binde-and Stützgewebes. Arzneim Forsch/Drug Res 19:1495, 1732, 1790, 1981

    Google Scholar 

  • Vogel HG (1972) Effects of D-penicillamine and prednisolone on connective tissue in rats. Conn Tiss Res 1: 283–289

    CAS  Google Scholar 

  • Vogel HG (1974 a) Organ specificity of the effects of DPenicillamine and of lathyrogen (aminoacetonitrile) on mechanical properties of connective and supporting tissue. Arzneim Forsch/Drug Res 24:157–163

    Google Scholar 

  • Vogel 1IG (1974 b) Correlation between tensile strength and collagen content in rat skin. Effect of age and cortisol treatment. Conn Tiss Res 2: 177–182

    Google Scholar 

  • Vogel HG (1976) Tensile strength, relaxation and mechanical recovery in rat skin as influenced by maturation and age. J Med 7: 177–188

    PubMed  CAS  Google Scholar 

  • Vogel HG (1978) Influence of maturation and age on mechanical and biochemical parameters of connective tissue of various organs in the rat. Conn Tiss Res 6: 161–166

    CAS  Google Scholar 

  • Vogel HG (1980) Influence of maturation and aging on mechanical and biochemical properties of connective tissue in rats. Mechanism Aging Develop 14: 283–292

    CAS  Google Scholar 

  • Vogel HG (1989) Mechanical properties of rat skin with aging. In: Balin AK, Kligman AM (eds). Aging and the Skin. Raven Press, New York, pp 227–275

    Google Scholar 

  • Hanauske-Abel HM, Günzler V (1982) A stereochemical concept for the catalytic mechanism of prolylhydroxylase. Applicability to classification and design of inhibitors. J Theor Biol 94: 421–455

    Google Scholar 

  • Kivirikko KI, Myllylä R (1982) The hydroxylation of prolyl and lysyl residues. In: Freedman RB, Hawkins HC (eds) The enzymology of post-translational modification of proteins. Academic Press, London, pp 53–104

    Google Scholar 

  • Majamaa K, Günzler V, Hanauske-Abel HM, Myllylä R, Kivirikko KI (1986) Partial identity of 2-oxoglutarate and ascorbate binding sites of prolyl 4-hydroxylase. J Biol Chem 261: 7819–7823

    PubMed  CAS  Google Scholar 

  • Majamaa K, Hanauske-Abel HM, Günzler V, Kivirikko KI (1984) The 2-oxoglutarate binding site of prolyl 4-hydroxylase. Identification of distinct subsites and evidence for 2-oxoglutarate decarboxylation in a ligand reaction at the enzyme-bound ferrous ion. Eur J Biochem 138: 239–245

    PubMed  CAS  Google Scholar 

  • Majamaa K, Turpeenniemi-Hujanen TM, Latipää P, Günzler V, Hanauske-Abel HM, Hassinen IE, Kivirikko KI (1985) Differences between collagen hydroxylases and 2oxoglutarate dehydrogenase in their inhibition by structural analogues of 2-oxoglutarate. Biochem J 229: 127–133

    PubMed  CAS  Google Scholar 

  • Peterkofsky B, DiBlasio R (1975) Modification of the tritium-release assays for prolyl and lysyl hydroxylases using Dowex-50 columns. Anal Biochem 66: 279–286

    PubMed  CAS  Google Scholar 

  • Negro A, Garbisa S, Gotte L, Spina M (1987) The use of reverse-phase high-performance liquid chromatography and precolumn derivatization with dansyl chloride for quantitation of specific amino acids in collagen and elastin. Anal Biochem 160: 39–46

    PubMed  CAS  Google Scholar 

  • Tschank G, Raghunath M, Günzler V, Hanauske-Abel HM (1987) Pyridinedicarboxylates, the first mechanism-derived inhibitors for prolyl 4-hydroxylase, selectively suppress cellular hydroxyprolyl biosynthesis. Biochem J 248: 625–633

    PubMed  CAS  Google Scholar 

  • Tschank G, Hanauske-Abel HM, Peterkofsky B (1988) The effectiveness of inhibitors of soluble prolyl hydroxylase against the enzyme in the cisternae of isolated bone microsomes. Arch Biochem Biophys 261: 312–323

    PubMed  CAS  Google Scholar 

  • Bruckner P, Prockop DJ (1981) Proteolytic enzymes as probes for the triple-helical conformation of procollagen. Anal Biochem 110: 360–368

    PubMed  CAS  Google Scholar 

  • Juva K, Prockop DJ (1966) Modified procedure for the assay of H3- or C^-labeled hydroxyproline. Anal Biochem 15: 77–83

    PubMed  CAS  Google Scholar 

  • Peterkofsky B, Assad R (1976) Submicrosomal localization of prolyl hydroxylase from chick embryo limb bone. J Biol Chem 251: 4770–4777

    PubMed  CAS  Google Scholar 

  • Peterkofsky B, Chojkier M, Bateman J (1982) Determination of collagen synthesis in tissue and cell culture systems. In: Furthmayr H (ed) Immunochemistry of the extracellular matrix. Vol II: Applications. CRC Press, Boca Raton, pp 19–47

    Google Scholar 

  • Eger W (1954) Das Verhalten der Phosphoamidase in der Leber bei Tetrachlorkohlenstoff-und Allylalkoholvergiftung Virchows Arch 325: 648–656

    CAS  Google Scholar 

  • Eger W (1955) Der Einfluß von Antibiotika und Sulfonamiden auf Lebernekrosen im Allylalkoholtest. Med Mschr 9: 294295

    Google Scholar 

  • Abe H, Sakaguchi M, Odashima S, Arichi S (1982) Protective effect of saikosaponin-d isolated from Bupleurum falcatum L. on CCI; induced liver injury in the rat. Naunyn Schmiedeberg’s Arch Pharmacol 320: 266–271

    PubMed  CAS  Google Scholar 

  • Ala-Kokko L, Stenbäck F, Ryhänen L (1987) Preventive effect of malotilate on carbon tetrachloride-induced liver damage and collagen accumulation in the rat. Biochem J 246: 503–509

    PubMed  CAS  Google Scholar 

  • Bickel M, Baader E, Brocks D, Burghard H, Günzler V, Engelbart K, Hanauske-Abel HM, Vogel HG (1990) Liver selective fibrosuppression in the rat by a derivative of pyridine-2,4-dicarboxylate, S 0885. Gastroenterology 98: A 570

    Google Scholar 

  • Bickel M, Baader E, Brocks D, Günzler V, Schmidts HL (1991) Effects of a prolyl-4-hydroxylase inhibitor on collagen synthesis in different rat organs. Eur J Gastroenterol Hepatol 3, Suppl 1, S65, Abstr. 260

    Google Scholar 

  • Bickel M, Baader E, Brocks DG, Engelbart K, Günzler V, Schmidts HL, Vogel HG (1991) Beneficial effects of inhibitors of prolyl 4-hydroxylase in CCI,-induced fibrosis of the liver in rats. J Hepatol 13, Suppl 3: S26 — S34

    Google Scholar 

  • Brocks D, Bickel M, Engelbarth K (1986) Type IV collagen antigens in serum of rats with experimental fibrosis of the liver. Alcohol Alcoholism Suppl 1, 497–500

    Google Scholar 

  • Hirayama C, Morotomi I, Hiroshige K (1979) Quantitative and metabolic changes of hepatic collagens in rats after tetrachloride poisoning. Biochem J 118: 229–232

    Google Scholar 

  • Alpini G, Ulrich II CD, Phillips JO, Pham LD, Miller LJ, LaRusso NF (1994) Upregulation of secretin receptor gene expression in rat cholangiocytes after bile duct ligation. Am J Physiol, Gastrointest Liver Physiol 266: G922 — G928

    CAS  Google Scholar 

  • Cameron GR, Oakley CL (1932) Ligation of the common bile duct. J Path 35: 769–798

    Google Scholar 

  • Kountouras J, Billing BH, Scheuer PJ (1984) Prolonged bile duct obstruction: a new experimental model for cirrhosis in the rat. Br J Exp Path 65: 305–311

    CAS  Google Scholar 

  • Decker K, Keppler D (1972) Galactosamine induced liver injury. In: Popper H, Schaffner F (eds) Progress in Liver Disease, Vol IV, Grune and Stratton Inc, New York, pp 183–199

    Google Scholar 

  • Eggstein S, Kreisel W, Gerok W, Eggstein M (1989) Dipeptidyl-aminopeptidase IV in einem klinischen Krankengut und bei Galaktosaminhepatitis der Ratte: Aktivität und Lektinaffinitätschromatographie in Serum und Leberplasmamembran. J Clin Chem Clin Biocheni 27: 547–554

    Google Scholar 

  • Galanos C, Freudenberg MA, Reutter W (1979) Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc Natl Acad Sci USA 76: 5939–5943

    PubMed  CAS  Google Scholar 

  • Jonker AM, Dijkhuis FWJ, Hardonk MJ, Moerkerk P, Kate JT, Grond J (1994) Immunohistochemical study of hepatic fibrosis induced in rats by multiple galactosamine injections. Hepatology 19: 775–781

    PubMed  CAS  Google Scholar 

  • Keppler D, Lesch R, Reutter W. Decker K (1968) Experimental hepatitis induced by D-galactosamine. Exp Mol Pathol 9: 279–290

    PubMed  CAS  Google Scholar 

  • Krell H, Höke H, Pfaff E (1982) Development of intrahepatic cholestasis by a-naphthylisothiocyanate in rats. Gastroenterology 82: 507–514

    PubMed  CAS  Google Scholar 

  • Leighton JA, Bay MK, Maldonato AL, Johnson RF, Schenker St, Speeg KV (1990) The effect of liver dysfunction on colchicine pharmacokinetics in the rat. Hepatology ll: 210–215

    Google Scholar 

  • Lesch R, Keppler D, Reutter W, Rudigier J, Oehlert W, Decker K (1970) Entwicklung einer experimentellen Leberzirrhose durch D-Galaktosamin. Histologische, biochemische und autoradiographische Untersuchungen an Ratten. Virchows Arch, Abt B Zellpath 6: 57–71

    Google Scholar 

  • Zieve L, Anderson WR, Dozeman R (1988) Hepatic regenerative enzyme activity after diffuse injury with galactosamine: relationship to histologic alterations. J Lab Clin Med 112: 575–582

    PubMed  CAS  Google Scholar 

  • Zimmerman HJ (1976) Experimental hepatotoxicity. In: Born GVR, Eichler O, Farah A, Herken H, Welch AD (eds) Handbook of Experimental Pharmacology, Vol XVI: Experimental production of diseases. Part 5: Liver. Springer Verlag Berlin, Heidelberg, New York, pp 1–120

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vogel, H.G., Vogel, W.H. (1997). Activity on the gastrointestinal tract. In: Vogel, H.G., Vogel, W.H. (eds) Drug Discovery and Evaluation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03333-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03333-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03335-7

  • Online ISBN: 978-3-662-03333-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics