Advertisement

Cardiovascular activity

  • H. Gerhard Vogel
  • Wolfgang H. Vogel

Abstract

The α-adrenoreceptor population of plasma membranes from rat heart ventricles consists only of the α1-adrenoreceptor subtype. A constant concentration of the radioligand 3H-prazosin (0.2–0.3 nM) is incubated with increasing concentrations of a non-labeled test drug (0.1 nM–1 mM) in the presence of plasma membranes from rat heart ventricles. If the test drug exhibits any affinity to α-adrenoceptors, it is able to compete with the radioligand for receptor binding sites. Thus, the lower the concentration range of the test drug, in which the competition reaction occurs, the more potent is the test drug. The assay is used to evaluate the binding characteristics of drugs at the αladrenoceptor.

References

  1. Ahlquist RP (1948) A study of the adrenotropic receptors. Am J Physiol 153: 586–600PubMedGoogle Scholar
  2. Aboud R, Shafii M, Docherty JR (1993) Investigation of the subtypes of α1-adrenoceptor mediating contractions of rat aorta, vas deferens and spleen. Br J Pharmacol 109: 80–87PubMedCrossRefGoogle Scholar
  3. Adolfo JA et al (1989) Species heterogeneity of hepatic a,adrenoceptors: α1A, α1B, and α1C-subtypes. Biochem Biophys Res Comm 186: 760–767Google Scholar
  4. Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo RR, Trendelenburg U (1994) IV. International union of pharmacology nomenclature of adrenoceptors. Pharmacol Rev 46: 121–136PubMedGoogle Scholar
  5. Cheng YC, Prusoff WH (1973). Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22: 3099–3108PubMedCrossRefGoogle Scholar
  6. Endoh M, Takanashi M, Norota I (1992) Role of alphalA adrenoceptor subtype in production of the positive isotropic effect mediated via myocardial alpha, adrenoceptors in the rabbit papillary muscle: influence of selective alpha,, subtype antagonists WB 4101 and 5—methylurapidil. Naunyn-Schmiedeberg’s Arch Pharmacol 345: 578–585PubMedGoogle Scholar
  7. Garcia-Sâinz JA, Romero-Avila MT, Hernandez RA, Macias-Silva M, Olivares-Reyes A, Gonzalez-Espinosa C (1992) Species heterogeneity of hepatic α1-adrenoceptors: α1A-, α1B and α1Csubtypes. Biochem Biophys Res Commun 186: 760–767PubMedCrossRefGoogle Scholar
  8. Greengrass P, Bremner R (1979) Binding characteristics of 3H-prazosin to rat brain α-adrenergic receptors. Eur J Pharmacol 55: 323–326PubMedCrossRefGoogle Scholar
  9. Guicheney P, Meyer P (1981). Binding of [3H]-prazosin and [3H]-dihydroergocryptine to rat cardiac α-adrenoceptors. Br J Pharmac 73: 33–39CrossRefGoogle Scholar
  10. Hoffman BB, de Lean A, Wood CL, Schocken DD, Lefkowitz RJ (1979). Alphα-adrenergic receptor subtypes: Quantitative assessment by ligand binding. Life Sci 24: 1739–1746Google Scholar
  11. Miach PJ, Dausse JP, Cardot A, Meyer P (1980). 3H-prazosin binds specifically to ‘α1’-adrenoceptors in rat brain. Naunyn-Schmiedeberg’s Arch Pharmacol 312: 23–26Google Scholar
  12. Michel AD, et al (1989) Identification of a single α1A-adrenoceptor corresponding to the α1, subtype in rat submaxillary gland. Br J Pharmacol 98: 833–889CrossRefGoogle Scholar
  13. Ohmura T, Oshita M, Kigoshi S, Muramatsu I (1992) Identification of α1-adrenoceptor subtypes in the rat vas deferens: binding and functional studies. Br J Pharmacol 107: 697–704PubMedCrossRefGoogle Scholar
  14. Oshita M, Kigoshi S, Muramatsu I (1993) Pharmacological characterization of two distinct α1-adrenoceptor subtypes in rabbit thoracic aorta. Br J Pharmacol 108: 1071–1076PubMedCrossRefGoogle Scholar
  15. Regan JW, Cotecchia S (1992) The α-adrenergic receptors: new subtypes, pharmacology, and coupling mechanisms. In: Brann MR (ed) Molecular Biology of G-Protein-coupled receptors. Birkhäuser, Boston Basel Berlin, pp 76–112CrossRefGoogle Scholar
  16. Satoh M, Kojima C, Takayanagi I (1992) Characterization of α1-adrenoceptor subtypes labeled by [3H]prazosin in single cells prepared from rabbit thoracic aorta. Eur J Pharmacol 221: 35–41PubMedCrossRefGoogle Scholar
  17. Schwinn DA, Lomasney JW (1992) Pharmacologic characterization of cloned α1-adrenoceptor subtypes: selective antagonists suggest the existence of a fourth subtype. Eur J Pharmacol — Mol Pharmacol Sect 227: 433–436CrossRefGoogle Scholar
  18. Timmermans PBMWM, Karamat Ali F, Kwa HY, Schoop AMC, Slothorst-Grisdijk FP, van Zwieten PA (1981) Identical antagonist selectivity of central and peripheral alpha, adrenoceptors. Mol Pharmacol 20: 295–301PubMedGoogle Scholar
  19. Vargas HM, Cunningham D, Zhou L, Hartman HB, Gorman AJ (1993) Cardiovascular effects of chloroethylclonidine, a irreversible α1B-adrenoceptor antagonist, in the unanesthetized rat: a pharmacological analysis in vivo and in vitro. J Pharm Exp Ther 266: 864–871Google Scholar
  20. Veenstra DMJ, van Buuren KJH, Nijkamp FP (1992) Determination of α1-adrenoceptor subtype selectivity by [3H]prazosin displacement studies in guinea-pig cerebral cortex and rat spleen membranes. Br J Pharmacol 107: 202–206PubMedCrossRefGoogle Scholar
  21. Boyajian CL, Leslie FM (1987) Pharmacological evidence for alpha-2 adrenoceptor heterogeneity: Differential binding properties of [3H]rauwolscine and [3H]idazoxan in rat brain. J Pharmacol Exp Ther 241: 1092–1098PubMedGoogle Scholar
  22. Brasch H (1991) No influence of prejunctional α2-adrenoceptors on the effects of nicotine and tyramine in guinea-pig atria. J Au ton Pharmacol 11: 37–44CrossRefGoogle Scholar
  23. Broadhurst AM, Alexander BS, Wood MD (1988) Heterogeneous 3H-rauwolscine binding sites in rat cortex: two alpha2-adrenorecptor subtypes or an additional non-adrenergic interaction? Life Sci 43: 83–92PubMedCrossRefGoogle Scholar
  24. Brown CM, MacKinnon AC, McGrath JC, Spedding M, Kilpatrick AT (1990) α2-adrenoceptors subtypes and imidazoline-like binding sites in the rat brain. Br J Pharmacol 99: 803–809Google Scholar
  25. Bylund DB (1978) Subtypes of α2-adrenoceptors: pharmacological and molecular biological evidence converge. Trends Pharmacol Sci 9: 356–361CrossRefGoogle Scholar
  26. Bylund DB, Eikenberg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo RR, Trendelenburg U (1994) IV. International union of pharmacology nomenclature of adrenoceptors. Pharmacol Rev 46: 121–136PubMedGoogle Scholar
  27. Bylund DB, Martinez JR (1981) Post-synaptic localization of α2-adrenergic receptors in rat submandibular gland. J Neurosci 1: 1003–1007PubMedGoogle Scholar
  28. Bylund DB, Ray-Prenger C, Murphy TJ (1988) Alpha-2A and alpha-2B adrenergic receptor subtypes: antagonist binding in tissues and cell lines containing only one subtype. J Pharmacol Exp Ther 245: 600–607PubMedGoogle Scholar
  29. Connaughton S, Docherty R (1989) Functional evidence for heterogeneity of peripheral prejunctional α2-adrenoceptors. Br J Pharmacol 101: 285–290CrossRefGoogle Scholar
  30. Gleason MM, Hieble JP (1992) The α2-adrenoceptors of the human retinoblastoma cell line (Y79) may represent an additional example for the ax-adrenoceptor. Br J Pharmacol 107: 222–225PubMedCrossRefGoogle Scholar
  31. Gold MS, Redmond DE, Kleber HD (1978) Clonidine blocks acute opiate withdrawal symptoms. Lancet 2: 599–602PubMedCrossRefGoogle Scholar
  32. Goldberg MR, Robertson D (1983) Yohimbine: a pharmacological probe for the study of the a2-adrenoreceptor. Pharmacol Rev 35: 143–180PubMedGoogle Scholar
  33. Hieble JP, Sulpicio AC, Nichols AJ, Willette RN, Ruffulo RR (1988) Pharmacologic characterization of SK00000F 104078, a novel alpha-2 adrenoceptor antagonist which discriminates between pre-and postjunctional alpha-2 adrenoceptors. J Pharm Exp Ther 247: 645–652Google Scholar
  34. Kobinger W, Walland A (1967) Investigations into the mechanism of the hypotensive effect of 2-(2,6-dichlorphenylamino)-2-imidazoline-HCI. Eur J Pharmacol 2: 155–162PubMedCrossRefGoogle Scholar
  35. Langer SZ (1977) Presynaptic receptors and their role in the regulation of transmitter release. Br J Pharmacol 60: 481–497PubMedCrossRefGoogle Scholar
  36. Langer SZ (1981) Presynaptic regulation of the release of catecholamines. Pharmacol Rev 32: 337–362Google Scholar
  37. McCall RB (1990) Role of neurotransmitters in the central regulation of the cardiovascular system. Progr Drug Res 35: 25–84Google Scholar
  38. Michel AD, Loury DN, Withing RL (1989) Differences between the a2-adrenoceptor in rat submaxillary gland and the a2A- and a2.-adrenoceptor subtypes. Br J Pharmacol 98: 890–897PubMedCrossRefGoogle Scholar
  39. Murphy TJ, Bylund DB (1988) Characterization of alpha-2 adrenergic receptors in the OK cell, an opossum kidney cell line. J Pharmacol Exp Ther 244: 571–578PubMedGoogle Scholar
  40. Perry BD, U’Prichard DC (1981) [3H]rauwolscine (a-yohimbine): a specific radioligand for brain a2-adrenergic receptors. Eur J Pharmacol 76: 461–464Google Scholar
  41. Pimoule C, Scatton B, Langer SZ (1983) [3H]RX 781094: a new antagonist ligand labels α2-adrenoceptors in the rat brain cortex. Eur J Pharmacol 95: 79–85Google Scholar
  42. Rand MJ, Wilson J (1968) Mechanisms of the pressor and depressor actions of St 155 (2-(2,6-dichlorophenylamino-2imidazoline hydrochloride) (Catapres®). Eur J Pharmacol 3: 27–33PubMedCrossRefGoogle Scholar
  43. Ruffolo P.R, Nichols AJ, Stadel JM, Hieble JP (1993) Pharmacologic and therapeutic applications of a2-adrenoceptor subtypes. Annu Rev Pharmacol Toxicol 33: 243–279PubMedCrossRefGoogle Scholar
  44. Ruffulo RR (1990) a2-Adrenoceptor agonists and antagonists. Neurotransmissions 6 (2):1–5Google Scholar
  45. Ruffulo RR, Nichols AJ, Hieble JP (1988) Functions mediated by alpha-2 adrenergic receptors. Humana Press, Clifton, pp 187–280CrossRefGoogle Scholar
  46. Satoh M, Takayanagi I (1992) Identification and characterization of the a2D-adrenoceptor subtype in single cells prepared from guinea pig tracheal smooth muscle. Japan J Pharmacol 60: 393–395CrossRefGoogle Scholar
  47. Starke K (1977) Regulation of noradrenaline release by pre-synaptic receptor systems. Rev Physiol Biochem Pharmacol 77: 1–124PubMedCrossRefGoogle Scholar
  48. Summers RJ, Barnett DB, Nahorski SR (1983) Characteristics of adrenoceptors in homogenates of human cerebral cortex labelled with ( H)-rauwolscine. Life Sci 33: 1105–1112Google Scholar
  49. Takano Y, Takano M, Yaksh TL (1992) The effect of intrathecally administered imiloxan and WB4101: possible role of a2-adrenoceptor subtypes in the spinal cord. Eur J Pharmacol 219: 465–468PubMedCrossRefGoogle Scholar
  50. U’Prichard DC, Bechtel WD, Rouot B, Snyder SH (1979) Multiple apparent alpha-noradrenergic receptor binding sites in rat brain: Effect of 6-hydroxydopamine. Mol Pharmacol 15: 47–60Google Scholar
  51. U’Prichard DC, Reisine TD, Mason ST, Fibiger MC, Yamamura HI (1980) Modulation of rat brain a-and 13-adrenergic receptor populations by lesion of the dorsal noradrenergic bundle. Brain Res. 187: 143–154PubMedCrossRefGoogle Scholar
  52. U’Prichard, DC, Greenberg DA, Snyder SH (1977) Binding characteristics of a radiolabeled agonist and antagonist at central nervous system alpha noradrenergic receptors. Mol Pharmacol 13: 454–473PubMedGoogle Scholar
  53. Uhlén S, Wikberg JES (1990) Spinal cord α2-adrenoceptors are of the a„-subtype: comparison with a2A- and a2Badrenoceptors in rat spleen, cerebral cortex and kidney using [3H]-RX821002ligand binding. Pharmacol Toxicol 69: 341–350CrossRefGoogle Scholar
  54. Atlas D (1991) Clonidine-displacing substance (CDS) and its putative imidazoline receptor. New leads for further divergence of a2-adrenergic receptor activity. Biochem Pharmacol 41: 1541–1549PubMedCrossRefGoogle Scholar
  55. Atlas D, Burstein Y(1984) Isolation and partial purification of a clonidine-displacing endogenous brain substance. Eur J Biochem 144: 287–293Google Scholar
  56. Bricca G, Dontenwill M, Molines A, Feldman J, Belcourt A, Bousquet P (1989). The imidazoline preferring receptor: binding studies in bovine, rat and human brainstem. Eur J Pharmacol 162: 1–9PubMedCrossRefGoogle Scholar
  57. Dontenwill M, Molines A, Verdun A, Bricca G, Belcourt A, Bousquet P (1992) A circulating imidazoline-like substance cross-reacts with anti-clonidine antibodies: high levels in hypertensive patients. Fundam Clin Pharmacol 6, Suppl 6: 49sGoogle Scholar
  58. Ernsberger P, Giuliano R, Willette RN, Reis DJ (1990) Role of imidazol receptors in the vasodepressor response to clonidine analogs in the rostra] ventrolateral medulla. J Pharm Exp Ther 253: 408–418Google Scholar
  59. Ernsberger P, Meeley MP, Mann JJ, Reis DJ (1987) Clonidine binds to imidazoline binding sites as well as a2 adrenoceptors in the ventrolateral medulla. Eur J Pharmacol 134: 1–13PubMedCrossRefGoogle Scholar
  60. Ernsberger P, Meeley MP, Reis DJ (1988) An endogenous substance with clonidine-like properties: selective binding to imidazol sites in the ventrolateral medulla. Brain Res 441: 309–318PubMedCrossRefGoogle Scholar
  61. Ernsberger PR, Westbrooks KL, Christen MO, Schäfer SG (1992) A second generation of centrally acting antihypertensive agents act on putative I,-imidazoline receptors. J Cardiovasc Pharmacol 20, Suppl 4: S1 - S10Google Scholar
  62. Hieble JP, Ruffolo RR (1992) Imidazoline receptors: historical perspective. Fundam Clin Pharmacol 6 (Suppl 1): 7s - 13sPubMedCrossRefGoogle Scholar
  63. Kamisaki Y, Ishikawa T, Takao Y, Omodani H, Kuno N, Itoh T (1990) Binding of [3H]p-aminoclonidine to two sites, 0.2adrenoceptors and imidazoline binding sites: distribution of imidazoline binding sites in rat brain. Brain Res. 514: 15–21PubMedCrossRefGoogle Scholar
  64. Lanier SM, Ivkovic B, Singh I, Neumeyer JL, Bakthavachalam V (1993) Visualization of multiple imidazoline/guanidinium-receptive sites. J Biol Chem 268: 16047–16051PubMedGoogle Scholar
  65. Li G, Regunathan S, Barrow CJ, Eshraghi J, Cooper R, Reis DJ (1994) Agmatine: an endogenous clonidine-displacing substance in the brain. Science 263: 966–969PubMedCrossRefGoogle Scholar
  66. Limon I, Coupry I, Tesson F, Lachaud-Pettiti V, Parini A (1992) Renal imidazoline-guanidinium receptive site: a potential target for antihypertensive drugs. J Cardiovasc Pharmacol 20, Suppl 4: 521 - S23Google Scholar
  67. MacKinnon AC, Stewart M, Olverman HJ, Spedding M, Brown CM (1993) [3H]p-Aminoclonidine and [3H]idazoxan label different populations of imidazoline sites on rat kidney. Eur J Pharmacol 232: 79–87Google Scholar
  68. Mc Pherson GA (1985) Analysis of radioligand binding experiments: A collection of computer programs for the IBM PC. J Pharmacol Meth 14: 213–218CrossRefGoogle Scholar
  69. Meeley MP, Hensley ML, Ernsberger P, Felsen D, Reis DJ (1992) Evidence for a bioactive clonidine-displacing substance in peripheral tissues and serum. Biochem Pharmacol 44: 733–740PubMedCrossRefGoogle Scholar
  70. Molderings GJ; Michel MC, Göthert M, Christen O, Schäfer SG (1992) Imidazolrezeptoren: Angriffsort einer neuen Generation von antihypertensiven Arzneimitteln. Dtsch med Wschr 117: 67–71Google Scholar
  71. Munson PJ, Rodbard D (1980) LIGAND, a versatile computerized approach for characterization of ligand binding systems. Anal Biochem 107: 220–239PubMedCrossRefGoogle Scholar
  72. Mutolsky HJ, Ransnas LA (1987) Fitting curves for data using non-linear regression: a practical and non mathematical review. FASEB J 1: 365–374Google Scholar
  73. Peterson GL (1977) A simplification of the protein assay method of Lowry et al which is more generally applicable. Anal Biochem 83: 346–356PubMedCrossRefGoogle Scholar
  74. Regunathan S, Evinger MJ, Meeley MP, Reis DJ (1991) Effects of clonidine and other imidazole-receptor binding agents on second messenger systems and calcium influx in bovine adrenal chromaffin cells. Biochem Pharmacol 42: 2011–2018PubMedCrossRefGoogle Scholar
  75. Tesson F, Prip-Buus C, Lemoine A, Pegorier JP, Parini A (1991) Subcellular distribution of imidazoline-guanidinium-receptive sites in human and rabbit liver. J Biol Chem 266: 155–160PubMedGoogle Scholar
  76. Wang H, Regunathan S, Ruggiero DA, Milner TA, Meeley MP, Reis DJ (1993) Biochemical and immunohistochemical characterization of imidazoline receptor protein. Am J Hypertens 6: 77A.Google Scholar
  77. Abrahamsson T, Ek B, Nerme V (1988) The 13,- and 132aderenoceptor affinity of atenolol and metoprolol: a receptor-binding study performed with different ligands in tissues from the rat, the guinea pig and manGoogle Scholar
  78. Cheng YC, Prusoff WH (1973). Relationship between the inhibition constant (K,) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22: 3099–3108PubMedCrossRefGoogle Scholar
  79. Hedberg A, Minneman KP, Molinoff PB (1980). Differential distribution of beta-I and beta-2 adrenergic receptors in cat and guinea-pig heart. J Pharmacol Exp Ther 212: 503–508PubMedGoogle Scholar
  80. Minneman KP, Hegstrand LR, Molinoff PB (1979). The pharmacological specificity of beta-1 and beta-2 adrenergic receptors in rat heart and lung in vitro. Mol Pharmacol 16: 21–33PubMedGoogle Scholar
  81. Wiemer G, Wellstein A, Palm D, v Hattingberg HM, Brockmeier D (1982). Properties of agonist binding at the ßadrenoceptor of the rat reticulocyte. Naunyn-Schmiedeberg’s Arch Pharmacol. 321: 11–19PubMedCrossRefGoogle Scholar
  82. Xiao RP, Lakatta EG (1993) 13,-Adrenoceptor stimulation and ß2-adrenoceptor stimulation differ in their effect on contraction, cytosolic CaZ+, and Cat+ current in single rat ventricular cells. Circ Res 73: 286–300Google Scholar
  83. Ahlquist RP (1948) Study of adrenotropic receptors. Am J Physiol 153: 586–600PubMedGoogle Scholar
  84. Bylund DB, Snyder SH (1976) Beta adrenergic receptor binding in membrane preparations from mammalian brain. Mol Pharmacol 12: 568–580PubMedGoogle Scholar
  85. Dooley DJ, Bittiger H, Reymann NC (1986) CGP 20712 A: A useful tool for quantitating ß, and 132adrenoceptors. Eur J Pharmacol 130: 137–139PubMedCrossRefGoogle Scholar
  86. Haeusler G (1990) Pharmacology of ß-blockers: classical aspects and recent developments. J Cardiovasc Pharmacol 16 (Supp15): S1 - S9PubMedGoogle Scholar
  87. Lands AM, Arnold A, McAuliff JP, Luduena FP, Brown TG (1967). Differentiation of receptor systems activated by sympathomimetic amines. Nature 214: 597–598PubMedCrossRefGoogle Scholar
  88. Lefkowitz RJ, Williams LT (1977) Catecholamine binding to the 13-adrenergic receptor. Proc Nat Acad Sci 74: 515–519PubMedCrossRefGoogle Scholar
  89. Mukherjee C, Caron MG, Coverstone M, Lefkowitz RJ (1975) Identification of adenylate cyclase-coupled 13-adrenergic receptors in frog erythrocytes with (—)-[3H]-alprenolol. J Biol Chem 250: 4869–4876PubMedGoogle Scholar
  90. U’Prichard DC, Bylund DB, Snyder SH (1978) (±)-[3H]Epinephrine and (-)-[3H] dihydroalprenolol binding to ß,- and 132noradrenergic receptors in brain, heart and lung membranes. J Biol Chem 253: 5090–5102Google Scholar
  91. Weiland GA, Minneman KD, Molinoff PB (1980) Thermodynamics of agonist and antagonist interaction with mammalian 13-adrenergic receptors. Mol Pharmacol 18: 341–347.PubMedGoogle Scholar
  92. Wolfe BB, Minneman KP, Molinoff PB (1982) Selective increases in the density of cerebellar ß,-adrenergic receptors. Brain Res. 234: 474–479PubMedCrossRefGoogle Scholar
  93. Ariens EJ, Simonis AM (1983) Physiological and pharmacological aspects of adrenergic receptor classification. Biochem Pharmacol 32: 1539–1545PubMedCrossRefGoogle Scholar
  94. Deighton NM, Motomura S, Bals S, Zerkowski HR, Brodde OE (1992) Characterization of the beta adrenoceptor subtype(s) mediating the positive inotropic effects of epinine, dopamine, dobutamine, denopamine and xamoterol in isolated human right atrium. J Pharm Exp Ther 262: 532–538.Google Scholar
  95. Dooley DJ, Bittiger H, Reymann NC (1986) CGP 20712: A useful tool for quantitating ß,- and R2-adrenoceptors. Eur J Pharmacol 130: 137–139PubMedCrossRefGoogle Scholar
  96. Lands AM, Arnold A, McAuliffe JP, Luduena FP, Brown TG (1967) Differentiation of receptor systems activated by sympathomimetic amines. Nature (London) 214: 597–598.CrossRefGoogle Scholar
  97. Lefkowitz RJ, Stadel JM, Caron MG (1983). Adenylate cyclase coupled betα-adrenergic receptors: Structure and mechanisms of activation and desensitization. Ann Rev Biochem 52: 159–186Google Scholar
  98. McConnell HM, Owicki JC, Parce JW, Miller DL, Baxter GT, Wada HG, Pitchford S (1992) The Cytosensor Microphysiometer: biological applications of silicon technology. Science 257: 1906–1912PubMedCrossRefGoogle Scholar
  99. McConnell HM, Rice P, Wada GH, Owicki JC, Parce JW (1991) The microphysiometer biosensor. Curr Opin Struct Biol 1: 647–652CrossRefGoogle Scholar
  100. Minneman KP, Wolfe BB, Pittman RN, Molinoff PB (1983) 3Adrenergic receptor subtypes in rat brain. In: Molecular Pharmacology of Neurotransmitter Receptors. Segawa T, (ed.) Raven Press, New YorkGoogle Scholar
  101. Mukherjee C, Caron MG, Coverstone M, Lefkowitz RJ (1975) Identification of adenylate cyclase-coupled ß-adrenergic receptors in frog erythrocytes with (—)-3H-Alprenolol. J Biol Chem 250: 4869–4876PubMedGoogle Scholar
  102. Nahorski SR (1981) Identification and significance of betaadrenoceptor subtypes. TIPS, April 1981: 95–98Google Scholar
  103. Nathanson JA (1985) Differential inhibition of beta adrenergic receptors in human and rat ciliary process and heart. J Pharmacol Exp Ther 232: 119–126PubMedGoogle Scholar
  104. Owicki JC, Parce JW. (1992) Biosensors based on the energy metabolism of living cells: The physical chemistry and cell biology of extracellular acidification. Biosensors Bioelectronics 7: 255–272Google Scholar
  105. U’Prichard DC, Bylund DB, Snyder SH (1978) (±)-3H-Epinephrine and (—)-3H-dihydroalprenolol binding to ß, and P2 noradrenergic receptors in brain, heart and lung membranes. J Biol Chem 253: 5090–5102Google Scholar
  106. Ahlijanian MK, Takemori AE (1985) Effects of (—)-N6-Rphenylisopropyladenosine ( PIA) and caffeine on nociception and morphine-induced analgesia, tolerance and dependence in mice. Eur J Pharmacol 112: 171–179Google Scholar
  107. Bruns RF, Daly JW, Snyder SH (1980) Adenosine receptors in brain membranes: Binding of N6-cyclohexyl [3H]adenosine and 1,3-diethyl-8-[3H]phenylxanthine. Proc Natl Acad Sci 77: 5547–5551PubMedCrossRefGoogle Scholar
  108. Bruns RF, Lu GH, Pugsley TA (1986) Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol 29: 331–346PubMedGoogle Scholar
  109. Daly JW (1982) Adenosine receptors: Targets for future drugs. J Med Chem 25: 197–207PubMedCrossRefGoogle Scholar
  110. Fredholm BB, Jonzon B, Lindgren E, Lindström K (1982) Adenosine receptors mediating cyclic AMP production in the rat hippocampus. J Neurochem 39: 165–175PubMedCrossRefGoogle Scholar
  111. Hamilton HW, Taylor MD, Steffen RP, Haleen SJ, Bruns RF (1987) Correlation of adenosine receptor affinities and cardiovascular activity. Life Sci 41: 2295–2302PubMedCrossRefGoogle Scholar
  112. Harms HH, Wardeh G, Mulder AH (1979) Effects of adenosine on depolarization-induced release of various radiolabelled neurotransmitters from slices of rat corpus striatum. Neuropharmacol 18: 577–580CrossRefGoogle Scholar
  113. Jacobson KA, Gallo-Rodriguez C, Melman N, Fischer B, Maillard M, van Bergen A, van Galen P, Karton Y (1993) Structure-activity relationships of 8-styrylxanthines as A2-selective antagonists. J Med Chem 36: 1333–1342PubMedCrossRefGoogle Scholar
  114. Jacobson KA, vanGalen PJ, Williams M (1992) Adenosine receptors: Pharmacology, structure-activity relationships, and therapeutic potential. J Med Chem 35: 407–422Google Scholar
  115. Klotz KN, Lohse MJ, Schwabe U, Cristalli G, Vittori S, Grifantini M (1989) 2-Chloro-N6-[3H]cyclopentyladenosine ([3H]CCPA) — a high affinity agonist radioligand for A, adenosine receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 340: 679–683Google Scholar
  116. Linden J, Jacobson ME, Hutchins C, Williams M (1994) Adenosine receptors. In: Peroutka SJ (ed) Handbook of Receptors and Channels. G Protein Coupled Receptors. CRC Press, Boca Raton, Vol 1, pp 29–44Google Scholar
  117. Linden J, Taylor HE, Robeva AS, Tucker AL, Stehle JH; Rivkees SA (1993) Molecular cloning and functional expression of a sheep A3 adenosine receptor with widespread tissue distribution. Mol Pharmacol 44: 524–532PubMedGoogle Scholar
  118. Lohse MJ, Klotz KN, Lindenborn-Fotinos J, Reddington M, Schwabe U, Olsson RA (1987) 8-Cyclopentyl-1,3dipropylxanthine ( DPCPX) — a high affinity antagonist radioligand for A, adenosine receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 336: 204–210Google Scholar
  119. Murphy KMM, Snyder SH (1982) Heterogeneity of adenosine A, receptor binding in brain tissue. Mol Pharmacol 22: 250–257PubMedGoogle Scholar
  120. Phillis JW, Wu PH (1981) The role of adenosine and its nucleotides in central synaptic transmission. Prog Neurobiol 16: 178–239CrossRefGoogle Scholar
  121. Salvatore CA, Jacobson ME, Taylor HE, Linden J (1993) Molecular cloning and characterization of the human A3 adenosine receptor. Proc Natl Acad Sci 90: 10365–10369PubMedCrossRefGoogle Scholar
  122. Sattin A, Rall TW (1970) The effect of adenosine and adenine nucleotides on the adenosine 3’, 5’-phosphate content of guinea pig cerebral cortical slices. Mol Pharmacol 6: 13–17PubMedGoogle Scholar
  123. Schingnitz G, Küfner-Muhl U, Ensinger H, Lehr E, Kühn FJ (1991) Selective A,-antagonists for treatment of cognitive deficits. Nucleosides and Nucleotides 10: 1067–1076CrossRefGoogle Scholar
  124. Shimada J, Suzuki F, Nonaka H, Ishii A, Ichikawa S (1992) (E)-1,3-Dialkyl-7-methyl-8-(3,4,5-trimethoxy-styryl)xanthines: Potent and selective A2 antagonists. J Med Chem 35: 2342–2345Google Scholar
  125. Siggins GR, Schubert P (1981) Adenosine depression of hippocampal neurons in vitro: An intracellular study of dose-dependent actions on synaptic and membrane potentials. Neurosci Letters 23: 55–60Google Scholar
  126. VanCalker D, Müller M, Hamprecht B (1978) Adenosine inhibits the accumulation of cyclic AMP in cultured brain cells. Nature 276: 839–841CrossRefGoogle Scholar
  127. Zhou QY, Li C, Olah ME Johnson RA, Stiles GL (1992) Molecular cloning and characterization of an adenosine receptor: The A3 adenosine receptor. Proc Natl Acad Sci 89: 7432–7436PubMedCrossRefGoogle Scholar
  128. Bruns RF, Lu GH, Pugsley TA (1986) Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol 29: 331–346PubMedGoogle Scholar
  129. Daly JW, Bruns RF, Snyder SH (1981) Adenosine receptors in the central nervous system: relationship to the central actions of methylxanthines. Life Sci 28: 2083–2097PubMedCrossRefGoogle Scholar
  130. Gurden MF, Coates J, Ellis F, Evans B, Foster M, Hornby E, Kennedy I, Martin DP, Strong P, Vardey CJ, Wheeldon A (1993) Functional characterization of three adenosine receptor types. Br J Pharmacol 109: 693–698PubMedCrossRefGoogle Scholar
  131. Hamilton HW, Taylor MD, Steffen RP, Haleen SJ, Bruns RF (1987) Correlation of adenosine receptor affinities and cardiovascular activity. Life Sci 41: 2295–2302PubMedCrossRefGoogle Scholar
  132. Jarvis MF, Schulz R, Hutchison Ai, Do UH, Sills MA, Williams M (1989) [3H]CGS 21 680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain. J Pharm Exp Ther251:888–893Google Scholar
  133. Parkinson FE, Fredholm BB (1991) Effects of propentofylline on adenosine A, and A2 receptors and nitrobenzylthioinosine-sensitive nucleoside transporters: quantitative autoradiographic analysis. Eur J Pharmacol 202: 361–366PubMedCrossRefGoogle Scholar
  134. Bowmer CJ, Yates MS (1989). Therapeutic potential for new selective adenosine receptor ligands and metabolism inhibitors. Trends Pharmacol Sci 10: 339–341PubMedCrossRefGoogle Scholar
  135. Geiger JD, Fyda DM (1991) Adenosine transport in nervous system tissues. In: Stone TW (ed) Adenosine in the Nervous System. Academic Press, London, San Diego, New York, pp 1–23CrossRefGoogle Scholar
  136. Marangos PJ, Patel J, Clark-Rosenberg R, Martino AM (1982) [3HINitrobenzylthioinosine binding as a probe for the study of adenosine uptake sites in brain. J Neurochem 39: 184–191Google Scholar
  137. Porsche E (1982). Effects of methylxanthine derivates on the adenosine uptake in human erythrocytes. IRCS Med Sci 10: 389Google Scholar
  138. Rudolphi KA, Schubert P, Parkinson FE, Fredholm BB (1992) Adenosine and brain ischemia. Cerebrovasc Brain Metab Rev 4: 346–369PubMedGoogle Scholar
  139. Verma A, Marangos PJ (1985) Nitrobenzylthioinosine binding in brain: an interspecies study. Life Sci 36: 283–290PubMedCrossRefGoogle Scholar
  140. Winn HR, Rubio GR, Berne RM (1981) The role of adenosine in the regulation of cerebral blood flow. J Cerebr Blood Flow Metab 1: 239–244CrossRefGoogle Scholar
  141. Bunning P (1984) Inhibition of angiotensin converting enzyme by 2-[N-[(S)-1-carboxy-3-phenylpropyll-L-alanyl]-(1 S,3S,5S)2-azabicyclo[3.3.0]octane-3-carboxylic acid (Hoe 489 diacid). Arzneim Forsch Drug Res. 34: 1406–1410Google Scholar
  142. Cushman DW, Cheung HS (1971) Spectrophotometric assay and properties of the angiotensin converting enzyme of rabbit lung. Biochem Pharmacol 20: 1637–1648PubMedCrossRefGoogle Scholar
  143. Cushman DW, Cheung HS (1969) A simple substrate for assay of dog lung angiotensin converting enzyme. Fed Proc 28: 799Google Scholar
  144. Dzau VJ, Pratt RE (1986) Renin-angiotensin system: Biology, physiology, and pharmacology. In: Fozzard HA; Haber E, Jennings RB, Katz AM, Morgan MD (eds.) The Heart and Cardiovascular System. Vol. 2, Chapter 69, pp 1631–1662. Raven Press New YorkGoogle Scholar
  145. Friedland J, Silverstein E (1976) A sensitive fluorimetric assay for serum angiotensin converting enzyme. Am J Clin Path 66: 416–424PubMedGoogle Scholar
  146. Hayakari M, Kondo Y, Izumi H (1978) A rapid and simple spectrophotometric assay of angiotensin-converting enzyme. Analyt. Biochem. 84: 361–369Google Scholar
  147. Hecker M, Pörtsi I, Bara AT, Busse R (1994) Potentiation by ACE inhibitors of the dilator response to bradykinin in the coronary microcirculation: interaction at the receptor level. Br J Pharmacol 111: 238–244PubMedCrossRefGoogle Scholar
  148. Linz W, Schölkens BA (1987) Influence of local converting enzyme inhibition on angiotensin and bradykinin effects in ischemic hearts. J Cardiovasc Pharmacol 10 (Suppl 7): S75 - S82PubMedCrossRefGoogle Scholar
  149. Pre J, Bladier D (1983) A rapid and sensitive spectrophotometric method for routine determination of serum angiotensin I converting enzyme activity. IRCS Medical Sci 11: 220–221Google Scholar
  150. Santos RAS, Krieger EM, Greene LJ (1985) An improved fluorimetric assay of rat serum and plasma converting enzyme. Hypertension 7: 244–252PubMedCrossRefGoogle Scholar
  151. Unger T, Fleck T, Ganten D, Rettig F (1984) 2-[N-[(S)-I-Ethoxycarbonyl-3-phenylpropyl-L-alanyl]-(1 S,3S,5S)-2-azabicyclo[3.3.0]octane-3-carboxylic acid (Hoe 498): antihypertensive action and persistent inhibition of tissue converting enzyme activity in spontaneously hypertensive rats. Arzneim Forsch/Drug Res 34: 1426–1430Google Scholar
  152. Unger T, Ganten D, Lang RE, Schölkens BA (1985) Persistent tissue converting enzyme inhibition following chronic treatment with Hoe 498 and MK 421 in spontaneously hypertensive rats. J Cardiovasc Pharmacol 7: 36–41PubMedCrossRefGoogle Scholar
  153. Aiyar N, Griffin E, Shu A, Heys R, Bergsma DJ, Weinstock J, Edwards R (1993) Characterization of [3HJSK00000F 108655 as a radioligand for angiotensin type-1 receptor. J Recept Res 13: 849–861PubMedGoogle Scholar
  154. Barnes JM, Steward LJ, Barber PC, Barner NM (1993) Identification and characterization of angiotensin II receptor subtypes in human brain. Eur J Pharmacol 230: 251–258PubMedCrossRefGoogle Scholar
  155. Bossé R, Servant G, Zhou LM, Boulay G, Guillemette G, Es-cher E (1993) Sar’-p-Benzoylphenylalanine-angiotensin, a new photoaffinity probe for selective labeling of the type 2 angiotensin receptor. Regul Peptides 44: 215–223CrossRefGoogle Scholar
  156. Bottari SP, de Gasparo M, Steckelings UM, Levens NR (1993) Angiotensin II receptor subtypes: characterization, signalling mechanisms, and possible physiological implications. Front Neuroendocrin 14: 123–171CrossRefGoogle Scholar
  157. Bürgisser E, Raine AEG, Erne P, Kamber B, Bühler FR (1985) Human cardiac plasma concentrations of atrial natriuretic peptide quantified by radioreceptor assay. Biochem Biophys Res Comm 133: 1201–1209PubMedCrossRefGoogle Scholar
  158. Chang RSL, Lotti VJ (1991) Angiotensin receptor subtypes in rat, rabbit and monkey tissues: relative distribution and species dependency. Life Sci 49: 1485–1490PubMedCrossRefGoogle Scholar
  159. Chiu AT, Herblin WF, McCall DE, Ardecky RJ, Carini DJ, Duncia JV, Pease LJ, Wong PC, Wexler RR, Johnson AL, Timmermans PBMWM (1989) Identification of angiotensin II receptor subtypes. Biochem Biophys Res Commun 165: 196–203PubMedCrossRefGoogle Scholar
  160. Chiu AT, Leung KH, Smith RD, Timmermans PBMWM (1993) Defining angiotensin receptor subtypes. In: Raizada MK, Phillips MI, Sumners C (eds) Cellular and Molecular Biology of the Renin-Angiotensin System. CRC Press, Boca Raton, pp 245–271Google Scholar
  161. Chiu AT, McCall DE, Ardecky RJ, Duncia JV, Nguyen TT, Timmermans PBMWM (1990) Angiotensin II receptor subtypes and their selective nonpeptide ligands. Receptor 1: 33–40PubMedGoogle Scholar
  162. Chiu AT, McCall DE, Roscoe WA (1992) [1251]EXP985: a highly potent and specific nonpeptide radioligand for the AT, angiotensin receptor. Biochem Biophys Res Commun 188: 1030–1039Google Scholar
  163. Chiu AT; Carini DJ, Duncia JV, Leung KH, McCall DE, Price WA, Wong PC, Smith RD, Wexler RR, Timmermans PBMWM (1991) DuP 532: A second generation of non-peptide angiotensin II receptor antagonists. Biochem Bio phys Res Comm 177: 209–217Google Scholar
  164. Cox HM, Munday KA, Poat JA (1984) Inactivation of [’25I]angiotensin II binding sites in rat renal cortex epithelial membranes by dithiothreitol. Biochem Pharmacol 33: 4057–4062PubMedCrossRefGoogle Scholar
  165. Dzau VJ, Sasamura H, Hein L (1993) Heterogeneity of angiotensin synthetic pathways and receptor subtypes: Physiological and pharmacological implications. J Hypertens 11: 513–518Google Scholar
  166. Entzeroth M, Hadamovsky S (1991) Angiotensin II receptors in the rat lung are of the All-1 subtype. Eur J Pharmacol Mol Pharmacol Sec 206: 237–241CrossRefGoogle Scholar
  167. Feuillan PP, Milian MA, Aguilera G (1993) Angiotensin II binding sites in the rat fetus: characterization of receptor subtypes and interaction with guanyl nucleotides. Regul Peptides 44: 159–169CrossRefGoogle Scholar
  168. Gibson RE, Thorpe HH, Cartwright ME, Frank JD, Schorn TW, Bunting PB, Siegl PKS (1991) Angiotensin II receptor subtypes in renal cortex of rats and monkeys. Am J Physiol 261: F512PubMedGoogle Scholar
  169. Chansel D, Czekalski S, Pham P, Ardaillou R (1992) Characterization of angiotensin II receptor subtypes in human glomeruli and mesangial cells. AM J Physiol 262: F432 - F441PubMedGoogle Scholar
  170. Iwai N, Inagami T (1992) Identification of two subtypes in the rat typel angiotensin II receptor. FEBS Lett 298: 257–260PubMedCrossRefGoogle Scholar
  171. Kakar SS; Sellers JC, Devor DC, Musgrove LC, Neill JD (1992) Angiotensin II type-1 receptor subtype cDNAs: Differential tissue expression and hormonal regulation. Biochem Biophys Res Commun 183: 1090–1096Google Scholar
  172. Keiser JA, Bjork FA, Hodges JC, Taylor DG (1992) Renal hemodynamic and excretory responses to PD123319 and losartan, nonapeptide AT1 and AT2 subtype-specific angiotensin II ligands. J Pharm Exp Ther 262: 1154–1160Google Scholar
  173. McPherson GA (1985) Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Meth 14: 213–228CrossRefGoogle Scholar
  174. Robertson Mil, Barnes JC, Drew GM, Clark KL, Marshall FI-I, Michel A, Middlemiss D, Ross BC, Scopes D, Dowle MD (1992) Pharmacological profile of GR117289 in vitro: a novel, potent and specific non-peptide angiotensin AT, receptor antagonist. Br J Pharmacol 107: 1173–1180CrossRefGoogle Scholar
  175. Steckelings UM, Bottari SP, Unger T (1992) Angiotensin receptor subtypes in the brain. TIPS 13: 365–368Google Scholar
  176. Timmermans PBMWM, Benfield P, Chiu AT, Herblin WF, Wong PC, Smith RD (1992). Angiotensin II receptors and functional correlates. Am J Hypertens 5: 2215–2355CrossRefGoogle Scholar
  177. Timmermans PBMWM, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee PJ, Wexler RR, Saye JAM, Smith RD (1993) Angiotensin receptors and angiotensin receptor antagonists. Pharmacol Rev 45: 205–251PubMedGoogle Scholar
  178. van Meel JCA, Entzeroth M, Hauel N, Narr B, Ries U, Wienen W (1993) Angiotensin II receptor antagonists. Arzneim Forsch/Drug Res 43: 242–246.Google Scholar
  179. Wiemer G, Schölkens BA, Busse R, Wagner A, Heitsch H, Linz W (1993 b) The functional role of angiotensin II-subtype AT2 receptors in endothelial cells and isolated ischemic rat hearts. Pharm Pharmacol Lett 3: 24–27Google Scholar
  180. Wiemer G, Schölkens BA, Wagner A, Heitsch H, Linz W (1993 a) The possible role of angiotensin II subtype AT2 receptors in endothelial cells and isolated ischemic rat hearts. J Hypertens 11, Suppl 5: S234 - S235Google Scholar
  181. Bolis G, Fung AKL, Greer J. Kleinert HD, Marcotte PA, Perun TJ, Plattner JJ, Stein HH (1987) Renin inhibitors. Dipeptide analogues of angiotensinogen incorporating transition state, nonpeptidic replacements at the scissile bond. J Med Chem 30: 1729–1737Google Scholar
  182. Corvol P, Menard J (1989) Renin inhibition: Immunological procedures and renin inhibitor peptides. Fundam Clin Pharmacol 3: 347–362Google Scholar
  183. Freedlender AE, Goodfriend TL (1979) Renin and the angiotensins. In: Jaffe BM, Behrman HR (eds) Methods of Hormone Radioimmunoassay. Academic Press, New York, pp 889–907Google Scholar
  184. Greenlee WJ (1990) Renin inhibitors. Med Res Rev 10: 173–236PubMedCrossRefGoogle Scholar
  185. Heitsch H, Henning R, Kleemann HW, Linz W, Nickel WU, Ruppert D, Urbach H, Wagner A (1993) Renin inhibitors containing a pyridyl-amino-diol derived C-terminus. J Med Chem 36: 2788–2800PubMedCrossRefGoogle Scholar
  186. Kokubu T, Hiwada K, Murakami E, Muneta S, Morisawa Y, Yabe Y, Koike H, lijima Y (1987) In vitro inhibition of human renin by statine-containing tripeptide inhibitor. J Cardiovasc Pharmacol 10 (Suppl. 7) S88 - S90PubMedCrossRefGoogle Scholar
  187. Linz W, Heitsch H, Henning R, Jung W, Kleemann HW, Nickel WU, Ruppert D, Urbach H, Wagner A, Schölkens BA (1994) Effects of the renin inhibitor N-[N-(3-(4-AminoI -piperidinyl-carbonyl)-2(R)-benzylpropionyl)-L-hi stidinyl]-(2S,3R,4S)-1-cyclohexyl-3,4-dihydroxy-6(2-pyridyl)-hexane-2-amide acetate (S 2864) in anesthetized rhesus monkeys. Arzneim Forsch/Drug Res 44: 815–820Google Scholar
  188. Murakami K, Ohsawa T, Hirose S, Takada K, Sakakibara S (1981) New fluorogenic substrates for renin. Analyt Biochem 110: 232–239PubMedCrossRefGoogle Scholar
  189. Wang GT, Chung CC, Holzman TF, Krafft GA (1993) A continuous fluorescence assay of renin activity. Analyt Biochem 210: 351–359PubMedCrossRefGoogle Scholar
  190. Wood JM; Criscione L, de Gasparo M, Bühlmayer P, Rüeger H, Stanton JL, Jupp RA, Kay J (1989) CGP 38 560: Orally active, low-molecular weight renin inhibitor with high potency and specificity. J Cardiovasc Pharmacol 14: 221–226PubMedCrossRefGoogle Scholar
  191. Handley DA (1990) Preclinical and clinical pharmacology of platelet-activating factor receptor antagonists. Medicin Res Rev 10: 351–370CrossRefGoogle Scholar
  192. Hwang SB, Lee CSC, Cheah Mi, Shen TY (1983) Specific receptor sites for 1-O-alkyl-2-O-acetyl-sn-glycero-3-phosphocholine (platelet activating factor) on rabbit platelet and guinea pig smooth muscle membrane. Biochemistry 22: 4756–4763PubMedCrossRefGoogle Scholar
  193. Terashita ZI, Imura Y, Nishikawa K (1985) Inhibition by CV-3988 of the binding of [3H]-platelet activating factor ( PAF) to the platelet. Biochem Pharmacol 34: 1491–1495Google Scholar
  194. Arai H, Hori S, Aramori I, Ohkubo H, Nakanishi S (1990) Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348: 730–732PubMedCrossRefGoogle Scholar
  195. Aramori I, Nirei H, Shoubo M, Sogabe K, Nakamura K, Kojo H, Notsu Y, Ono T, Nakanishi S (1993) Subtype selectivity of a novel endothelin antagonist, FR139317, for the two endothelin receptors in transfected Chinese hamster ovary cells. Mol Pharmacol 43: 127–131PubMedGoogle Scholar
  196. Banasik JL, Hosick H, Wright JW, Harding JW (1991) Endothelin binding in brain of normotensive and spontaneously hypertensive rats. J Pharmacol Exp Ther 257: 302–306PubMedGoogle Scholar
  197. Breu V, Löffler BM, Clozel M (1993) In vitro characterization of RO 46–2005, a novel synthetic non-peptide endothelin antagonist of ETA and ETB receptors. FEBS 334: 210–214CrossRefGoogle Scholar
  198. Clozel M, Breu V, Burri K, Cassai JM, Fischli W, Gray GA, Hirth G, Löffler BM, Müller M, Neidhart W, Ramuz H (1993) Pathophysiological role of endothelin revealed by the first orally active endothelin receptor antagonist. Nature 365: 759–761PubMedCrossRefGoogle Scholar
  199. Fujimoto M, Mihara S, Nakajima S, Ueda M, Nakamura M, Sakurai K (1992) A novel, non-peptide endothelin antagonist, isolated from bayberry, Myrica cerifera. FEBS Lett 305: 41–44Google Scholar
  200. Fukuroda T, Nishikibe M, Ohta Y, Ihara M, Yano M, Ishikawa K, Fukami T, Ikemoto F (1991) Analysis of responses to endothelins in isolated porcine blood vessels by using a novel endothelin antagonist, BQ-153. Life Sci 50: PL107–PL112Google Scholar
  201. Gomez-Sanchez CE, Cozza EN, Foecking MF, Chiou S, Ferris MW (1990) Endothelin receptor subtypes and stimulation of aldosterone secretion. Hypertension 15: 744–747PubMedCrossRefGoogle Scholar
  202. Gu XH, Calsey D, Nayler W (1989) Specific high-affinity binding sites for 125I-labelled porcine endothelin in rat cardiac membranes. Eur J Pharmacol 167: 281–290PubMedCrossRefGoogle Scholar
  203. Hickey KA, Rubanyi G, Paul RJ, Highsmith RF (1985) Characterization of a coronary vasoconstrictor produced by cultured endothelial cells. Am J Physiol 248: C550 - C556PubMedGoogle Scholar
  204. Hiley CR (1995) Endothelin receptor ligands. Neurotransmissions/2: l-6Google Scholar
  205. Ihara M, Noguchi K, Saeki T, Fukuroda T, Tsuchida S, Kimura S, Fukami TG, Ishikawa K, Nishikibe M, Yano M (1991) Biological profiles of highly potent novel endothelin antagonists selective for the ETA receptor. Life Sci 50: 247–255CrossRefGoogle Scholar
  206. Ihara M, Saeki T, Fukuroda T, Kimura S, Ozaki S, Patel AC, Yano M (1992) A novel radioligand [125I]BQ3020 selective for endothelin (ETB) receptors. Life Sci 51:PL47–52.Google Scholar
  207. Inoue A, Yanagisawa M, Kimura S, Kasuya Y, Miyauchi T, Goto K, Masaki T (1989) The human endothelin family: Three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci, USA, 86: 2863–2867Google Scholar
  208. Itoh S, Sasaki T, Ide K, Ishikawa K, Nishikibe M, Yano M (1993) A novel ETA receptor antagonist, BQ-485, and its preventive effect on experimental cerebral vasospasm in dogs. Biochem Biophys Res Commun 195: 969–975PubMedCrossRefGoogle Scholar
  209. Karne S, Jayawickreme CK, Lerner MR (1993) Cloning and characterization of an endothelin-3 specific receptor (ETc receptor) from Xenopus laevis dermal melanophores. J Biol Chem 268: 19126–19133PubMedGoogle Scholar
  210. Kimura S, Kasuya Y, Sawamura T, Shinmi O, Sugita Y, Yanagisawa M, Goto K, Masaki T (1989) Conversion of big endothelin-1 to 21-residue endothelin-1 is essential for expression of full vasoconstrictor activity: Structure-activity relationships of big endothelin-1. J Cardiovasc Pharmacol 13 (Suppl 5): S5 - S7PubMedCrossRefGoogle Scholar
  211. Lerman A, Hildebrand FL, Margulies KB, O’Morchu B, Perrella MA, Heublein DM, Schwab TR, Burnett JC (1990) Endothelin: A new cardiovascular regulatory peptide. Mayo Clin Proc 65: 1441–1455Google Scholar
  212. Masaki T, Vane JR, Vanhoutte PM (1994) V. International union of pharmacology nomenclature of endothelin receptors. Pharmacol Rev 46: 137–142PubMedGoogle Scholar
  213. Masaki T, Yanagisawa M, Goto K, Kimura S, Takuwa Y (1991) Cardiovascular significance of endothelin. In: Rubanyi GM (ed) Cardiovascular Significance of Endothelium-Derived Vasoactive Factors. Futura Publ Co, Inc., Mount Kisco, NY, pp 65–81Google Scholar
  214. Mihara S, Fujimoto M (1993) The endothelin ETA receptor-specific effects of 50–235, a nonpeptide endothelin antagonist. Eur J Pharmacol 246: 33–38PubMedCrossRefGoogle Scholar
  215. Mihara SI, Fujimoto M (1992) Non-isopeptide-selective endothelin receptors in human Girardi heart cells. Life Sci 50: 219–226PubMedCrossRefGoogle Scholar
  216. Miyazaki H, Kondoh M, Masuda Y, Watanabe H, Murakami K (1992) Endothelin receptors and receptor subtypes. In: Rubanyi GM (ed) Endothelin. Oxford University Press, New York, Oxford, pp 58–71.Google Scholar
  217. Reynolds EE, Mok LLS (1990) Role of thromboxane A2/prostaglandin H2 receptor in the vasoconstrictor response of rat aorta to endothelin. J Pharmacol Exp Ther 252: 915–921PubMedGoogle Scholar
  218. Rubanyi, GM, Bothelho LHP (1991) Endothelins. FASEB J 5: 2713–2720Google Scholar
  219. Sakuarai T, Yanigasawa M, Masaki T (1992) Molecular characterization of endothelin receptor. Trends Pharmacol Sci 13: 103–108CrossRefGoogle Scholar
  220. Shimamoto H, Kwa CY, Daniel EE (1992) Pharmacological assessment of Ca2tdependence of endothelin-l-induced response in rat aorta. Eur J Pharmacol 216: 225–233PubMedCrossRefGoogle Scholar
  221. Shinmi O, Kimura S, Sawamura T, Sugita Y, Yoshizawa T, Uchiyama Y, Yanagisawa M, Goto K, Masaki T, Kanazawa I (1989) Endothelin-3 is a novel neuropeptide: Isolation and sequence determination of endothelin-1 and endothelin-3 in porcine brain. Biochem Biophys Res Commun 164: 587–593PubMedCrossRefGoogle Scholar
  222. Sogabe K, Nirei H, Shoubo M, Nomoto A, Ao S, Notsu Y, Ono T (1993) Pharmacological profile of FR139317, a novel, potent endothelin ETA receptor antagonist. J Pharm Exp Ther 264: 1040–1046Google Scholar
  223. Spinella MJ, Malik AB, Evertitt J, Andersen TT (1991) Design and synthesis of a specific endothelin 1 antagonist: effects on pulmonary vasoconstriction. Proc Natl Acad Sci USA 88: 7443–7446PubMedCrossRefGoogle Scholar
  224. Suzuki N, Matsumoto H, Kitada C, Msaki T, Fujino M (1989) A sensitive sandwich-enzyme immunoassay for human endothelin. J Immunol Meth 118: 245–250CrossRefGoogle Scholar
  225. Takayanagi R, Ohnaka K, Takasaki C, Ohashi M, Nawata H (1991) Multiple subtypes of endothelin receptors in porcine tissues: characterization by ligand binding, affinity labeling and regional distribution. Regul Peptides 32: 23–37CrossRefGoogle Scholar
  226. Takuwa Y, Kasuya Y, Takuwa N, Kudo M, Yanagisawa M, Goto K, Masaki T, Yamashita K (1990) Endothelin receptor is coupled to phospholipase C via a pertussis toxin-insensitive guanine nucleotide-binding regulatory protein in vascular smooth muscle cells. J Clin Invest 85: 653–658PubMedCrossRefGoogle Scholar
  227. Urade Y, Fujitani Y, Oda K, Watakabe T, Umemura I, Takai M, Okada T, Sakata K, Karaki H (1992) An endothelin B receptor-selective antagonist: IRL 1038, [Cys“-Cys15]endothelin-1(11–21) FEBS Lett 311: 12–16PubMedCrossRefGoogle Scholar
  228. Vedernikov YP, Goto K, Vanhoutte PM (1993) The ETA antagonist BQ-123 inhibits anoxic contractions of canine coronary arteries without endothelium. J Cardiovasc Pharmacol 22, Suppl 8: S252 - S265Google Scholar
  229. Warner TD, de Nucci G, Vane JR (1989) Rat endothelin is a vasodilator in the isolated perfused mesentery of the rat. Eur J Pharmacol 159: 325–326PubMedCrossRefGoogle Scholar
  230. Watakabe T, Urade Y, Takai M, Umemura I, Okada T (1992) A reversible radioligand specific for the ETB receptor: [’25I]Tyr13-Suc-[G1u9,Ala“ ‘15]-endothelin-1(8–21), [125I]IRL 1620. Biochem Biophys Res Commun 185: 867–873PubMedCrossRefGoogle Scholar
  231. Wilkes LC, Boarder MR (1991) Characterization of the endothelin binding site on bovine adrenomedullary chromaffin cells: Comparison with vascular smooth muscle cells. Evidence for receptor heterogeneity. J Pharmacol Exp Ther 256: 628–633Google Scholar
  232. Williams Jr DL, Jones KL, Pettibone DJ, Lis EV, Clineschmidt BV (1991) Sarafotoxin S6c: an agonist which distinguishes between endothelin receptor subtypes. Biochem Biophys Res Comm 175: 556–561PubMedCrossRefGoogle Scholar
  233. Yanagisawa M, Inoue A, Ishikawa T, Kasuya Y, Kimura S, Kumagaye SI, Nakasjima K, Watanabe TX, Sakakibara S, Goto K, Masaki T (1988b) Primary structure, synthesis, and biological activity of rat endothelin, an endothelium-derived vasoconstrictor peptide. Proc Natl Acad Sci USA 85: 6964–6967PubMedCrossRefGoogle Scholar
  234. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsiu Y, Yasaki Y, Goto K, Masaki T (1988a) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411–415PubMedCrossRefGoogle Scholar
  235. Yanagisawa M, Masaki T (1989) Endothelin, a novel endothelium-derived peptide. Pharmacological activities, regulation and possible role in cardiovascular control. Biochem Pharmacol 38: 1877–1883Google Scholar
  236. Bogle RG, Coade SB, Moncada S, Pearson JD, Mann GE (1992) Bradykinin stimulates L-arginine transport and nitric oxide release in vascular endothelial cells. formation in cytokine-treated rat hepatocytes and in blood and liver during sepsis. In: Moncada S, Marietta MA, Hibbs JB, Jr, Higgs EA (eds) The Biology of Nitric Oxide. 1 Physiological and Clinical Aspects. Portland Press, London and Chapel Hill, pp 80–84Google Scholar
  237. Busse R, Lamontagne D (1991) Endothelium-derived bradykinin is responsible for the increase in calcium produced by angiotensin-converting enzyme inhibitors in human endothelial cells. Naunyn-Schmiedeberg’s Arch Pharmacol 344: 126–129PubMedGoogle Scholar
  238. Feelisch M, Noack E (1987) Nitric oxide ( NO) formation from nitrovasodilators occurs independently of hemoglobin or non-heme iron. Eur J Pharmacol 142: 465–469Google Scholar
  239. Förstermann U, Schmidt HHHW, Pollock JS, Sheng H, Mitchell JA, Warner TD, Murad F (1992) Characterization and classification of constitutive and inducible isoforms of nitric oxide synthase in various cell types. In: Moncada S, Marietta MA, Hibbs JB, Jr, Higgs EA (eds) The Biology of Nitric Oxide. 2 Enzymology, Biochemistry and Immunology. Portland Press, London and Chapel Hill, pp 21–23Google Scholar
  240. Gerzer R, Hofmann F, Schultz G (1981) Purification of a soluble, sodium-nitroprusside-stimulated guanylate cyclase from bovine lung. Eur J Biochem 116: 479–486PubMedCrossRefGoogle Scholar
  241. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca’’ indicators with improved fluorescence properties. J Biol Chem 260: 3440–3450PubMedGoogle Scholar
  242. Heath R, Brynat B, Horton JK (1992) Which cyclic GMP assay? In: Moncada S, Marietta MA, Hibbs JB, Jr, Higgs EA (eds) The Biology of Nitric Oxide. 2 Enzymology, Biochemistry and Immunology. Portland Press, London and Chapel Hill, pp 98–102Google Scholar
  243. Hevel JM, White KA, Marietta MA (1992) Purification of the inducible murine macrophage nitric oxide synthase: identification as a flavoprotein and detection of enzyme–bound tetrahydrobiopterin. In: Moncada S, Marietta MA, Hibbs JB, Jr, Higgs EA (eds) The Biology of Nitric Oxide. 2 Enzymology, Biochemistry and Immunology. Portland Press, London and Chapel Hill, pp 19–19–21Google Scholar
  244. Hock FJ, Wirth K, Albus U, Linz W, Gerhards HJ, Wiemer G, Henke S, Breipohl G, König W, Knolle J, Schölkens BA (1991) Hoe 140 a new potent and long acting bradykinin antagonist: in vitro studies. Br J Pharmacol 102: 769–773PubMedCrossRefGoogle Scholar
  245. Holzmann S, Kukovetz WR, Windischhofer W, Paschke E, Graier WF (1994) Pharmacologic differentiation between endothelium-dependent relaxations sensitive and resistant to nitro-L-arginine in coronary arteries. J Cardiovasc Pharmacol 23: 747–756PubMedCrossRefGoogle Scholar
  246. Ichimori K, Pronai L, Fukahori M, Arroyo CM, Nakzawa H (1992) Spin trapping/electron paramagnetic spectroscopy analysis of endothelium-derived relaxing factors and their intermediates in human platelets. In: Moncada S, Marietta MA, Hibbs JB, Jr, Higgs EA (eds) The Biology of Nitric Oxide. 2 Enzymology, Biochemistry and Immunology. Portland Press, London and Chapel Hill, pp 68–69Google Scholar
  247. Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. J Clin Invest 52: 2745–2756PubMedCrossRefGoogle Scholar
  248. Lancester JR, Jr, Stadler J, Billiar TR, Bergonia HA, Kim YM, Piette LH, Simmons RL (1992) Electron-paramagnetic resonance detection of iron-nitrosyl formation in cytokine-treated rat hepatocytes and in blood and liver during sepsis. In: Moncada S, Marietta MA, Hibbs JB, Jr, Higgs EA (eds) The Biology of Nitric Oxide. 2 Enzymology, Biochemistry and Immunology. Portland Press, London and Chapel Hill, pp 76–80Google Scholar
  249. Leone AM, Palmer RMJ, Knowles RG, Francis PL, Ashton DS, Moncada S (1992) Molecular oxygen is incorporated in nitric oxide and citrulline by constitutive and inducible nitric oxide synthases. In: Moncada S, Marietta MA, Hibbs JB, Jr, Higgs EA (eds) The Biology of Nitric Oxide. 2 Enzymology, Biochemistry and Immunology. Portland Press, London and Chapel Hill, pp 7–14Google Scholar
  250. Linz W, Wiemer G, Schölkens BA (1992) ACE-inhibition induces NO-formation in cultured bovine endothelial cells and protects isolated ischemic rat hearts. J Mol Cell Cardiol 24: 909–919PubMedCrossRefGoogle Scholar
  251. Lowry OH, Rosebrough NJ, Fan AL, Randall RJ (1951) Protein measurement with phenol reagent. J Biol Chem 193: 265–275PubMedGoogle Scholar
  252. Lückhoff A, Pohl U, Mülsch A, Busse R (1988) Differential role of extra-and intracellular calcium in the release of EDRF and prostacyclin from cultured endothelial cells. Br J Pharmacol 95: 189–196PubMedCrossRefGoogle Scholar
  253. Mayer B, John M, Heinzel B, Klatt P, Werner ER, Böhme E (1992) Properties of CaZ+-regulated brain nitric oxide synthase. In: Moncada S, Marietta MA, Hibbs JB, Jr, Higgs EA (eds) The Biology of Nitric Oxide. 2 Enzymology, Biochemistry and Immunology. Portland Press, London and Chapel Hill, pp 4–6Google Scholar
  254. Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43: 109–142PubMedGoogle Scholar
  255. Mordvintcev P, Mülsch A, Busse R, Vanin A (1991) On-line detection of nitric oxide formation in liquid aqueous phase by electron paramagnetic resonance spectroscopy. Anal Biochem 19: 142–146CrossRefGoogle Scholar
  256. Mülsch A, Böhme E, Busse R (1987) Stimulation of soluble guanylate cyclase by endothelium-derived relaxing factor from cultured endothelial cells. Eur J Pharmacol 135: 247–250PubMedCrossRefGoogle Scholar
  257. Nakazawa H, Fukahori M, Murata T, Furuya T (1992) On-line monitoring of nitric oxide generation from isolated per-fused rat lung using decrease in superoxide-dependent chemiluminescence. In: Moncada S, Marietta MA, Hibbs JB, Jr, Higgs EA (eds) The Biology of Nitric Oxide. 2 Enzymology, Biochemistry and Immunology. Portland Press, London and Chapel Hill, pp 69Google Scholar
  258. Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6: 3051–3064Google Scholar
  259. Pollock JS, Mitchell JA, Warner TD, Schmidt HHHW, Nakana M, Förstermann U, Murad F (1992) Purification of nitric oxide synthases from endothelial cells. In: Moncada S, Marietta MA, Hibbs JB, Jr, Higgs EA (eds) The Biology of Nitric Oxide. 2 Enzymology, Biochemistry and Immunology. Portland Press, London and Chapel Hill, pp 108–111Google Scholar
  260. Salter M, Knowles RG, Moncada S (1992) Widespread tissue distribution, species distribution and changes in activity of CaZ+-dependent and Cat+-independent nitric oxide synthases. In: Moncada S, Marietta MA, Hibbs JB, Jr, Higgs EA (eds) The Biology of Nitric Oxide. 2 Enzymology, Biochemistry and Immunology. Portland Press, London and Chapel Hill, pp 193–197Google Scholar
  261. Schmidt HHHW, Smith RM, Nakana M, Gagne GD, Miller MF, Pollock JS, Sheng H, Förstermann U, Murad F (1992) Type I nitric oxide synthase: purification, characterization and immunohistochemical localization. In: Moncada S, Marietta MA, Hibbs JB, Jr, Higgs EA (eds) The Biology of Nitric Oxide. 2 Enzymology, Biochemistry and Immunology. Portland Press, London and Chapel Hill, pp 112–114Google Scholar
  262. Shephard JT, Vanhoutte PM (1991) Endothelium-derived relaxing (EDRF) and contracting factors (EDCF) in the control of cardiovascular homeostasis: the pioneering observations. In: Rubanyi GM (ed) Cardiovasvular Significance of Endothelium-Derived Vasoactive Factors. Futura Publ Comp, Inc., Mount Kisco, NY, pp 39–64Google Scholar
  263. Steel-Goodwin L, Arroyo CM, Gray B, Carmichael AJ (1992) Electron paramagnetic resonance detection of nitric oxide-dependent spin adducts in mouse jejunum. In: Moncada S, Marietta MA, Hibbs JB, Jr, Higgs EA (eds) The Biology of Nitric Oxide. 2 Enzymology, Biochemistry and Immunology. Portland Press, London and Chapel Hill, pp 80–84Google Scholar
  264. Tsien RY, Pozzan T, Rink TJ (1982) Calcium homeostasis in intact lymphocytes: Cytoplasmic free calcium monitored with a new intracellularly trapped fluorescent indicator. J Cell Biol 94: 325–334Google Scholar
  265. Wiemer G, Popp R, Schölkens BA, Gögelein H (1994) Enhancement of cytosolic calcium, prostaglandin and nitric oxide by bradykinin and the ACE inhibitor ramiprilat in porcine brain capillary endothelial cells. Brain Res. 638: 261–266PubMedCrossRefGoogle Scholar
  266. Wiemer G, Schölkens BA, Becker RHA, Busse R (1991) Ramiprilat enhances endothelial autacoid formation by inhibiting breakdown of endothelium derived bradykinin. Hypertension 18: 558–563PubMedCrossRefGoogle Scholar
  267. Aronson PS (1985) Kinetic properties of the plasma membrane Na’-H’ exchanger. Ann Rev Pharmacol 47: 545–560Google Scholar
  268. Benos DJ, Cunningham S, Baker RR, Beason KB, Oh Y, Smith PR (1992) Molecular characteristics of amiloride-sensitive sodium channels. Rev Physiol Biochem Pharmacol 120: 31–113PubMedCrossRefGoogle Scholar
  269. Frelin C, Vigne P, Breittmayer JP (1990) Mechanism of the cardiotoxic action of palytoxin. Mol Pharmacol 38: 904–909PubMedGoogle Scholar
  270. Frelin C, Vigne P, Ladoux A, Lazdunski M (1988) The regulation of intracellular pH in cells from vertebrates. Eur J Biochem 174: 3–14PubMedCrossRefGoogle Scholar
  271. Fretin C, Vigne P, Lazdunski M (1984) The role of Na’/H+ exchange system in cardiac cells in relation to the control of the internal Na’ concentration. J Biol Chem 259: 8880–8885Google Scholar
  272. Frelin C, Vigne P, Lazdunski M (1985) The role of Na’/H’ exchange system in the regulation of internal pH in cultured cardiac cells. Eur J Biochem 149: 1–4PubMedCrossRefGoogle Scholar
  273. Jean T, Fretin C, Vigne P, Lazdunski M (1986) The Na’/H’ exchange system in glial cell lines. Properties and activation by an hyperosmotic shock. Eur J Biochem 160: 211–219Google Scholar
  274. Kitazono T, Takeshige K, Cragoe EJ, Minakami S (1988) Intracellular pH changes of cultured bovine aortic endothelial cells in response to ATP addition. Biochem Biophys Res Commun 152: 1304–1309PubMedCrossRefGoogle Scholar
  275. Lazdunski M, Frelin C, Vigne P (1985) The sodium/hydrogen exchange system in cardiac cells: its biochemical and pharmacological properties and its role in regulation internal concentrations of sodium and internal pH. J Mol Cell Cardiol 17: 1029–1042PubMedCrossRefGoogle Scholar
  276. Rasmussen HH, Cragoe EJ, Ten Eick RE (1989) Na+-dependent activation of Na’-K’ pump in human myocardium during recovery from acidosis. Am J Physiol 256: H431 - H439Google Scholar
  277. Rosskopf D, Morgenstern E, Scholz W, Osswald U, Siffert W (1991) Rapid determination of the elevated Na+-K+ exchange in platelets of patients with essential hypertension using an optical swelling assay. J Hypertens 9: 231–238PubMedCrossRefGoogle Scholar
  278. Scholz W, Albus U (1993) Na+/H+ exchange and its inhibition in cardiac ischemia and reperfusion. Bas Res Cardiol 88: 443–455CrossRefGoogle Scholar
  279. Scholz W, Albus U, Hropot M; KLaus E, Linz W, Schölkens BA (1990) Zunahme des Na+/H+ — Austausches an Kaninchenerythrozyten unter atherogener Diät. In: Assmann G, Betz E, Heinle H, Schulte H (eds) Arteriosklerose — Neue Aspekte aus Zellbiologie and Molekulargenetik. Epidemiologie and Klinik. Vieweg, Braunschweig, Wiesbaden. pp 296–302Google Scholar
  280. Scholz W, Albus U, Lang HJ, Linz W, Martorana PA, Englert HC, Schölkens BA (1993) Hoe 694, a new Na+/H+ exchange inhibitor and its effects in cardiac ischemia. Br J Pharmacol 109: 562–568PubMedCrossRefGoogle Scholar
  281. Scholz W, Albus U, Linz W, Martorana P, Lang HJ, Schölkens BA (1992) Effects of Na+/H+ exchange inhibitors in cardiac ischaemia. J Mol Cell Cardiol 24: 731–740PubMedCrossRefGoogle Scholar
  282. Schömig A, Kurz T, Richardt G, Schömig E (1988) Neuronal sodium homeostasis and axoplasmic amine concentration determine calcium-independent noradrenaline release in normoxic and ischemic rat heart. Circ Res 63: 214–226PubMedCrossRefGoogle Scholar
  283. Tani M, Neely JR (1990) Na+ accumulation increases Ca2+ overload and impairs function in anoxic rat heart. J Mol Cell Cardiol 22: 57–72PubMedCrossRefGoogle Scholar
  284. Tse CM, Levine SA, Yun CHC, Brant SR, Nath S, Pouysségur J, Donowitz M (1994) Molecular properties, kinetics and regulation of mammalian Na+/H+ exchangers. Cell Physiol Biochem 4: 282–300CrossRefGoogle Scholar
  285. Weissberg PL, Little Pi, Cragoe EJ, Bobik A (1989) The pH of spontaneously beating cultured rat hearts is regulated by an ATP-calmodulin-dependent Na+/H+ antiport. Circ Res. 64: 676–685PubMedCrossRefGoogle Scholar
  286. Boudreau RJ, Drummond GI (1975) A modified assay of 3’:5’-cyclic-AMP phosphodiesterase. Analyt Biochem 63: 388–399PubMedCrossRefGoogle Scholar
  287. Meskini N, Némoz G, Okyayuz-Baklouti I, Lagarde M, Prigent AF (1994) Phosphodiesterase inhibitory profile of some related xanthine derivatives pharmacologically active on the peripheral microcirculation. Biochem Pharmacol 47: 781–788PubMedCrossRefGoogle Scholar
  288. Pichard AL, Cheung WY (1976) Cyclic 3’:5’-nucleotide phosphodiesterase. Interconvertible multiple forms and their effects on enzyme activity and kinetics. J Biol Chem 251: 5726–5737Google Scholar
  289. Prigent AF, Fougier S, Nemoz G, Anker G, Pacheco H, Lugnier C, Lebec A, Stoclet JC (1988) Comparison of cyclic nucleotide phosphodiesterase isoforms from rat heart and bovine aorta. Separation and inhibition by selective reference phosphodiesterase inhibitors. Biochem Pharmacol 37: 3671–3681Google Scholar
  290. Prigent AF, Némoz G, Yachaoui Y, Pageaux JF, Pacheco H (1981) Cyclic nucleotide phosphodiesterase from a particulate fraction of rat heart. Solubilization and characterization of a single enzymatic form. Biochem Biophys Res Commun 102: 355–364Google Scholar
  291. Terai M, Furihata C, Matsushima T, Sugimura T (1976) Partial purification of adenosine 3’,5’-cyclic monophosphate phosphodiesterase from rat pancreas in the presence of excess protease inhibitors. Arch Biochem Biophys 176: 621–629PubMedCrossRefGoogle Scholar
  292. Thompson WJ, Brooker G, Appleman MM (1974) Assay of cyclic nucleotide phosphodiesterases with radioactive substrates. In: Hardman JG, O’Malley BW (eds) Methods in Enzymology, Vol 38, Academic Press New York, pp 205–212Google Scholar
  293. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem 72: 248–254PubMedCrossRefGoogle Scholar
  294. Caprioli J (1985) The pathogenesis and medical management of glaucoma. Drug Dev Res 6: 193–215CrossRefGoogle Scholar
  295. Caprioli J, Sears M (1983) Forskolin lowers intraocular pressure in rabbits, monkeys and man. Lancet 1: 958–960PubMedCrossRefGoogle Scholar
  296. Chang J, Hand JM, Schwalm S, Dervinis A, Lewis AJ (1984) Bronchodilating activity of forskolin in vitro and in vivo. Eur J Pharmacol 101: 271–274PubMedCrossRefGoogle Scholar
  297. Daly JW (1984) Forskolin, adenylate cyclase and cell physiology: An overview. In: Greengard P et al (eds) Advances in Cyclic Nucleotide and Protein Phosphorylation Research 17: 81–89Google Scholar
  298. Greenslade FC, Tobia AJ, Madison SM, Krider KM, Newquist KL (1979) Labetalol binding to specific alpha-and betaadrenergic sites in vitro and its antagonism of adrenergic responses in vivo. J Mol Cell Cardiol 11: 803–811PubMedCrossRefGoogle Scholar
  299. Hubbard JW, Conway PG, Nordstrom LC, Hartman HB, Lebedinsky Y, O’Malley GJ, Kosley RW (1992) Cardiac adenylate cyclase activity, positive chronotropic and isotropic effects of forskolin analogs with either low, medium or high binding site activity. J Pharm Exp Ther 256: 621–627Google Scholar
  300. Kebabian JW (1992) The cyclic AMP cascade: A signal transduction system. Neurotransmiss 8 (2): 1–4Google Scholar
  301. Lebedinsky Y, Nordstrom ST, Aschoff SE, Kapples JF, O’Malley GJ, Kosley RW, Fielding S, Hubbard JW (1992) Cardiotonic and coronary vasodilator responses to milrinone, forskolin, and analog P87–7692 in the anesthetized dog. J Cardiovasc Pharmacol 19: 779–789PubMedCrossRefGoogle Scholar
  302. Lindner E, Dohadwalla AN, Bhattacharya BK (1978) Positive inotropic and blood pressure lowering activity of a diterpene derivative isolated from Coleus forskohli: Forskolin. Arzneim Forsch/Drug Res. 28: 284–289Google Scholar
  303. Metzger H, Lindner E (1981) The positive inotropic-acting forskolin, a potent adenylatecyclase activator. Arzneim Forsch/Drug Res 31: 1248–1250Google Scholar
  304. Salomon Y, Londos C, Rodbell M (1974) A highly sensitive adenylate cyclase assay. Analyt Biochem 58: 541–548PubMedCrossRefGoogle Scholar
  305. Seamon KB (1984) Forskolin and adenylate cyclase: new opportunities in drug design. Ann Rep Med Chem 19: 293–302CrossRefGoogle Scholar
  306. Seamon KB, Daly JW (1981) Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulatory protein. J Biol Chem 256: 9799–9801PubMedGoogle Scholar
  307. Seamon KB, Daly JW (1983) Forskolin, cyclic AMP and cellular physiology. Trends Pharmacol Sci 4: 120–123CrossRefGoogle Scholar
  308. Seamon KB, Daly JW, Metzger H, de Souza NJ, Reden J (1983) Structure activity relationships for activation of adenylate cyclase by the diterpene forskolin and its derivates. J Med Chem 26: 436–439PubMedCrossRefGoogle Scholar
  309. Seamon KB, Daly JW. (1981) Forskolin: A unique diterpene activator of cyclic AMP-generating systems. J Cycl Nucl Res 7: 201–224Google Scholar
  310. Seamon KB, Padgett W, Daly JW (1981) Forskolin: Unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci USA 78: 3363–3367Google Scholar
  311. Seamon KB, Vaillancourt R, Edwards M, Daly JW (1984) Binding of [3H]forskolin to rat brain membranes. Proc Nat] Acad Sci USA 81: 5081–5085CrossRefGoogle Scholar
  312. Anno T, Hondeghem LM (1990) Interaction of flecainide with guinea pig cardiac sodium channels. Circ Res 66: 789–803PubMedCrossRefGoogle Scholar
  313. Bennett PB, Stroobandt R, Kesteloot H, Hondeghem LM (1987) Sodium channel block by a potent, new antiarrhythmic agent, Transcainide, in guinea pig ventricular myocytes. J Cardiovasc Pharmacol 9: 661–667Google Scholar
  314. Gwilt M, Dalrymple HW, Burges RA, Blackburn KJ, Dickinson RP, Cross PE, Higgins AJ (1991) Electrophysiologic properties of UK-66,914, a novel class III antiarrhythmic agent. J Cardiovasc Pharmacol 17: 376–385PubMedCrossRefGoogle Scholar
  315. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391: 85–100PubMedCrossRefGoogle Scholar
  316. Hoyer J, Distler A, Haase W, Gögelein H (1994) Ca2+ influx through stretch-activated cation channels activates maxi K’ channels in porcine endocardial endothelium. Proc Natl Acad Sci, USA 91: 2367–2371Google Scholar
  317. Kon K, Krause E, Gögelein H (1994) Inhibition of K’ channels by chlorpromazine in rat ventricular myocytes. J Pharm Exp Ther 271: 632–637Google Scholar
  318. Neher E, Sakmann B (1976) Single-channel currents recorded from membranes of denervated frog muscle fibres. Nature 260: 799–802PubMedCrossRefGoogle Scholar
  319. Pallotta BS (1987) Patch-clamp studies of ion channels. In: Meltzer HY (ed) Psychopharmacology: The Third Generation of Progress. Raven Press, New York, pp 325–331Google Scholar
  320. Terzic A, Jahangir A, Kurachi Y (1994) HOE-234, a second generation K+ channel opener, antagonizes the ATP-dependent gating of cardiac ATP-sensitive K+ channels. J Pharm Exp Ther 268: 818–825Google Scholar
  321. Tsien RW, Lipscombe D, Madison DV, Bley RK, Fox AP (1988) Multiple types of neuronal calcium channels and their selective modulation. TINS 11: 431–438PubMedGoogle Scholar
  322. Yazawa K, Kaibara M, Ohara M, Kameyama M (1990) An improved method for isolating cardiac myocytes useful for patch-clamp studies. Jap J Physiol 40: 157–163CrossRefGoogle Scholar
  323. Furchgott RF (1967) Techniques for studying antagonism and potentiation of sympathomimetic drugs an isolated tissues. In: Siegler PE, Moyer JH (eds.) Animal and clinical pharmacologic techniques in drug evaluation. pp 256–266. Year Book Medical Publishers, Inc., ChicagoGoogle Scholar
  324. Green AF, Boura ALA (1964) Sympathetic nerve blockade. In: Laurence DR, Bacharach AL (eds.) Evaluation of drug activities: Pharmacometrics. Academic Press, London and New York, pp 370–430Google Scholar
  325. Hock FJ, Wirth K, Albus U, Linz W, Gerhards HJ, Wiemer G, Henke S, Breipohl G, König W, Knolle J, Schölkens BA (1991) Hoe 140 a new potent and long acting bradykinin antagonist: in vitro studies. Br J Pharmacol 102: 769–773PubMedCrossRefGoogle Scholar
  326. Rajagopalan R, Ghate AV, Subbarayan P, Linz W, Schoelkens BA (1993) Cardiotonic activity of the water soluble forskoline derivative 8,13-epoxy-0-(piperidinoacetoxy)1a,713,9a-trihydroxy-labd-14-en-11-one. Arzneim Forsch/ Drug Res 43 (I) 313–319Google Scholar
  327. Regoli D, Barabé J (1980) Pharmacology of bradykinin and related peptides. Pharmacol Rev 32: 1–46PubMedGoogle Scholar
  328. Briigger J (1945) Die isolierte Samenblase,des Meerschweinchens als biologisches Testobjekt zur quantitativen Differenzierung der sympathikolytischen Wirkung der genuinen Mutterkornalkaloide und ihrer Dihydroderivate. HeIv Physiol Acta 3: 117–134Google Scholar
  329. Green AF, Boura ALA (1964) Depressants of peripheral sympathetic nerve function. I Sympathetic nerve blockade. In: Laurence DR, Bacharach AL (eds.) Evaluation of drug activities: Pharmacometrics. Academic Press, London and New York, pp 370–430Google Scholar
  330. Schild HO (1947) pA, a new scale for the measurement of drug antagonism. Br J Pharmacol 2:189–206Google Scholar
  331. Sharif SI, Gokhale SD (1986) Pharmacological evaluation of the isolated rat seminal vesicle preparation. J Pharmacol Meth 15: 65–75CrossRefGoogle Scholar
  332. Cordellini S, Sannomiya P (1984) The vas deferens as a suitable preparation for the study of a-adrenoreceptor molecular mechanisms. J Pharmacol Meth 11: 97–107CrossRefGoogle Scholar
  333. Donoso MV, Montes CG, Lewin J, Fournier A, Calixto JB, Huidobro-Toro JP (1992) Endothelin-1 (ET)-induced mobilization of intracellular Ca2+ stores from the smooth muscle facilitates sympathetic cotransmission by potentiation of adenosine 5’-triphosphate (ATP) motor activity: studies in the rat vas deferens. Peptides 13: 831–840PubMedCrossRefGoogle Scholar
  334. Eltze M (1988) Muscarinic MI and M2-receptors mediating opposite effects on neuromuscular transmission in rabbit vas deferens. Eur J Pharmacol 151: 205–221PubMedCrossRefGoogle Scholar
  335. Holman ME (1975) Nerve-muscle preparations of the vas deferens. In: Daniel EE, Paton DM (eds) Methods in Pharmacology, Vol 3, Smooth Muscle. Plenum Press, New York and London, pp 403–417Google Scholar
  336. Lindner E (1963) Untersuchungen über das Verhalten des N(3’-phenyl-propyl-(2’))-1,1-diphenyl-propyl-(3)-amins (Segontin©) gegenüber den Wirkungen des Noradrenalins. Arch int Pharmacodyn 146: 475–484PubMedGoogle Scholar
  337. Lotti VJ, Taylor DA (1982) a2-Adrenergic agonist and antagonist activity of the respective (—)- and (+)-enantiomers of 6-ethyl-9-oxaergoline ( EOE ). Eur J Pharmacol 85: 211–215Google Scholar
  338. Moore PK, Griffiths RT (1982) Pre-synaptic and post-synaptic effects of xylazine and naphazoline on the bisected rat vas deferens. Arch Int Pharmacodyn 260: 70–77PubMedGoogle Scholar
  339. Schild HO (1947) pA, a new scale for the measurement of drug antagonism. Br J Pharmacol 2:189–206Google Scholar
  340. Taylor DA, Wiese S, Faison EP, Yarbrough GGI (1983) Pharmacological characterization of purinergic receptors in the rat deferens. J Pharmacol Exp Ther 224: 40–45PubMedGoogle Scholar
  341. van Rossum JM (1965) Different types of sympathomimetic a-receptors. J Pharm Pharmacol 17: 202–216CrossRefGoogle Scholar
  342. Vaupel DB, Su TP (1987) Guinea pig vas deferens preparation may contain both sigma receptors and phencyclidine receptors. Eur J Pharmacol 139: 125–128PubMedCrossRefGoogle Scholar
  343. DiPalma (1964) Animal techniques for evaluating sympathomimetic and parasympathomimetic drugs. In: Nodine JH; Siegler PE (eds) Animal and pharmacologic techniques in drug evaluation. Vol I, pp 105–110. Year Book Medical Publ., Inc. ChicagoGoogle Scholar
  344. Swamy VC (1971) α-adrenergic blocking agents. In: Turner RA, Hebborn P (eds) Screening Methods in Pharmacology, Vol II, pp 1–19, Academic Press, New York and LondonGoogle Scholar
  345. Turner RA (1965) Sympatholytic agents. In: Screening methods in pharmacology, Vol I, pp 143–151, Academic Press, New York and LondonGoogle Scholar
  346. Berthold H, Scholtysik G, Schaad A (1990) Identification of cardiotonic sodium channel activators by potassium depolarization in isolated guinea pig atria. J Pharmacol Meth 24: 121–135CrossRefGoogle Scholar
  347. Doggrell DH (1988) Simultaneous assessment of membrane-stabilizing and ß-adrenoreceptor blocking activity of drugs with the rat isolated left atria. J Pharmacol Meth 19: 93–107CrossRefGoogle Scholar
  348. Doggrell S, Hughes EW (1986) On the assessment of the 3adrenoreceptor blocking activity of propranolol using the rat isolated right ventricle. J Pharmacol Meth 15: 119–131CrossRefGoogle Scholar
  349. Furchgott RF (1967) Techniques for studying antagonism and potentiation of sympathomimetic drugs an isolated tissues. In: Siegler PE, Moyer JH (eds.) Animal and clinical pharmacologic techniques in drug evaluation. pp 256–266. Year Book Medical Publishers, Inc., ChicagoGoogle Scholar
  350. Grodzinska L, Gryglewski R (1971) Action of beta-adrenolytics on the isolated guinea pig atria. Arch Int Pharmacodyn 191: 133–141PubMedGoogle Scholar
  351. Grupp IL, Grupp G (1984) Isolated heart preparations perfused or superfused with balanced salt solutions. In: Schwartz A (ed) Methods in Pharmacology, Vol 5: Myocardial Biology. pp 111–128. Plenum Press, New York and LondonCrossRefGoogle Scholar
  352. Levy JV (1971) Isolated atrial preparations. In: Schwartz A (ed) Methods in Pharmacology Vol 1, pp 77–104. Appleton-Century-Crofts, Meredith Corporation, New YorkCrossRefGoogle Scholar
  353. Castillo JC, de Beer EJ. (1947). The tracheal chain. I. A preparation for the study of antispasmodics with particular reference to bronchodilator drugs. J Pharmacol Exp Ther 90: 104–109PubMedGoogle Scholar
  354. Doggrell SA (1990) Assessment of the 132 adrenoceptor and Ca2+ channel-blocking activity of drugs with the rat portal vein. J Pharmacol Meth 24: 145–156CrossRefGoogle Scholar
  355. Foster RW (1965) The nature of the adrenergic receptors of the trachea of the guinea-pig. J Pharm Pharmac 18: 1–12CrossRefGoogle Scholar
  356. Green AF, Boura ALA (1964) Sympathetic nerve blockade. In: Laurence DR, Bacharach AL (eds.) Evaluation of drug activities: Pharmacometrics. Academic Press, London and New York, pp 370–430Google Scholar
  357. Longmore J, Miller M, Trezise DJ, Weston AL (1991) Further studies on the mechanism of action of isoprenaline in bovine tracheal smooth muscle. Br J Pharmacol 102:Proc Suppl 182 PGoogle Scholar
  358. O’Donnell SR, Wanstall JC (1980) The use of guinea pig K+-depolarized tracheal chain preparations in 3-adrenoreceptor studies. J Pharmacol Meth 4: 43–50CrossRefGoogle Scholar
  359. Van Rossum JM (1963) Cumulative dose-response curves. II, Technique for the making of dose-response curves in isolated organs and the evaluation of drug parameters. Arch Int Pharmacodyn 143: 299–300Google Scholar
  360. Waldeck B, Widmark E (1985) Comparison of the effects of forskolin and isoprenaline on tracheal, cardiac and skeletal muscle from guinea-pig. Eur J Pharmacol 112: 349–353PubMedCrossRefGoogle Scholar
  361. Rubin B, Laffan RJ, Kotler DG, O’Keefe EH, Demaio DA, Goldberg ME (1978) SQ 14,225 (D-3-mercapto-2-methylpropanoyl-L-proline), a novel orally active inhibitor of angiotensin I-converting enzyme. J Pharmacol Exp Ther 204: 271–280PubMedGoogle Scholar
  362. Ashcroft JH, Ashcroft FM (1990) Properties and functions of ATP-sensitive K-channels. Cell Signal 2: 197–214PubMedCrossRefGoogle Scholar
  363. Blatz AL, Magleby KL (1987) Calcium-activated potassium channels. Trends Neurosci 10: 463–467CrossRefGoogle Scholar
  364. Brâtveit M, Helle KB (1984) VIP inhibition of vascular smooth muscle: complementary to 132-adrenoceptor mediated relaxation in the isolated rat portal vein. Acta Physiol Scand 121: 269–276PubMedCrossRefGoogle Scholar
  365. Cook NS (1988) The pharmacology of potassium channels and their therapeutic potential. TIPS 9: 21–28PubMedGoogle Scholar
  366. Dacquet C, Mironneau C, Mironneau J (1987) Effects of calcium entry blockers on calcium-dependent contractions of rat portal vein. Br J Pharmac 92: 203–211CrossRefGoogle Scholar
  367. Edwards G, Weston AH (1990) Potassium channel openers and vascular smooth muscle relaxation. Pharmac Ther 48: 237–258CrossRefGoogle Scholar
  368. Edwards G, Weston AH (1993) The pharmacology of ATP-sensitive potassium channels. Annu Rev Pharmacol Toxicol 33: 597–637PubMedCrossRefGoogle Scholar
  369. Eltze M (1989) Glibenclamide is a competitive antagonist of cromakalim, pinacidil and RP 49356 in guinea-pig pulmonary artery. Eur J Pharmac 165: 231–239CrossRefGoogle Scholar
  370. French JF, Riera LC, Sarmiento JG (1990) Identification of high and low (GTP-sensitive) affinity [3H]glibenclamide binding sites in cardiac ventricular membranes. Biochem Biophys Res Comm 167: 1400–1405PubMedCrossRefGoogle Scholar
  371. Gurden MF, Coates J, Ellis F et al (1993) Functional characteristics of three adenosine receptor types. Br J Pharmacol 109: 693–698PubMedCrossRefGoogle Scholar
  372. Hamilton TC, Weir SW, Weston AH (1986) Comparison of the effects of BRL 34915 and verapamil on electrical and mechanical activity in rat portal vein. Br J Pharmac 88: 103–111CrossRefGoogle Scholar
  373. Hamilton TC, Weston AH (1989) Cromakalim, nicorandil and pinacidil: novel drugs which open potassium channels in smooth muscle. Gen Pharmacol 20: 1–9PubMedCrossRefGoogle Scholar
  374. Jan LY, Jan YN (1990) How might the diversity of potassium channels be generated? Trends Neurosci 13: 415–419PubMedCrossRefGoogle Scholar
  375. Kent RL, Harakal C, Santamore WP, Carey RA, Bove AA (1982) An index for comparing the inhibitory action of vasodilators. Eur J Pharmac 85: 85–91CrossRefGoogle Scholar
  376. Langer SZ, Trendelenburg U (1969). The effect of a saturable uptake mechanism on the slopes of dose-response curves for sympathomimetic amines and on the shifts of dose-response curves produced by a competitive antagonist. J. Pharmacol. Exp. Ther. 167: 117–142Google Scholar
  377. Martin W, Villani GM, Jothianandan D, Furchgott RF (1985). Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J. Pharmacol. Exp. Ther. 232: 708–716Google Scholar
  378. McBean DE, Harper AM, Rudolphi KA (1986) Effects of adenosine and its analogues on the cerebrovasculature and their antagonism by 8-phenyltheophylline: Identification of the receptor(s) involved. Pfluegers Arch 407 Suppl. 1: 31Google Scholar
  379. McBean DE, Harper AM, Rudolphi KA (1988) Effects of adenosine and its analogues on porcine basilar arteries: Are only A2 receptors involved? J Cerebr Blood Flow Metab 8: 40–45CrossRefGoogle Scholar
  380. Miller JA, Velayo NL, Dage RC, Rampe D (1991) High affinity [3H]glibenclamide binding sites in rat neuronal and cardiac tissue: localization and development characteristics. J Pharm Exp Ther 256: 358–364Google Scholar
  381. Mironneau J, Gargouil YM (1979) Action of indapamide on excitation-contraction coupling in vascular smooth muscle. Eur J Pharmacol 57: 57–67PubMedCrossRefGoogle Scholar
  382. Mourre C, Hugues M, Lazdunski M (1986) Quantitative autoradiographic mapping in rat brain of the receptor of apamin, a polypeptide toxin specific for one class of Ca2+-dependent K+ channels. Brain Res 382: 239–249PubMedCrossRefGoogle Scholar
  383. Mourre C, Widman C, Lazdunski M (1990) Sulfonylurea binding sites associated with ATP-regulated K+ channels in the central nervous system: autoradiographic analysis of their distribution and ontogenesis, and their localization in mutant mice cerebellum. Brain Res 519: 29–43PubMedCrossRefGoogle Scholar
  384. O’Donnell SR, Wanstall JC (1987) Choice and concentration of contractile agent influence responses of rat aorta to vascular relaxant drugs. J Pharm Pharmacol 39: 848–850PubMedCrossRefGoogle Scholar
  385. Pongs 0 (1992) Structural basis of voltage-gated K` channel pharmacology. TIPS 13: 359–365Google Scholar
  386. Rehm H, Lazdunski M (1988) Purification and subunit structure of a putative K+-channel protein identified by its binding properties for dendrotoxin I. Proc Natl Acad Sci USA 85: 4919–4923PubMedCrossRefGoogle Scholar
  387. Scherf H, Pietsch R, Landsberg G, Kramer HJ, Düsing R (1986) Converting enzyme inhibitor ramipril stimulates prostacyclin synthesis by isolated rat aorta: evidence for a kinin-dependent mechanism. Klin Wschr 64: 742–745PubMedCrossRefGoogle Scholar
  388. Shetty SS, Weiss GB (1987) Dissociation of actions of BRL 34915 in the rat portal vein. Eur J Pharmacol 141: 485–488PubMedCrossRefGoogle Scholar
  389. Wann KT (1993) Neuronal sodium and potassium channels: structure and function. Br J Anaesth 71: 2–14PubMedCrossRefGoogle Scholar
  390. Weston AH, Edwards G (1992) Recent progress in potassium channel opener pharmacology. Biochem Pharmacol 43: 47–54PubMedCrossRefGoogle Scholar
  391. Wilson C, Buckingham RE, Mootoo S, Parrott LS, Hamilton TC, Pratt SC, Cawthorne MA (1988) In vivo and in vitro studies of cromakalim (BRL 34915) and glibenclamide in the rat. Br J Pharmacol 93: 126 PGoogle Scholar
  392. Bohn H, Schönafinger K (1989) Oxygen and oxidation promote the release of nitric oxide from sydnonimines. J Cardiovasc Pharmacol 14 (Suppl 11): S6 - S12PubMedGoogle Scholar
  393. Chu A, Cobb FR (1987) Vasoactive effects of serotonin on proximal coronary arteries in awake dogs. Circ Res 61 (Suppl II):II81–II87Google Scholar
  394. Desta B, Nakashima M, Kirchengast M, Vanhoutte PM, Boulanger CM (1995) Previous exposure to bradykinin unmasks an endothelium-dependent relaxation to the converting enzyme inhibitor Trandolaprilat in isolated canine coronary arteries. J Pharm Exp Ther 272: 885–891Google Scholar
  395. Fujimoto M, Mihara S, Nakajima S, Ueda M, Nakamura M, Sakurai K (1992) A novel, non-peptide endothelin antagonist, isolated from bayberry, Myrica cerifera. FEBS Lett 305: 41–44Google Scholar
  396. Fukuroda T, Nishikibe M, Ohta Y, Ihara M, Yano M, Ishikawa K, Fukami T, Ikemoto F (1992) Analysis of responses to endothelins in isolated porcine blood vessels by using a novel endothelin antagonist, BQ-153. Life Sci 50:PL-107-PL-112Google Scholar
  397. Furchgott RF (1993) The discovery of endothelium-dependent relaxation. Circulation 87: Suppl V: V3 - V8.Google Scholar
  398. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373–376PubMedCrossRefGoogle Scholar
  399. Hayashi Y, Tomoike H, Nagasawa K, Yamada A, Nishijima H, Adachi H, Nakamura M (1988) Functional and anatomical recovery of endothelium after denudation of coronary artery. Am J Physiol 254: H1081 - H1090PubMedGoogle Scholar
  400. Jeremy JY, Dandona P (1989) Effect of endothelium removal on stimulatory and inhibitory modulation of rat aortic prostaglandin synthesis. Br J Pharmacol 96: 243–250PubMedCrossRefGoogle Scholar
  401. Linz W, Albus U, Wiemer G, Schölkens BA, König W (1986) Atriopeptin Ill induces endothelium-independent relaxation and increases cGMP levels in rabbit aorta. Klin Wschr 64 (Suppl VI): 27–30PubMedGoogle Scholar
  402. Meisheri KD, Dubray LAC, Olynek JJ (1990) A sensitive in vitro functional assay to detect K’-channel-dependent vasodilators. J Pharm Meth 24: 251–261CrossRefGoogle Scholar
  403. Peach MJ, Singer HA, Loeb AL (1985) Mechanism of endothelium-dependent vascular smooth muscle relaxation. Biochem Pharmacol 34: 1867–1874PubMedCrossRefGoogle Scholar
  404. Pelissier T, Miranda HF, Bustamante D, Paelle C, Pinardi G (1992) Removal of the endothelial layer in perfused mesenteric vascular bed of the rat. J Pharmacol Meth 27: 41–44CrossRefGoogle Scholar
  405. Pörsti I, Bara AT, Busse R, Hecker M (1994) Release of nitric oxide by angiotensin-(1–7) from porcine coronary endothelium: implications for a novel angiotensin receptor. Br J Pharmacol 111: 652–654PubMedCrossRefGoogle Scholar
  406. Ren LM, Nakane T, Chiba S (1993) Muscarinic receptor subtypes mediating vasodilation and vasoconstriction in isolated, perfused simian coronary arteries. J Cardiovasc Pharmacol 22: 841–846PubMedCrossRefGoogle Scholar
  407. Reynolds EE, Mok LLS (1990) Role of thromboxane A2/ prostaglandin H2 receptor in the vasoconstrictor response of rat aorta to endothelin. J Pharmacol Exp Ther 252: 915–921PubMedGoogle Scholar
  408. Scivoletto R, Carvalho MHC (1984) Cardionatrin causes vasodilation in vitro which is not dependent on the presence of endothelial cells. Eur J Pharmacol 101: 143–145PubMedCrossRefGoogle Scholar
  409. Tracey WR, Linden J, Peach MJ, Johns RA (1990) Comparison of spectrophotometric and biological assays for nitric oxide (NO) and endothelium-derived relaxing factor (EDRF): Nonspecificity of the diazotization reaction for NO and failure to detect EDRF. J Pharmacol Exp Ther 252: 922–928.Google Scholar
  410. Wiemer G, Becker RHA, Jablonka B, Rosenkranz G, Schölkens BA, Linz W (1992) Effects of converting enzyme inhibitors and the calcium antagonist nifedipine alone and in combination on precontracted isolated rabbit aortic rings. Arzneim Forsch /Drug Res 42: 795–797Google Scholar
  411. Riezebos J, Vleeming W, Beems RB, van Amsterdam JGC, Meijer GW, de Wildt DJ, Porsius AJ, Werner J (1994) Comparison of Israpidine and Ramipril in cholesterol-fed rabbits: effect on progression of atherosclerosis and endothelial dysfunction. J Cardiovasc Pharmacol 23: 415–423PubMedGoogle Scholar
  412. Winn MJ, Panus PC, Norton P, Dai J (1992) Computer system for the acquisition and analysis of vascular contractility. Application to a bioassay of endothelial cell function. J Pharmacol Toxicol Meth 28: 49–55Google Scholar
  413. Kalsner S (1992) Adrenergic presynaptic antagonists and their mechanism of action in smooth muscle. Am J Physiol 262 (Regul Intergr Comp Physiol 31): R400 - R406PubMedGoogle Scholar
  414. Linz W, Englert H, Kaiser J, Klaus E, Metzger H, Wirth K, Schölkens BA (1992) Evidence for an involvement of potassium channels in the action of forskolin and 1,9-dideoxyforskolin. Pharm Pharmacol Lett 1: 99–102Google Scholar
  415. Maggi CA, Giuliani S (1994) Calcitonin gene-related peptide ( CGRP) regulates excitability and refractory period of the guinea pig ureter. J Urology 152: 520–524Google Scholar
  416. Susano S, Moriyama K, Shimamura K (1992) Potentiation of twitch contraction in guinea pig ureter by sodium vanadate. Am J Physiol Cell Physiol 263: C953 - C958Google Scholar
  417. Young CJ, Attele A, Toledano A, Ndnez R, Moss J (1994) Volatile anesthetics decrease peristalsis in the guinea pig ureter. Anesthesiology 81: 452–458PubMedCrossRefGoogle Scholar
  418. Chu D, Hofmann A, Stiirmer E: (1978). Anaesthetised normotensive rats for the detection of hypotensive activity of a i3-adrenoceptor antagonist and other anti-hypertensive agents. Arzneim Forsch/Drug Res 28: 2093–2097Google Scholar
  419. Da Silva VJD, da Silva SV, Salgado MCO, Salgado HC (1994) Chronic converting enzyme inhibition facilitates baroreceptor resetting to hypertensive levels. Hypertension 23 (Suppl I):I-68-I-72Google Scholar
  420. de Abreu GR, Salgado HC (1990) Antihypertensive drugs distinctly modulate the rapid resetting of the baroreceptors. Hypertension 15 (Suppl 1):I-63-I-67Google Scholar
  421. DeWildt DJ, Sangster B (1983) An evaluation of derived aortic flow parameters as indices of myocardial contractility in rats. J Pharmacol Meth 10: 55–64CrossRefGoogle Scholar
  422. Hayes JS (1982) A simple technique for determining contractility, intraventricular pressure, and heart rate in the anesthetized guinea pig. J Pharmacol Meth 8: 231–239CrossRefGoogle Scholar
  423. King KA, Tabrizchi R, Pang CCY (1987) Investigation of the central and peripheral actions of clonidine and methoxamine using a new in vivo rat preparation. J Pharmacol Meth 17: 283–295CrossRefGoogle Scholar
  424. Pang CCY, Chan TCK (1985) Differential intraarterial pressure recordings from different arteries in the rat. J Pharmacol Meth 13: 325–330CrossRefGoogle Scholar
  425. Salgado HC, Krieger EM (1988) Extent of baroreceptor resetting in response to sodium nitroprusside and verapamil. Hypertension 11 (Suppl 1):I-121-I-125Google Scholar
  426. Zimmer HG, Zierhut W, Marschner G (1987) Combination of ribose with calcium antagonist and (3-blocker treatment in closed-chest rats. J Mol Cell Cardiol 19: 635–639PubMedCrossRefGoogle Scholar
  427. Zimmer HG, Zierhut W, Seesko RC, Varekamp AE (1988) Right heart catheterization in rats with pulmonary hypertension and right ventricular hypertrophy. Basic Res Cardiol 83: 48–57PubMedCrossRefGoogle Scholar
  428. Curtis MJ, McLeod BA, Walker MJA (1986) An improved pithed rat preparation: the actions of the optical enantiomers of verapamil. Asia Pacific J Pharmacol 1: 73–78Google Scholar
  429. Fluharty SJ, Vollmer RR, Meyers SA, McCann MJ, Zigmond MJ, Stricker EM (1987) Recovery of chronotropic responsiveness after systemic 6-hydroxydopamine treatment: Studies in the pithed rat. J Pharm Exp Ther 243: 415–423Google Scholar
  430. Gillespie JS, Muir TC (1967) A method of stimulating the complete sympathetic outflow from the spinal cord to blood vessels in the pithed rat. Br J Pharmacol Chemother 30: 78–87PubMedCrossRefGoogle Scholar
  431. Gillespie S, MacLaren A, Pollock D (1970) A method of stimulating different segments of the autonomic flow from the spinal column to various organs in the pithed cat and rat. Br J Pharmacol 40: 257–267PubMedCrossRefGoogle Scholar
  432. LH Tung, Jackman G, Campell B, Louis S, lakovidis D, Louis WJ (1993) Partial agonist activity of celiprolol. J Cardiovasc Pharmacol 21: 484–488PubMedCrossRefGoogle Scholar
  433. MacLean MR, Hiley CR (1988) Effect of artificial respiratory volume on the cardiovascular responses to an a,- and a2adrenoceptor agonist in the air-ventilated pithed rat. Br J Pharmacol 93: 781–790.PubMedCrossRefGoogle Scholar
  434. Majewski H, Murphy TV (1989) Beta-adrenoreceptor blockade and sympathetic neurotransmission in the pithed rat. J Hypertension 7: 991–996CrossRefGoogle Scholar
  435. Milmer KE, Clough DP (1983) Optimum ventilation levels for maintenance of normal arterial blood p02, pCO2, and pH in the pithed rat preparation. J Pharmacol Meth 10: 185–192CrossRefGoogle Scholar
  436. Nichols AJ, Hamada A, Adejare A, Miller DD, Patil PN, Ruffolo RR (1989) Effect of aromatic fluorine substitution on the alpha and beta adrenoreceptor mediated effects of 3,4dihydroxy-tolazoline in the pithed rat. J Pharmacol Exp Ther 248: 617–676Google Scholar
  437. Schneider J, Fruh C, Wilffert B, Peters T (1990) Effects of the selective ß,-adrenoreceptor antagonist, Nebivolol, on cardiovascular parameters in the pithed normotensive rat. Pharmacology 40: 33–41Google Scholar
  438. Shipley RE, Tilden JH (1947) A pithed rat preparation suitable for assaying pressor substances. Proc Soc Exp Med 64: 453–455Google Scholar
  439. Trolin G (1975) Effects of pentobarbitone and decerebration on the clonidine-induced circulatory changes. Eur J Pharmacol 34: 1–7PubMedCrossRefGoogle Scholar
  440. Van Meel JCA, Wilfert B, De Zoeten K, Timmermans PBMWM, Van Zwieten PA (1982) The inhibitory effect of newer calcium antagonists (Nimodipine and PY-108–068) on vasoconstriction in vivo mediated by postsynaptic aZ adrenoreceptors. Arch Int Pharmacodyn 260: 206–217PubMedGoogle Scholar
  441. Vargas HM, Zhou L, Gorman AJ (1994) Role of vascular alpha-1 adrenoceptor subtypes in the pressor response to sympathetic nerve stimulation in the pithed rat. J Pharm Exp Ther 271: 748–754Google Scholar
  442. Deitchman D, Braselton JP, Hayes DC, Stratman RL (1980). The ganglion-blocked, angiotensin II — supported rat: A model for demonstrating antihypertensive vasodilator activity. J. Pharmacol. Meth. 3: 311–321Google Scholar
  443. Bunag RD (1984) Measurement of blood pressure in rats. In: de Jong W (ed) Handbook of Hypertension. Vol 4. Experimental and Genetic Models of Hypertension. Elsevier Science Publ., New York, pp 1–12Google Scholar
  444. Bunag RD, McCubbin JW, Page IH (1971) Lack of correlation between direct and indirect measurement of arterial pressure in unanesthetized rats. Cardiovasc Res 5: 24–31PubMedCrossRefGoogle Scholar
  445. Kersten H, Brosene Jr WG, Ablondi F, Subba Row Y (1947) A new method for the indirect measurement of blood pressure in the rat. J Lab Clin Med 32: 1090–1098PubMedGoogle Scholar
  446. Mahoney LT, Brody MJ (1978) A method for indirect recording of arterial pressure in the conscious cat. J Pharmacol Meth 1: 61–66CrossRefGoogle Scholar
  447. Matsuda S, Kurokawa K, Higuchi K, Imamura N, Hakata H, Ueda M (1987) A new blood pressure measuring apparatus equipped with a microcomputer system for conscious rats. J Pharmacol Meth 17: 361–376CrossRefGoogle Scholar
  448. Patten JR, Engen RL (1971) The comparison of an indirect method with a direct method for determining blood pressure on rats. Cardiovasc Res Center Bull 9: 155–159Google Scholar
  449. Pernot F (1991) Blood pressure on conscious rats, noninvasive method: tail-cuff. In: 7`“ Freiburg Focus on Biomeasurement. Cardiovascular and Respiratory in vivo Studies. Biomesstechnik-Verlag March GmbH, 79232 March, Germany. pp 30–32Google Scholar
  450. Pfeffer JM, Pfeffer MA, Frohlich ED (1971) Validity of an indirect tail-cuff method for determining systolic arterial pressure in unanesthetized normotensive and spontaneously hypertensive rats. J Lab Clin Med 78: 957–962PubMedGoogle Scholar
  451. Stanton HC (1971) Experimental hypertension. In: Schwartz A (ed) Methods in Pharmacology, Vol 1, pp 125–150. Appleton-Century-Crofts, Meredith Corporation. New YorkCrossRefGoogle Scholar
  452. Wiester MJ, Iltis R (1976) Diastolic and systolic blood pressure measurements in monkeys determined by a non invasive tail-cuff technique. J Lab Clin Med 87: 354–361PubMedGoogle Scholar
  453. Akrawi SH, Wiedlund PJ (1987) A method for chronic portal vein infusion in unrestrained rats. J Pharmacol Meth 17: 67–74CrossRefGoogle Scholar
  454. Bao G, Qadri F, Stauss B, Stauss H, Gohlke P, Unger T (1991) HOE 140, a new highly potent and long-acting bradykinin antagonist in conscious rats. Eur J Pharmacol 200: 179–182PubMedCrossRefGoogle Scholar
  455. Bunag RD, McCubbin JW, Page IH (1971) Lack of correlation between direct and indirect measurement of arterial pressure in unanesthetized rats. Cardiovasc Res 5: 24–31PubMedCrossRefGoogle Scholar
  456. Garthoff B (1983) Twenty-four hour blood pressure recording in aortic coarctation hypertensive rats. Naunyn Schmiede-berg’s Arch Pharmacol 322: R22Google Scholar
  457. Garthoff B, Towart R (1981) A new system for the continuous direct recording of blood pressure and heart rate in the conscious rat. J Pharmacol Meth 5: 275–278CrossRefGoogle Scholar
  458. Hilditch A, Newberry A, Whithing S (1978) An improved device for the direct recording of blood pressure in conscious dogs. J Pharmacol Meth 1: 89–90CrossRefGoogle Scholar
  459. Laffan RJ, Peterson A, Hitch SW, Jeunelot C (1972) A technique for prolonged, continuous recording of blood pressure of unrestrained rats. Cardiovasc Res 6: 319–324PubMedCrossRefGoogle Scholar
  460. Linz W, Klaus E, Albus U, Becker R, Mania D, Englert HC, Schölkens BA (1992) Cardiovascular effects of the novel potassium channel opener (3S,4R)-3-hydroxy-2,2-dimethyl4-(2-oxo-1-pyrrolidinyl)-6-phenylsulfonylchromane hemihydrate. Arzneim Forsch/Drug Res 42: 1180–1185Google Scholar
  461. Robineau F (1988) A simple method for recording electrocardiograms in conscious, unrestrained rats. J Pharmacol Meth 19: 127–133CrossRefGoogle Scholar
  462. Stanton HC (1971) Experimental hypertension. In: Schwartz A (ed) Methods in Pharmacology, Vol 1, pp 125–150. Appleton-Century-Crofts, Meredith Corporation. New YorkCrossRefGoogle Scholar
  463. Sweet CS, Columbo JM (1979) Cardiovascular properties of antihypertensive drugs in a model of severe renal hypertension. J Pharmacol Meth 2: 223–239CrossRefGoogle Scholar
  464. Weeks JR, Jones JA (1960) Routine direct measurement of arterial pressure in unanesthetized rats. Proc Soc Exp Biol Med. 104: 646–648PubMedGoogle Scholar
  465. Corman LE, diPalma JR (1967) Animal techniques for measuring drug effects on various peripheral vascular beds. In: Siegler PE, Moyer JH (eds) Animal and clinical pharmacologic techniques in drug evaluation, Vol II, pp 434–443. Year Book Medical Publ., Inc., ChicagoGoogle Scholar
  466. Hoppe JO, Brown Jr TG (1964) Animal techniques for evaluating autonomic blocking agents, antihypertensive and vasodilator drugs. In: Nodine JE, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. Vol I, pp 116–121. Year Book Medical Publ., Inc., ChicagoGoogle Scholar
  467. Aisaka K, Hidaka T, Hattori Y, Inomata N, Ishihara T, Satoh F (1988) General pharmacological studies on N-(2,6-dimethylphenyl)-8-pyrrolizidineacetamide hydrochloride hemihydrate. 3rd communication: Effect on cardiovascular system. Arzneim Forsch/Drug Res 38: 1417–1425Google Scholar
  468. Bohn H, Martorana PA, Schönafinger K (1992) Cardiovascular effects of the new nitric oxide donor, pirsidomine. Hemo-dynamic profile and tolerance studies in anesthetized and conscious dogs. Eur J Pharmacol 220: 71–78Google Scholar
  469. Carbonell LF, Salom MG, Salazar FJ, Garcia-Estan J, Ubeda M, Queseda T (1985) Normal hemodynamic parameters in conscious Wistar rats. Revista Espanola Fisiologia 41: 437–442Google Scholar
  470. Martorana PA, Kettenbach B, Bohn H, Schönafinger K, Henning R (1994) Antiischemic effects of pirsidomine, a new nitric oxide donor. Eur J Pharmacol 257: 267–273PubMedCrossRefGoogle Scholar
  471. Millard RW (1984) Cardiac and vascular measurements in conscious and anesthetized animals. In: Schwartz A (ed) Methods in Pharmacology, Vol 5, Myocardial Biology., Plenum Press, Ney York and London, pp 167–174Google Scholar
  472. Müller B, Mannesmann G (1981) Measurement of cardiac output by the thermodilution method in rats. II. Simultaneous measurement of cardiac output and blood pressure in conscious rats. J Pharmacol Meth 5: 29–34Google Scholar
  473. Rajagopalan R, Ghate AV, Subbarayan P, Linz W, Schoelkens BA (1993) Cardiotonic activity of the water soluble forskoline derivative 8,13-epoxy-63-(piperidinoacetoxy)-1a,713,9atrihydroxy-labd-14-en-ll-one. Arzneim Forsch/Drug Res 43 (I) 313–319Google Scholar
  474. Richardson AW, Cooper T, Pinakatt T (1962) Thermodilution method for measuring cardiac output of rats by using a transistor bridge. Science 135: 317–318PubMedCrossRefGoogle Scholar
  475. Rooke GA, EO Feigl: (1982). Work as a correlate of canine left ventricular oxygen consumption, and the problem of catecholamine oxygen wasting. Circ. Res. 50: 273–286Google Scholar
  476. Rosas R, Montague D, Gross M, Bohr DF (1964) Cardiac action of vasoactive polypeptides in the rat. I. Bradykinin. II Angiotensin. Circ Res 16: 150–161Google Scholar
  477. Salyers AK, Rozek LF, Bittner SE, Walsh GM (1988) Simultaneous determination of ventricular function and systemic hemodynamics in the conscious rat. J Pharmacol Meth 19: 267–274CrossRefGoogle Scholar
  478. Schölkens BA, Becker RHA, Kaiser J (1984) Cardiovascular and antihypertensive activities of the novel non-sulfhydryl converting enzyme inhibitor 2-[N-[(S)-1-ethoxycarbonyl-3phenylpropyl]-L-alanyl]-(1 S,3S,5S)-2-azabicyclo[3.3.0] octane-3-carboxylic acid (Hoe 498). Arzneim Forsch/Drug Res 34: 1417–1425Google Scholar
  479. Bohn H, Rosenstein B (1986). Technical notes on chronic fluid-filled catheters and renal artery constrictors for testing hemodynamic drug effects in conscious hypertensive dogs. J Pharmacol Meth 16: 227–238CrossRefGoogle Scholar
  480. Hashimoto K, Kinoshita M, Ohbayashi Y (1991) Coronary effects of nicorandil in comparison with nitroglycerin in chronic conscious dogs. Cardiovasc Drugs Ther 5: 131–138PubMedCrossRefGoogle Scholar
  481. Hintze TH, Vatner SF (1983) Comparison of effects of nifedipine and nitroglycerin on large and small coronary arteries and cardiac function in dogs. Circ Res 52 (Suppl I): 139–146Google Scholar
  482. Müller-Schweinitzer E (1984) The recording of venous compliance in the conscious dog: A method for the assessment of vasoconstrictor agents. J Pharmacol Meth 12: 53–58CrossRefGoogle Scholar
  483. Rajagopalan R, Ghate AV, Subbarayan P, Linz W, Schoelkens BA (1993) Cardiotonic activity of the water soluble forskoline derivative 8,13-epoxy-613-(piperidinoacetoxy)la,7ß,9a-trihydroxy-labd-14-en-1l-one. Arzneim Forsch/ Drug Res 43 (I) 313–319Google Scholar
  484. Sarazan RD (1991) The chronically instrumented conscious dog model. In: 7th Freiburg Focus on Biomeasurement. Cardiovascular and Respiratory in vivo Studies. Biomesstechnik-Verlag March GmbH, 79232 March, Germany. pp 37–44Google Scholar
  485. Shimshak TM, Preuss KC, Gross GJ, Brooks HL, Warltier DC (1986) Recovery of contractile function in post-ischemic reperfused myocardium of conscious dogs: influence of nicorandil, a new antianginal agent. Cardiovasc Res 20: 621–626PubMedCrossRefGoogle Scholar
  486. Wright A, Raval P, Eden RJ, Owen DAA (1987) Histamine H1-receptor antagonist activity assessed in conscious dogs. J Pharm Meth 18: 123–129CrossRefGoogle Scholar
  487. Linz W, Klaus E, Albus U, Becker R, Mania D, Englert HC, Schölkens BA (1992) Cardiovascular effects of the novel potassium channel opener (3S,4R)-3-hydroxy-2,2-dimethyl4-(2-oxo-1-pyrrolidinyl)-6-phenylsulfonylchromane hemihydrate. Arzneim-Forsch/Drug Res 42: 1180–1185Google Scholar
  488. Bonnacrossi A, Dejana E, Qunintana A (1978) Organ blood flow measured with microspheres in the unanesthetized rat: effects of three room temperatures. J Pharmacol Meth I: 321–328Google Scholar
  489. Faraci FM, Heistad DD (1992) Does basal production of nitric oxide contribute to regulation of brain-fluid balance? Am J Physiol 262: H340 - H344PubMedGoogle Scholar
  490. Flaim SF, Nellis SH, Toggart EJ, Drexler H, Kanda K, Newman ED (1984) Multiple simultaneous determinations of hemodynamics and flow distribution in conscious rats. J Pharmacol Meth 11: 1–39CrossRefGoogle Scholar
  491. Gross GJ, Auchampach JA, Maruyama M, Warltier DC, Pieper GM (1992) Cardioprotective effects of nicorandil. J Cardiovasc Pharmacol 20 (Suppl 3): S22 - S28PubMedCrossRefGoogle Scholar
  492. Grover GJ, Sleph PG, Dzwonczyk S (1990) Pharmacological profile of chromakalim in the treatment of myocardial ischemia in isolated rat hearts and anesthetized dogs. J Cardiovasc Pharmacol 16: 853–864PubMedCrossRefGoogle Scholar
  493. Heymann MA, Payne BD, Hoffmann JIE, Rudolph AM (1977) Blood flow measurements with radionuclide-labeled particles. Prog Cardiovasc Dis 20: 55–79PubMedCrossRefGoogle Scholar
  494. Hof RP, Wyler F, Stalder G (1980) Validation studies for the use of the microsphere method in cats and young minipigs. Basic Res Cardiol 75: 747–756PubMedCrossRefGoogle Scholar
  495. Ishise S, Pegram BL, Yamamoto J, Kitamura Y, Frohlich ED (1980) Reference sample microsphere method: cardiac out put and blood flows in conscious rat. Am J Physiol 239: H443–449PubMedGoogle Scholar
  496. Kovach AGB, Szabo C, Benyo Z, Csaki C, Greenberg JH, Reivich M (1992) Effects of 1V°-nitro-L-arginine and Larginine on regional cerebral blood flow in the cat. J Physiol 449: 183–196PubMedGoogle Scholar
  497. McDevitt DG, Nies AS (1976) Simultaneous measurement of cardiac output and its distribution with microspheres in the rat. Cardiovasc Res 10: 494–498PubMedCrossRefGoogle Scholar
  498. Stanek KA, Coleman TG, Smith TL, Murphy WR (1985) Two hemodynamic problems commonly associated with the microsphere technique for measuring regional blood flow in rats. J Pharmacol Meth 13: 117–124CrossRefGoogle Scholar
  499. Child CG, Glenn F (1938) Modification of van Leersum carotid loop for determination of systolic blood pressure in dogs. Arch Surg 36: 381–385CrossRefGoogle Scholar
  500. Lagutchik MS, Sturgis JW, Martin DG, Bley JA (1992) Review of the carotid loop procedure in sheep. J Invest Surg 5: 79–89PubMedCrossRefGoogle Scholar
  501. Meyer M, Hahn G, Buess Ch, Mesch U, Piiper J (1989) Pulmonary gas exchange in panting dogs. J Appl Physiol 66: 1258–1263PubMedGoogle Scholar
  502. Meyer M, Hahn G, Piiper J (1989) Pulmonary gas exchange in panting dogs: a model for high frequency ventilation. Acta Anaesthesiol Scand 33, Suppl 90: 22–27Google Scholar
  503. O’Brien DJ, Chapman WH, Rudd FV, McRoberts JW (1971) Carotid artery loop method of blood pressure measurement in the dog. J Appl Physiol 30: 161–163PubMedGoogle Scholar
  504. Valli VEO, McSherry BJ, Archibald J (1967) The preparation and use of carotid loops. Can Vet Jour 8: 209–211Google Scholar
  505. van Leersum EC (1911) Eine Methode zur Erleichterung der Blutdruckmessung bei Tieren. Arch ges Physiol 142: 377–395CrossRefGoogle Scholar
  506. Barnes GE, Horwith LD, Bishop VS (1979) Reliability of the maximum derivatives of left ventricular pressure and internal diameter as indices of the inotropic state of the depressed myocardium. Cardiovasc Res 13: 652–662PubMedCrossRefGoogle Scholar
  507. Bishop VS, Horwitz LD (1971) Effects of altered autonomic control on left ventricular function in conscious dogs. Am J Physiol 221: 1278–1282PubMedGoogle Scholar
  508. Fiedler VB, Oswald S, Göbel H, Faber W, Scholtholt J (1980) Determination of left ventricular dimensions with ultrasound. J Pharmacol Meth 3: 201–219CrossRefGoogle Scholar
  509. Horwitz LD, Bishop VS (1972) Left ventricular pressure-dimension relationships in the conscious dog. Cardiovasc Res 6: 163–171PubMedCrossRefGoogle Scholar
  510. Stinson EB, Rahmoeller G, Tecklenberg PL (1974) Measurement of internal left ventricular diameter by tracking sonomicrometer. Cardiovasc Res 8: 283–289PubMedCrossRefGoogle Scholar
  511. Suga H, Sagawa K (1974) Assessment of absolute volume from diameter of the intact canine left ventricular cavity. J Appl Physiol 36: 496–499PubMedGoogle Scholar
  512. Astley CA, Smith OA, Ray RD, Golanov EV, Chesney MA, Chalyan VG, Taylor DJ, Bowden DM (1991) Integrating behavior and cardiovascular response: the code. Am J Physiol, Regul Integr Comp Physiol 261: R172 - R181Google Scholar
  513. Basil MK, Krulan C, Webb RL (1993) Telemetric monitoring of cardiovascular parameters in conscious spontaneously hypertensive rats. J Cardiovasc Pharmacol 22: 897–905CrossRefGoogle Scholar
  514. Brockway BP, Medvedev OS (1991) Circulatory studies on rats using telemetry instrumentation and methodology. In: 7th Freiburg Focus on Biomeasurement. Cardiovascular and Respiratory in vivo Studies. Biomesstechnik-Verlag March GmbH, 79232 March, Germany. pp 142–147Google Scholar
  515. Brockway BP, Mills PA, Azar SH (1991) A new method for continuous chronic measurement and recording of blood pressure, heart rate and activity via radio-telemetry. Clin Exp Hyper Theory Pract A13: 885–895CrossRefGoogle Scholar
  516. Calhoun DA, Zhu S, Wyss JM, Oparil S (1994) Diurnal blood pressure variations and dietary salt in spontaneously hypertensive rats. Hypertension 24: 1–7PubMedCrossRefGoogle Scholar
  517. Clement JG, Mills P, Brockway B (1989) Use of telemetry to record body temperature and activity in mice. J Pharmacol Meth 21: 129–140CrossRefGoogle Scholar
  518. Diamant M, von Wolfswinkel L, Altorffer B, de Wied D (1993) Biotelemetry: Adjustment of a telemetry system for simultaneous measurement of acute heart rate changes and behavioral events in unrestrained rats. Physiol Behav 53: 1121–1126Google Scholar
  519. Griffin KA, Picken M, Bidani AK (1994) Radiotelemetric BP monitoring, antihypertensives and glomeruloprotection in remnant kidney model. Kidney Internat 46: 1010–1018CrossRefGoogle Scholar
  520. Guillet MC, Molinié B, Laduron PM, Terlain B (1990) Effects of ketoprofen in adjuvant-induced arthritis measured in a new telemetric model test. Eur J Pharmacol 183: 2266–2267.CrossRefGoogle Scholar
  521. Guiol C, Ledoussal C, Surgé JM (1992) A radiotelemetry system for chronic measurement of blood pressure and heart rate in the unrestrained rat. Validation of the method. J Pharmacol Toxicol Meth 28: 99–105Google Scholar
  522. Kuwahara M, Yayou KI, Ishii K, Hashimoto SI, Tsubone H, Sugano S (1994) Power spectral analysis of heart rate variability as a new method for assessing autonomic activity in the rat. J Electrocardiol 27: 333–337PubMedCrossRefGoogle Scholar
  523. Lee JY, Brune ME, Warner RB, Buckner SB, Winn M, De B, Zydowsky TM, Opgenorth TJ, Kerkman DJ, DeBerhardis JF (1993) Antihypertensive activity of ABBOTT-81282, a nonpeptide angiotensin II antagonist, in the renal hypertensive rat. Pharmacology 47: 176–187PubMedCrossRefGoogle Scholar
  524. Lemmer B, Mattes A, Böhm M, Ganten D (1993) Circadian blood pressure variation in transgenic hypertensive rats. Hypertension 22: 97–101PubMedCrossRefGoogle Scholar
  525. Lemmer B, Witte K, Makabe T, Ganten D, Mattes A (1994) Effects of enalaprilat on circadian profiles in blood pressure and heart rate of spontaneously and transgenic hypertensive rats. J Cardiovasc Pharmacol 23: 311–314PubMedCrossRefGoogle Scholar
  526. Mattes A, Lemmer B (1991) Effects of amlodipine on circadian rhythms in blood pressure, heart rate, and motility: a telemetric study in rats. Chronobiol Internat 8: 526–538CrossRefGoogle Scholar
  527. Morimoto K, Morimoto A, Nakamori T, Tan N, Minagawa T, Murakami N (1992) Cardiovascular responses induced in free-moving rats by immune cytokines. J Physiol 448: 307–320PubMedGoogle Scholar
  528. Rubini R, Porta A, Baselli G, Cerutti S, Paro M (1993) Power spectrum analysis of cardiovascular variability monitored by telemetry in conscious unrestrained rats. J Autonom Nervous System 45: 181–190CrossRefGoogle Scholar
  529. Sato K, Kandori H, Sato SH (1994) Evaluation of a new method using telemetry for monitoring the left ventricular pressure in free-moving rats. J Pharmacol Toxicol Meth 31: 191–198CrossRefGoogle Scholar
  530. Smith OA, Astley CA, Spelman FA, Golanov EV, Chalyan VG, Bowden DM, Taylor DJ (1993) Integrating behavior and cardiovascular responses: posture and locomotion. I. Static analysis. Am J Physiol 265 (Regul Integr Comp Physiol 34): R1458 - R1568PubMedGoogle Scholar
  531. Symons JD, Pitsillides KF, Longhurst CJ (1992) Chronic reduction of myocardial ischemia does not attenuate coronary collateral development in miniswine. Circulation 86: 660–671PubMedCrossRefGoogle Scholar
  532. Tornatzky W, Miczek KA (1993) Long-term impairment of autonomic circadian rhythms after brief intermittent social stress. Physiol Behav 53: 983–993PubMedCrossRefGoogle Scholar
  533. van den Buuse M (1994) Circadian rhythms of blood pressure, heart rate, and locomotor activity in spontaneously hypertensive rats as measured with radiotelemetry. Physiol Behan 55: 783–786CrossRefGoogle Scholar
  534. Feldberg W, Sherwood SL (1954) Injections of drugs into the lateral ventricle of the cat J Physiol 123: 148–167Google Scholar
  535. Hayden JF, Johnson LR, Maickel RP (1966) Construction and implantation of a permanent cannula for making injections into the lateral ventricle of the rat brain. Life Sci 5: 1509–1515PubMedCrossRefGoogle Scholar
  536. Mastrianni JA, Harris TM, Ingenito AJ (1986) An intracerebroventricular perfusion system developed for the study of centrally acting antihypertensive drugs in the rat. J Pharmacol Meth 16: 63–72CrossRefGoogle Scholar
  537. Timmermans PBMWM (1984). Centrally acting hypotensive drugs. In: van Zwieten (ed) Handbook of Hypertension, Vol 3, Pharmacology of Antihypertensive Drugs. Elsevier Amsterdam, pp 102–153Google Scholar
  538. Baum Th, Vliet GV, Glennon JC, Novak PJ (1981) Antihypertensive and orthostatic responses to drugs in conscious dogs. J Pharmacol Meth 6: 21–32CrossRefGoogle Scholar
  539. Boura ALA, Green AF (1959) The actions of bretylium: Adrenergic neuron blocking and other effects. Br J Pharmacol 14: 536–548Google Scholar
  540. Humphrey SJ, McCall RB (1982) A rat model for predicting orthostatic hypotension during acute and chronic antihypertensive drug therapy. J Pharmacol Meth 25: 25–34CrossRefGoogle Scholar
  541. Lee CH, Strosber AM, Roszkowski AP, Warren LA (1982) A model for evaluation of postural hypotension induced by drugs in conscious restrained normotensive rats. J Pharmacol Meth 7: 15–24CrossRefGoogle Scholar
  542. Pals DT, Orley J (1983) A none human primate model for evaluating the potential of antihypertensive drugs to cause orthostatic hypotension. J Pharmacol Meth 9: 183–192CrossRefGoogle Scholar
  543. Sponer G, Mannesmann G, Bartsch W, Dietmann K (1981) A method for evaluating postural hypotension in conscious rabbits as a model to predict effects of drugs in man. J Pharmacol Meth 5: 53–58CrossRefGoogle Scholar
  544. Baldwin G, Alpert G, Caputo GL, Baskin M, Parsonnet J, Gillis ZA, Thompson C, Silber GR, Fleisher GR (1991) Effect of Polymyxin B on experimental shock from meningococcal and Escherichia coli endotoxins. J Infect Dis 164: 542–549PubMedCrossRefGoogle Scholar
  545. Brackett DJ, Schaefer CF, Tompkins P, Fagraeus L, Peters LJ, Wilson MF (1985) Evaluation of cardiac output, total peripheral vascular resistance, and plasma concentrations of vasopressin in the conscious, unrestrained rat during endotoxemia. Circulat Shock 17: 273–284Google Scholar
  546. Fleckenstein A, Muschaweck R, Bohlinger F (1950) Weitere Untersuchungen über die pharmakologische Ausschaltung des BEZOLD-JARISCH-Reflexes. Naunyn Schmiedebergs Arch exper Path Pharmakol 211: 132–142Google Scholar
  547. Galanos C, Freudenberg MA, Reutter W (1979) Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc Natl Acad Sci USA 76: 5939–5943PubMedCrossRefGoogle Scholar
  548. Jarisch A, Richter H (1939 a) Die Kreislaufwirkung des Veratrins. Naunyn Schmiedebergs Arch exp Path Pharmakol 193: 347–354Google Scholar
  549. Jarisch A, Richter H (1939 b) Der Bezold-Effekt — Eine vergessene Kreislaufreaktion. Klin Wochschr 18: 185–187Google Scholar
  550. Jarisch A (1940) Vom Herzen ausgehende Kreislaufreflexe. Arch Kreislaufforsch 7: 260–274CrossRefGoogle Scholar
  551. Lindenbaum GA, Lerrieu AJ, Carrol SF Kapusnick RA (1990) Efectos de la cocarboxilasa en perros sometidos a choque septico experimental. Compend Invest Clin Latinoam 10: 18–26Google Scholar
  552. Metz CA, Sheagren JN (1990) Ibuprofen in animal models of septic shock. J Crit Care 5: 206–212CrossRefGoogle Scholar
  553. Muacevic G, Heuer HO (1992) Platelet-activating factor antagonists in experimental shock. Arzneim Forsch/Drug Res 42: 1001–1004Google Scholar
  554. Otterbein L, Lowe VC, Kyle DJ, Noronha-Blob L (1993) Additive effects of a bradykinin antagonist, NPC 17761, and a leumedin, NPC 15669, on survival in animal models. Agents Actions 39, Special Conference Issue: C125 - C127Google Scholar
  555. Schäfer CF, Biber B, Brackett DJ, Schmidt DD, Fagraeus L, Wilson MF (1987) Choice of anesthetic alters the circulatory shock as gauged by conscious rat endotoxemia. Acta Anaesthesiol Scand 31: 550–556CrossRefGoogle Scholar
  556. von Bezold A, Hirt L (1867) Über die physiologischen Wirkungen des essigsauren Veratrin’s. Untersuchungen aus dem physiologischen Laboratorium Würzburg 1: 75–156Google Scholar
  557. Davis HA (1941) Physiologic effects of high concentrations of oxygen in experimental secondary shock. Arch Surg 43: 1–13CrossRefGoogle Scholar
  558. Lamson PD, de Turk (1945) Studies on shock induced by hemorrhage. XI. A method for the accurate control of blood pressure. J Pharmacol Exp Ther 83: 250–252Google Scholar
  559. Mills LC (1967) Animal and clinical techniques for evaluating drugs in various types of shock. In: Siegler PF, Moyer JH (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical Publ. Inc., Chicago, pp 478–492Google Scholar
  560. Selkurt EE; Rothe CF (1961) Critical analysis of experimental shock models. In: Seeley SF, Weisiger JR (eds) Recent progress and present problems in the field of shock. Fed Proc 20, Suppl 9, part III, pp 30–37Google Scholar
  561. Van der Meer C, Valkenburg PW, Snijders PM, Wijnans M, van Eck P (1987) A method for hemorrhagic shock in the rat. J Pharmacol Meth 17: 75–82CrossRefGoogle Scholar
  562. Aoki Y, Nata M, Odaira T, Sagisaka K (1992) Suppression of ischemia-reperfusion injury by liposomal superoxide dismutase in rats subjected to tourniquet shock. Int J Leg Med 105: 5–9CrossRefGoogle Scholar
  563. Chandra P, Dave PK (1970) Effect of dipyrone on tourniquet shock. Arzneim Forsch (Drug Res) 20: 409–412Google Scholar
  564. Duncan GW, Blalock A (1942) The uniform production of experimental shock by crush injury: possible relationship to clinical crush syndrome. Ann Surg 115: 684–694PubMedCrossRefGoogle Scholar
  565. Goto H, Benson KT, Katayama H, Tonooka M, Tilzer LL, Arakawa K (1988) Effect of high-dose of methylprednisolone on tourniquet ischaemia. Can J Anaesth 35: 484–488PubMedCrossRefGoogle Scholar
  566. Kruskal JB, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47: 583–621CrossRefGoogle Scholar
  567. Little RA (1974) The compensation of post-traumatic oedema in the rabbit at different ages. J Physiol 238: 207–221PubMedGoogle Scholar
  568. Paletta FX, Willman V, Ship AG (1960) Prolonged tourniquet ischemia of extremities. An experimental study on dogs. J Bone Joint Surg 42: 945–950Google Scholar
  569. Peto R, Pike MC, Armitage P, Breslow NE, Cox DR, Howard SV, Mantel N, McPherson K, Peto J, Smith PG (1976) Design and analysis of randomized clinical trials requiring prolonged observation of the patient. I. Introduction and design. II. AnalysIs and examples. Br J Cancer 585–612.Google Scholar
  570. Sâez JC, Cifuentes F, Ward PH, Günther B, Vivaldi E (1986) Tourniquet shock in rats: Effects of allopurinol on biochemical changes of the gastrocnemius muscle subjected to ischemia followed by reperfusion. Biochem Med Metabol Biol 35: 199–209Google Scholar
  571. Sen PK (1980) Nonparametric simultaneous inference for some MANOVA models. In: Krishnaiah PR (ed) Handbook of Statistics. Vol 1; North-Holland, Amsterdam, New York, pp 673–702Google Scholar
  572. Van der Meer C, Valkenburg PW, Ariens AT, van Benthem MJ (1966) Cause of death in tourniquet shock in rats. Am J Physiol 210: 513–525PubMedGoogle Scholar
  573. Vujnov St, Prostran M, Savic JD, Varagic VM, Lovric M (1992) Betα-adrenergic receptors and catecholamines in the rat heart during tourniquet trauma. Circulat Shock 36: 38–44Google Scholar
  574. Wilgis EFS (1971) Observations on the effects of tourniquet ischemia. J Bone Joint Surg 53 A: 1343–1346Google Scholar
  575. Blackman JG, Fastier FN, Patel CM, Wong LCK (1956) Assessment of depressor activity and mydriatic activity of hexamethonium analogues. Br J Pharmacol 11: 282–288Google Scholar
  576. Blackman JG, Fastier FN, Patel CM, Wong LCK (1956) Assessment of depressor activity and mydriatic activity of hexamethonium analogues. Br J Pharmacol 11: 282–288Google Scholar
  577. Burn JH, Finney DJ, Goodwin LG (1950) Biological Standardization Oxford University Press, London, pp 320–324Google Scholar
  578. Bynke G, Häkanson R, Hörig J, Leander S (1983) Bradykinin contracts the pupillary sphincter and evokes ocular inflammation through release of neuronal substance P. Eur J Pharmacol 91: 469–475PubMedCrossRefGoogle Scholar
  579. Freundt KJ (1965) Adrenergic alpha-and beta-receptors in the mouse iris. Nature 206: 725–726PubMedCrossRefGoogle Scholar
  580. Häkanson R, Beding B, Erkman R, Heilig M, Wahlestedt C, Sundler F (1987) Multiple tachykinin pools in sensory nerve fibres in the rabbit iris. Neurosci 21: 943–950CrossRefGoogle Scholar
  581. Ing HR, Dawes GS, Wajda I (1945) Synthetic substitutes for atropine. J Pharm Exp Ther 85: 85–105Google Scholar
  582. Kern R (1970) Die adrenergischen Receptoren der intraoculären Muskeln des Menschen. Graefes Arch klin exp Ophthal 180: 231–248CrossRefGoogle Scholar
  583. Pulewka P (1932) Das Auge der weißen Maus als pharmakologisches Testobjekt. I. Mitteilung: Eine Methode zur quantitativen Bestimmung kleinster Mengen Atropin und anderer Mydriatika. Naunyn Schmiedebergs Arch exp Path Pharmak 168: 307–315CrossRefGoogle Scholar
  584. Ueda N, Muramatsu I, Fujiwara M (1984) Capsaicin and bradykinin-induced substance P-ergic Koss MC (1986) Pupillary dilatation as an index for central nervous system ac-adrenoreceptor activation. J Pharmacol Meth 15: 1–19CrossRefGoogle Scholar
  585. Gillespie JS, Muir TC (1967) A method of stimulating the complete sympathetic outflow from the spinal cord to blood vessels in the pithed rat. Br J Pharmacol Chemother 30: 78–87PubMedCrossRefGoogle Scholar
  586. Lands AM, Arnold A, McAuliff JP, Ludena FP, Brown TG (1967) Differentiation of receptor systems activated by sympathetic amines. Nature 214: 597–598PubMedCrossRefGoogle Scholar
  587. Lands AM, Ludena FP, Buzzo HD (1967) Differentiation of receptors responsive to isoproterenol. Life Sci 6: 2241–2249PubMedCrossRefGoogle Scholar
  588. Lish PM, Weikel JH, Dungan KW (1965) Pharmacological and toxicological properties of two new 0-adrenergic receptor antagonists. J Pharmacol Exp Ther 149: 161–173PubMedGoogle Scholar
  589. Nathason JA (1985) Differential inhibition of beta adrenergic receptors in human and rabbit ciliary process and heart. J Pharmacol Exper Ther 232: 119–126Google Scholar
  590. Piercy V (1988) Method for assessing the activity of drugs at ß,- and ßZ adrenoreceptors in the same animal. J Pharmacol Meth 20: 125–133CrossRefGoogle Scholar
  591. Piercy V (1988) The ß-adrenoreceptors mediating uterine relaxation throughout the oestrus cycle of the rat are predominantly of the O2-subtype. J Autonom Pharmacol 8: 11–18CrossRefGoogle Scholar
  592. Turner RA (1971) ß-adrenergic blocking agents. In: Turner RA, Hebborn P (eds.) Screening methods in pharmacology. Vol II. pp 21–40. Academic Press, New York and LondonGoogle Scholar
  593. DiPalma (1964) Animal techniques for evaluating sympathomimetic and parasympathomimetic drugs. In: Nodine JH; Siegler PE (eds) Animal and pharmacologic techniques in drug evaluation. Vol I, pp 105–110. Year Book Medical Publ., Inc. ChicagoGoogle Scholar
  594. Green AF, Boura ALA (1964) Depressants of peripheral sympathetic nerve function. In: Laurence DR, Bacharach AL (eds) Evaluation of Drug Activities: Pharmacometrics. Academic Press, London and New York, 369–430Google Scholar
  595. Boura AL, Green AF (1959) The actions of brethylium: Adrenergic neuron blocking and other effects. Br J Pharmacol 14: 536–548Google Scholar
  596. Claßen HG, Marquardt P, Späth M (1968) Sympathicomimetische Wirkungen von Cyclohexylamin. Arzneim Forsch/Drug Res 18: 590–594Google Scholar
  597. Fleckenstein A, Burn HI (1953) The effect of denervation on the action of sympathicomimetic amines on the nictitating membrane. Br J Pharmacol 8: 69–78Google Scholar
  598. Green AF, Boura ALA (1964) Depressants of peripheral sympathetic nerve function. I Sympathetic nerve blockade. In: Laurence DR, Bacharach AL (eds.) Evaluation of drug activities: Pharmacometrics. Academic Press, London and New York, pp 370–430Google Scholar
  599. Isola W, Bacq ZM (1946) Innervation symapthique adrénergique de la musculature lisse des paupières. Arch Internat Physiol 54: 30–48PubMedCrossRefGoogle Scholar
  600. Langer SZ, Trendelenburg U (1969) The effect of a saturable uptake mechanism on the slopes of dose-response curves for sympathomimetic amines and on the shifts of dose-response curves produced by a competitive antagonist. J Pharm Exp Ther 167: 117–142Google Scholar
  601. Trendelenburg U, Haeusler G (1975) Nerve-muscle preparations of the nictitating membrane. In: Daniel EE, Paton DM (eds.) Methods in Pharmacology, Vol 3, Smooth muscle, Plenum Press New York and London pp 457–468Google Scholar
  602. Batt CM, Klein EW, Harding JW, Wright JW (1988) Pressor responses to amastatin, bestatin and Plummer’s inhibitors are suppressed by pretreatment with the angiotensin receptor antagonist Sarthran. Brain Res Bull 21: 731–735PubMedCrossRefGoogle Scholar
  603. Brechler V, Jones PW, Levens NR, de Gasparo M, Bottari SP (1993) Agonistic and antagonistic properties of angiotensin analogs at the AT2 receptor in PC12W cells. Regul Pept 44: 207–213PubMedCrossRefGoogle Scholar
  604. Chiu AT, Duncia JV, McCall DE, Wong PC, Price WA, Thoolen MJMC, Carini DJ, Johnson AL, PBMWM Timmermans (1989) Nonapeptide angiotensin II receptor antagonists. III. Structure-function studies. J Pharmacol Exp Ther 250: 867–874Google Scholar
  605. Chui AT, McCall DE, Price WA, Wong PC, Carini DJ, Duncia JV, Wexler RR, Yoo SE, Johnson AL, PBMWM Timmermans (1990) Nonapeptide angiotensin II receptor antagonists: Cellular and biochemical pharmacology of DuP 753, an orally active antihypertensive agent. J Pharm Exp Ther 252: 711–718Google Scholar
  606. Criscione L, de Gasparo M, Bühlmayer P, Whitebread S, Ramjoué HPR, Wood J (1993) Pharmacological profile of valsartan: a potent, orally active, nonpeptide antagonist of angiotensin II AT1-receptor subtype. Br J Pharmacol 110: 761–771PubMedCrossRefGoogle Scholar
  607. Keiser JA, Major TC, Lu GH, Davis LS, Panek RL (1993) Is there a functional cardiovascular role for the AT2 receptors? Drug Dev Res 29: 94–99CrossRefGoogle Scholar
  608. Khairallah PA, Page IH (1961) Mechanism of action of angiotensin and bradykinin on smooth muscle in situ. Am J Physiol 200: 51–54Google Scholar
  609. Nagura J, Yasuda S, Fujishima K, Yamamoto M, Chui C, Kawano KI, Katano K, Ogino H, Hachisu M, Konno F (1995) Pharmacological profile of ME3221, a novel angiotensin II receptor antagonist. Eur J Pharmacol 274: 210–221CrossRefGoogle Scholar
  610. Rhaleb NE, Rouissi N, Nantel F, D’Orléans-Juste P; Regoli D (1991) DuP 753 is a specific antagonist for the angiotensin receptor. Hypertens 17: 480–484CrossRefGoogle Scholar
  611. Siegl PKS (1993) Discovery of losartan, the first specific non-peptide angiotensin II receptor antagonist. J Hypertension 11 (Suppl 3): S19 - S22CrossRefGoogle Scholar
  612. Smits GJ, Koepke JP, Blaine EH (1991) Reversal of low dose angiotensin hypertension by angiotensin receptor antagonists. Hypertension 18: 17–21PubMedCrossRefGoogle Scholar
  613. Trachte GJ, Ferrario CM, Khosla MC (1990) Selective blockade of angiotensin responses in the rabbit isolated vas deferens by angiotensin receptor antagonists. J Pharm Exp Ther 255: 929–934Google Scholar
  614. Wong PC, Hart SD, Chiu AT, Herblin WF, Carini DJ, Smith RD, Wexler RR, Timmermans PBMWM (1991) Pharmacology of DuP 5323, a selective and noncompetitive ATI receptor antagonist. J Pharm Exp Ther 259: 861–870Google Scholar
  615. Wong PC, Hart SH, Zaspel AM, Chiu AT, Ardecky RJ, Smith RD, Timmermans PBMWM (1990) Functional studies on nonpeptide angiotensin II receptor subtype-specific ligands: DuP 753 (A 11–1) and PD 123177 (A 11–2) J Pharmac Exp Ther 255: 584–592Google Scholar
  616. Wong PC, Price WA Jr, Chiu AT, Thoolen MJMC, Duncia JV, Johnson AL, Timmermans PBMWM (1989) Nonapeptide angiotensin II receptor antagonists. IV. EXP6155 and EXP6803. Hypertension 13: 489–497PubMedCrossRefGoogle Scholar
  617. Wong PC, Price WA, Chiu AT, Duncia JV, Carini DJ, Wexler RR, Johnson AL, Timmermans PBMWM (1991) In vivo pharmacology of DuP 753. Am J Hypertens 4: 288S - 298SPubMedCrossRefGoogle Scholar
  618. Becker RHA, Schölkens BA, Metzger M, Schulze KJ (1984) Pharmacological activities of the new orally active angiotensin converting enzyme inhibitor 2-[N-[(S)-l-ethoxycarbonyl-3-phenylpropyl-L-alanyl]-(1 S,3S,5S)-2-azabicyclo[3.3.0]octane-3-carboxylic acid (Hoe 498). Arzneim Forsch/Drug Res 34: 1411–1416Google Scholar
  619. Natoff IL, Brewster M, Patel AT (1981) Method for measuring the duration of inhibition of angiotensin I-converting enzyme in vivo. J Pharmacol Meth 5: 305–312CrossRefGoogle Scholar
  620. Pettinger W, Sheppard H, Palkoski Z, Renyi E (1973) Angiotensin antagonism and antihypertensive activity of phosphodiesterase inhibiting agents. Life Sci 12: 49–62CrossRefGoogle Scholar
  621. Rubin B, Laffan RI, Kotler DG, O’Keefe EH, Demaio DA, Goldberg ME (1978) SQ 14,225 (D-3-mercapto-2-methylpropanoyl-L-proline), a novel orally active inhibitor of angiotensin I-converting enzyme. J Pharmacol Exp Ther 204: 271–280PubMedGoogle Scholar
  622. Nussberger J, Brunner DB, Waeber B, Brunner HR (1985) True versus immunoreactive angiotensin II in human plasma. Hypertension 7 (Suppl I): I1 - I17PubMedCrossRefGoogle Scholar
  623. Nussberger J, d’Amore TF, Porchet M, Waeber B, Brunner DB, Brunner HR, Kler L, Brown AN, Francis RJ (1987) Repeated administration of the converting enzyme inhibitor Cilazapril to normal volunteers. J Cardiovasc Pharmacol 9: 39–44PubMedGoogle Scholar
  624. Palmer RK, Rapundalo ST, Batley BL, Barnes AE, Singh S, Ryan MJ, Taylor DG (1993) Disparity between blood pressure and PRA inhibition after administration of a renin inhibitor to anesthetized dogs: Methodological considerations. Clin Exper Hypertens 15: 663–681Google Scholar
  625. Pals DT, Lawson JA, Couch SJ (1990) Rat model for evaluating inhibitors of human renin. J Pharmacol Meth 23: 230–245CrossRefGoogle Scholar
  626. Poulsen K, Jorgensen J (1973) An easy radioimmunological assay of renin activity, concentration and substrate in human and animal plasma and tissue based on angiotensin I trapping by antibody. J Clin Endocrin Metab 39: 816–825CrossRefGoogle Scholar
  627. Sealey JE, Laragh JH (1975) Radioimmunoassay of plasma renin activity. Semin Nucl Med 5: 189–202PubMedCrossRefGoogle Scholar
  628. Evans DB, Cornette JC, Sawyer TK, Staples DJ, de Vaux AE, Sharma SK (1990) Substrate specificity and inhibitor structure-activity relationships of recombinant human renin: implications in the in vivo evaluation of renin inhibitors. Biotechnol Appl Biochem 12: 161–175PubMedGoogle Scholar
  629. Fischli W, Clozel JP, Amrami KE, Wostl W, Neidhart W, Stadler H, Branca Q (1991) RO 42–5892 is a potent orally active renin inhibitor in primates. Hypertension 18: 22–31PubMedCrossRefGoogle Scholar
  630. Greenlee WJ (1990) Renin inhibitors. Med Res Rev 10: 173–236PubMedCrossRefGoogle Scholar
  631. Hiwada K, Kobuko T, Murakami E, Muneta S, Morisawa Y, Yabe Y, Koike H, Iijima Y (1988) A highly potent and long-acting oral inhibitor of human renin. Hypertension 11: 707–712CrossRefGoogle Scholar
  632. Linz W, Heitsch H, Henning R, Jung W, Kleemann HW, Nickel WU, Ruppert D, Urbach H, Wagner A, Schölkens BA (1994) Effects of the renin inhibitor N-[N-(3-(4-Amino1-piperidinyl-carbonyl)-2(R)-benzylpropionyl)-L-histidinyl l-(2S,3R,4S)-1-cyclohexyl-3,4-dihydroxy-6(2-pyridyl)-hexane-2-amide acetate (S 2864) in anesthetized rhesus monkeys. Arzneim Forsch/Drug Res 44: 815–820Google Scholar
  633. Wood JM, Baum HP, Forgiarini P, Gulati N, Jobber RA, Neisius D, Hofbauer KG (1989) Haemodynamic effects of acute and chronic renin inhibition in marmosets. J Hypertension 7, Suppl 2: S37 - S42Google Scholar
  634. Wood JM, Criscione L, de Gasparo M, Bühlmayer P, Rüeger H, Stanton JL, Jupp RA, Kay J (1989) CGP 38 560: orally active, low-molecular-weight renin inhibitor with high potency and specificity. J Cardiovasc Pharmacol 14: 221–226PubMedCrossRefGoogle Scholar
  635. Wood JM, Gulati N, Forgiarini P, Fuhrer W, Hofbauer KG (1985) Effects of a specific and long-acting renin inhibitor in the marmoset. Hypertension 7: 797–803PubMedCrossRefGoogle Scholar
  636. Boura ALA, Green AF (1964) Antihypertensive agents. In: Laurence DR, Bacharach AL (eds.) Evaluation of drug activities: Pharmacometrics. Academic Press London and New York pp 431–456Google Scholar
  637. Goldblatt H, Lynch J, Hanzal RF, Summerville WW (1934) Studies on experimental hypertension. I. The production of persistent evaluation of systolic blood pressure by means of renal ischemia. J exper Med. 59: 347–379Google Scholar
  638. Boura ALA, Green AF (1964) Antihypertensive agents. In: Laurence DR, Bacharach AL (eds.) Evaluation of drug activities: Pharmacometrics. Academic Press London and New York pp 431–456Google Scholar
  639. Goldblatt H, Lynch J, Hanzal RF, Summerville WW (1934) Studies on experimental hypertension. I. The production of persistent evaluation of systolic blood pressure by means of renal ischemia. J exper Med. 59: 347–379Google Scholar
  640. Leite R, Salgado MCO (1992) Increased vascular formation of angiotensin II in one-kidney, one clip hypertension. Hypertension 19: 575–581PubMedCrossRefGoogle Scholar
  641. Schaffenburg CA (1959) Device to control constriction of main renal artery for production of hypertension in small animals. Proc Soc Exp Biol Med 101: 676–677PubMedGoogle Scholar
  642. Zandberg P (1984). Animal models in experimental hypertension: relevance to drug testing and discovery. In: van Zwieten (ed) Handbook of Hypertension, Vol 3, Pharmacology of Antihypertensive Drugs. Elsevier Amsterdam, pp 102–153Google Scholar
  643. Abrams M, Sobin S (1947) Latex rubber capsule for producing hypertension in rats by perinephritis. Proc Soc Exp Biol Med 64: 412–416PubMedGoogle Scholar
  644. Goldblatt H, Lynch J, Hanzal RF, Summerville WW (1934) Studies on experimental hypertension. I. The production of persistent evaluation of systolic blood pressure by means of renal ischemia. J exper Med. 59: 347–379Google Scholar
  645. Grollman A (1944) A simplified procedure for inducing chronic renal hypertension in the mammal. Proc Soc Exp Biol Med 57: 102–104Google Scholar
  646. Schaffenburg CA (1959) Device to control constriction of main renal artery for production of hypertension in small animals. Proc Soc exper Biol Med 101: 676–677Google Scholar
  647. Sen S, Tarazi RC, Bumpus FM (1981) Reversal of cardiac hypertrophy in renal hypertensive rats: medical vs. surgical therapy. Am J Physiol 240: H408 - H412PubMedGoogle Scholar
  648. Stanton HC (1971) Experimental hypertension. In: Schwartz A (ed) Methods in Pharmacology, Vol 1, pp 125–150. Appleton-Century-Crofts, Meredith Corporation. New YorkCrossRefGoogle Scholar
  649. Angell-James JE (1984) Neurogenic hypertension in the rabbit. In: de Jong (ed.) Handbook of Hypertension, Vol. 4: Experimental and Genetic Models of Hypertension. Elsevier Science Publ. pp 364–397Google Scholar
  650. Boura ALA, Green AF (1964) Antihypertensive agents. In: Laurence DR, Bacharach AL (eds.) Evaluation of drug activities: Pharmacometrics. Academic Press London and New York pp 431–456Google Scholar
  651. Grimson KS (1941) The sympathetic nervous system in neurogenic and renal hypertension. Arch Surg, Chicago, 43: 284–305CrossRefGoogle Scholar
  652. Krieger EM (1984) Neurogenic hypertension in the rat. In: de Jong (ed.) Handbook of Hypertension, Vol. 4: Experimental and Genetic Models of Hypertension. Elsevier Science Publ. pp 350–363Google Scholar
  653. Maxwell RA, Plummer AJ, Schneider F, Povalski H, Daniel AI (1960) Pharmacology of [2-(octahydro-1-azocinyl)-ethyl]guanidine sulfate (SU-5864). J Pharmacol 128: 22–29Google Scholar
  654. Bockman ChS, Jeffries WB, Pettinger WA, Abel PW (1992) Enhanced release of endothelium-derived relaxing factor in mineralocorticoid hypertension. Hypertension 20: 304–313PubMedCrossRefGoogle Scholar
  655. Codde JP, Croft KD, Beilin LJ (1987) Dietary suppression of prostaglandin synthesis does not accelerate DOCA/salt hypertension in rats. Clin Exp Pharm Physiol 14: 513–523CrossRefGoogle Scholar
  656. Dardik BN, Di Bello PM, Chatelain RE (1988) Elevated arterial cyclic AMP levels during the development of one kidney, one clip and DOCA hypertension in rats. Eur J Pharmacol 158: 139–143PubMedCrossRefGoogle Scholar
  657. Friedman SM, Mclndoe RA, Tanaka M (1988) The relation of cellular sodium to the onset of hypertension induced by DOCA-saline in the rat. J Hypertension 6: 63–69CrossRefGoogle Scholar
  658. Hasnain Q, MacDonald G (1993) Metabolic studies of uridine in rats with DOCA-salt hypertension and on high sodium diet. Clin Exper Pharm Physiol 20: 384–387CrossRefGoogle Scholar
  659. King CM, Webb RC (1988) The endothelium partially obscures enhanced microvessel reactivity in DOCA hypertensive rats. Hypertension 12: 420–427PubMedCrossRefGoogle Scholar
  660. Majima M, Katori M, Hanazuka M, Mizogami S, Nakano T, Nakao Y, Mikami R, Uryu H, Okamura R, Mohsin SSJ, Oh-Ishi S (1991) Suppression of rat desoxycorticosteronesalt hypertension by the kallikrein-kinin system. Hypertension 17: 806–813PubMedCrossRefGoogle Scholar
  661. Majima M, Yoshida O, Mihara H, Muto T, Mitsogami S, Kuribayashi Y, Katori M, Oh-Ishi S (1993) High sensitivity to salt in kininogen-deficient Brown Norway Katholiek rats. Hypertension 22: 705–714PubMedCrossRefGoogle Scholar
  662. Opoku J, Kalimi M (1992) Role of the antiglucocorticoid RU 486 in the prevention of steroid-induced hypertension. Acta Endocrin 127: 258–261Google Scholar
  663. Passmore JC, Jimenez AE (1990) Separate hemodynamic roles for chloride and sodium in deoxycorticosterone acetate-salt hypertension. Proc Soc Exp Biol Med. 194: 283–288PubMedGoogle Scholar
  664. Peterfalvi M, Jequier R (1960) La 10-methoxy deserpidine. Etude pharmacologique. Arch Int Pharmacodyn 124: 237–254Google Scholar
  665. Stanton HC (1971) Experimental hypertension. In: Schwartz A (ed) Methods in Pharmacology, Vol 1, pp 125–150. Appleton-Century-Crofts, Meredith Corporation. New YorkCrossRefGoogle Scholar
  666. Ben-Ishay D, Saliternik R, Weiner A (1972) Separation of two strains of rats with inbred dissimilar sensitivity to DOCAsalt hypertension. Experientia 28: 1321–1322PubMedCrossRefGoogle Scholar
  667. Ben-Ishay D (1984) The Sabra hypertension-prone and–resistant strain. In: de Jong W (ed) Handbook of Hypertension. Vol 4. Experimental and Genetic Models of Hypertension. Elsevier Science Publ., New York, pp 296–313Google Scholar
  668. Berthelot A (1991) Hypertension models and screening of antihypertensive drugs. In: 7th Freiburg Focus on Biomeasurement. Cardiovascular and Respiratory in vivo Studies. Biomesstechnik-Verlag March GmbH, 79232 March, Germany. pp 106–109Google Scholar
  669. Bianchi G, Fox U, Imbasciati E (1974) The development of a new strain of spontaneously hypertensive rats. Life Sci 14: 339–347PubMedCrossRefGoogle Scholar
  670. Bianchi G, Ferrari P, Barber BR (1984) The Milan hypertensive strain. In: de Jong W (ed.) Handbook of Hypertension, Vol 4: Experimental and Genetic Models of Hypertension. pp 328–340Google Scholar
  671. Bianchi G, Ferrari P, Cusi D, Salardi S, Giudi E, Niutta E, Tripodi G (1986) Genetic and experimental hypertension in the animal model — Similarities and dissimilarities to the development of human hypertension. J Cardiovasc Pharmacol 8 (Suppl 5) S64 - S70PubMedCrossRefGoogle Scholar
  672. Cicila GT, Rapp JP, Wang JM, Lezin ES, Ng SC, Kurtz TW (1993) Linkage of 113-hydroxylase mutations with altered steroid biosynthesis and blood pressure in the Dahl rat. Nature Genetics 3: 346–353PubMedCrossRefGoogle Scholar
  673. Dahl LK, Heine M, Tassinari L (1962) Role of genetic factors in susceptibility to experimental hypertension due to chronic salt ingestion. Nature 194: 480–482PubMedCrossRefGoogle Scholar
  674. Dahl LK, Heine M, Tassinari L (1962) Effects of chronic salt ingestion. Evidence that genetic factors play an important role in susceptibility to experimental hypertension. J Exper Med. 115: 1173–1190Google Scholar
  675. Dahl LK, Heine M, Tassinari L (1963) Effects of chronic excess salt ingestion: role of genetic factors in both DOCAsalt and renal hypertension. J Exper Med. 118: 605CrossRefGoogle Scholar
  676. Deng Y, Rapp JP (1992) Cosegregation of blood pressure with angiotensin converting enzyme and atrial natriuretic receptor genes using Dahl salt-sensitive rats. Nature Genetics 1: 267–272PubMedCrossRefGoogle Scholar
  677. Dubay Ch, Vincent M, Samani NJ, Hilbert P, Kaiser MA, Beressi JP, Kotelevtsev Y, Beckmann JS, Soubrier F, Sassard J, Lathorp GM (1993) Genetic determinants of diastolic and pulse pressure map to different loci in Lyon hypertensive rats. Nature Genetics 3: 354–357PubMedCrossRefGoogle Scholar
  678. Dupont J, Dupont JC, Fromnet A, Milon H, Vincent M (1973) Selection of three strains of rats with spontaneously different levels of blood pressure. Biomedicine 19: 36–41PubMedGoogle Scholar
  679. Ernsberger P, Koletsky RJ, Collins LA, Douglas HC (1993) Renal angiotensin receptor mapping in obese spontaneously hypertensive rats. Hypertension 21: 1039–1045PubMedCrossRefGoogle Scholar
  680. Ganten D (1987) Role of animal models in hypertension research. Hypertension, Suppl. 9:1, I-2,-I-4Google Scholar
  681. Gouyon B, Julier C, Takahashi S, Vincent M, Ganten D, Georges M, Lathrop GM (1991) Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature 353: 521–529PubMedCrossRefGoogle Scholar
  682. Hilbert P, Lindpaintner K, Beckmann JS, Serikawa T, Soubrier F, Dubay C, Cartwright P, Ganten D, Lindpainter K, Ganten U, Peters J, Zimmermann F, Bader M,. Mullins J (1991) Transgenic animals: New animal models in hypertension research. Hypertension 17: 843–855Google Scholar
  683. Jacob HJ, Lindpainter K, Lincoln SE, Kusumi K, Bunker RK, Mao YP, Ganten D, Dzau VJ, Lander ES (1991) Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67: 213–224PubMedCrossRefGoogle Scholar
  684. Koletsky S (1975) Pathologic findings and laboratory data in a new strain of obese hypertensive rats. Am J Pathol 80: 129–140PubMedGoogle Scholar
  685. Laverty R, Smirk FH (1961) Observations on the pathogenesis of spontaneous inherited hypertension and constricted renal-artery hypertension in rats. Circ Res 9: 455–464PubMedCrossRefGoogle Scholar
  686. Linz W, Ganten D (1992) Contributions of animal models to understanding hypertension. In: Zipes DP, Rowlands DJ (eds.) Progress in Cardiology, pp 25–36, Lea and Febiger, PhiladelphiaGoogle Scholar
  687. Mullins JJ, Ganten D (1990) Transgenic animals: new approaches to hypertension research. J Hypertension 8 (Suppl 7): S35 - S37Google Scholar
  688. Okamoto K, Aoki K (1963) Development of a strain of spon- taneously hypertensive rats. Jap Circulat J 27: 282–293CrossRefGoogle Scholar
  689. Okamoto K, Tabei R, Fukushima M, Nosaka S, Yamori Y, Ichijima K, Haebara H, Matsumoto M, Maruyama T, Suzuki Y, Tamegai M (1966) Further observations of the development of a strain of spontaneously hypertensive rats. Jap Circulat J 30: 703–716CrossRefGoogle Scholar
  690. Okamoto K, Yamori Y, Nagaoka A (1974) Establishment of the stroke-prone spontaneously hypertensive rat (SHR) Circ Res 34/35 Suppl: 1143–1153Google Scholar
  691. Peters J, Munter K, Bader M, Hackenthal E, Mullins JJ, Ganten D (1993) Increased adrenal renin in transgenic hypertensive rats, TGR(mREN2)27, and its regulation by cAMP, angiotensin II, and calcium. J Clin Invest 91: 742–747PubMedCrossRefGoogle Scholar
  692. Phelan EL, Smirk FH (1960) Cardiac hypertrophy in genetically hypertensive rats. J Path Bact 80: 445–448PubMedCrossRefGoogle Scholar
  693. Pravenec M, Klir P, Kren V, Zicha J, Kune J (1989) An analysis of spontaneous hypertension in spontaneously hypertensive rats by means of new recombinant inbred strains. J Hypertension 7: 217–222CrossRefGoogle Scholar
  694. Rapp JP (1984) Characteristics of Dahl salt-susceptible and salt-resistant rats. In: de Jong W (ed) Handbook of Hypertension. Vol 4. Experimental and Genetic Models of Hypertension. Elsevier Science Publ., New York, pp 286–295Google Scholar
  695. Rapp JP, Wang SM Dene H (1989) A genetic polymorphism in the renin gene of Dahl rats cosegregates with blood pressure. Science 242: 542–544CrossRefGoogle Scholar
  696. Salvati P, Ferrario RG, Bianchi G (1990) Diuretic effect of bumetanide in isolated perfused kidneys of Milan hypertensive rats. Kidney Internat 37: 1084–1089CrossRefGoogle Scholar
  697. Samani NJ, Brammar WJ, Swales JD (1989) A major structural abnormality in the renin gene of the spontaneously hypertensive rat. J Hypertension 7: 249–254Google Scholar
  698. Sen S, Tarazi RC, Khairallah PA, Bumpus FM (1974) Cardiac hypertrophy in spontaneously hypertensive rats. Circ Res 35: 775–781PubMedCrossRefGoogle Scholar
  699. Simpson FO, Phelan EL (1984) Hypertension in the genetically hypertensive rat strain. In: de Jong W (ed.) Handbook of Hypertension, Vol 4: Experimental and Genetic Models of Hypertension. pp 200–223. Elsevier Science Publ., New YorkGoogle Scholar
  700. Smirk FH, Hall WH (1958) Inherited hypertension in rats. Nature 182: 727–728PubMedCrossRefGoogle Scholar
  701. Vincent M, Sacquet J, Sassard J (1984) The Lyon strains of hypertensive, normotensive and low-blood-pressure rats. In: de Jong W (ed.) Handbook of Hypertension, Vol 4: Experimental and Genetic Models of Hypertension. pp 314–327. Elsevier Science Publ., New YorkGoogle Scholar
  702. Yamori Y, Horie R, Nara Y, Kihara M (1983) Pathogenesis, prediction and prevention of stroke in stroke-prone SHR In: Stefanovich V (ed.) Stroke: Animal models. pp 99–113. Pergamon Press Oxford, New York, Paris, KronbergGoogle Scholar
  703. Yamori Y (1984) Development of the spontaneously hypertensive rat (SHR) and of various spontaneous rat models, and their implications. In: de Jong W (ed.) Handbook of Hypertension, Vol 4: Experimental and Genetic Models of Hypertension. pp 224–239. Elsevier Science Publ., New YorkGoogle Scholar
  704. Yamori Y (1984) The stroke-prone spontaneously hypertensive rat: contributions to risk factor analysis and prevention of hypertensive diseases. In: de Jong W (ed) Handbook of Hypertension. Vol 4. Experimental and Genetic Models of Hypertension. Elsevier Science Publ., New York, pp 240–255Google Scholar
  705. Balderston SM, Johnson KE, Reiter MJ (1991) Electrophysiologic evaluation of cardiovascular agents in the isolated intact rabbit heart. J Pharmacol Meth 25: 205–213CrossRefGoogle Scholar
  706. Bardenheuer H, Schrader J (1983) Relationship between myocardial oxygen consumption, coronary flow, and adenosine release in an improved isolated working heart preparation of guinea pigs. Circ Res 51: 263–271CrossRefGoogle Scholar
  707. Bardenheuer H, Schrader J (1983) Relationship between myocardial oxygen consumption, coronary flow, and adenosine release in an improved isolated working heart preparation of guinea pigs. Circ Res 51: 263–271CrossRefGoogle Scholar
  708. Broadley KJ (1979) The Langendorff heart preparation — Reappraisal of its role as a research and teaching model for coronary vasoactive drugs. J Pharmacol Meth 2: 143–156CrossRefGoogle Scholar
  709. Brown TG, Lands AM (1964) Cardiovascular activity of sympathomimetic amines. In: Laurence DR, Bacharach AL (eds) Evaluation of Drug Activities: Pharmacometrics. Academic Press, London and New York, pp 353–368Google Scholar
  710. Burn HJ, Hukovic S (1960) Anoxia and ventricular fibrillation: With a summary of evidence on the cause of fibrillation. Br J Pharmacol 15: 67–70Google Scholar
  711. Burn HJ, Goodford PJ (1957) Effect of lack of glucose and of lack of oxygen on ventricular fibrillation. J Physiol 137: 20P - 21 PGoogle Scholar
  712. Chevalier B, Mouas C, Mansier P, Aumont MC, Swynghedauw B (1987) Screening of inotropic drugs on isolated rat and guinea pig hearts. J Pharmacol Meth 17: 313–326CrossRefGoogle Scholar
  713. Dhein S, Müller A, Klaus W (1989) The potential of epicardial activation mapping in isolated hearts for the assessment of arrhythmogenic and antiarrhythmic drug activity. J Pharmacol Meth 22: 197–206CrossRefGoogle Scholar
  714. Döring HJ (1990) The isolated perfused warm-blooded heart according to LANGENDORFF. Technique — Function — Application. Physiologie bohemoslovaca 39: 481–496Google Scholar
  715. Flynn SB, Gristwood RW, Owen DAA (1978) Characterization of an isolated, working heart guinea-pig heart including effects of histamine and noradrenaline. J Pharmacol Meth 1: 183–195CrossRefGoogle Scholar
  716. Garlick PP, Radda GK, Seeley PJ, Chance B (1977) Phosphorus NMR studies on perfused heart. Biochem Biophys Res Commun 74: 1256–1262PubMedCrossRefGoogle Scholar
  717. Gottlieb R, Magnus R (1904) Digitalis und Herzarbeit. Nach Versuchen an überlebenden Warmblüterherzen. NaunynSchmiedeberg’s Arch exper Path Pharmakol 51: 30–63Google Scholar
  718. Hollis DP, Nunnally RL, Taylor GJ, Weisfeldt ML, Jacobus WE (1978) Phosphorus NMR studies of heart physiology. J Mag Reson 29: 319–330Google Scholar
  719. Hukovic S, Muscholl E (1962) Die Noradrenalin-Abgabe aus dem isolierten Kaninchenherzen bei sympathischer Nervenreizung und ihre pharmakologische Beeinflussung. NaunynSchmiedeberg’s Arch exp Path Pharmak 244: 81–96CrossRefGoogle Scholar
  720. Jacobus WE, Taylor GJ, Hollins DP, Nunnally RL (1977) Phosphorus nuclear magnetic resonance of perfused working rat hearts. Nature 265: 756–758PubMedCrossRefGoogle Scholar
  721. Lamontagne D, König A, Bassenge E, Busse R (1992) Prostacyclin and nitric oxide contribute to the vasodilator action of acetylcholine and bradykinin in the intact rabbit coronary bed. J Cardiovasc Pharmacol 20: 652–657PubMedCrossRefGoogle Scholar
  722. Langendorff 0 (1895) Untersuchungen am lebenden Säugethierherzen. Pflügers Arch ges Physiol 61: 291–332CrossRefGoogle Scholar
  723. Lindner E (1963) Untersuchungen über die flimmerwidrige Wirkung des N-(3’-phenyl-propyl-(2’))-1,1-diphenyl-propyl(3)-amins (Segontin®). Arch int Pharmacodyn 146: 485–500PubMedGoogle Scholar
  724. Lindner E, Grötsch H (1973) Methode zur graduellen Bestimmung hypoxischer Schädigung am isolierten Meerschweinchenherzen nach Langendorff. Arzneim Forsch/Drug Res 23: 926–929Google Scholar
  725. Lindner E, Hajdu P (1968) Die fortlaufende Messung des Kaliumverlustes des isolierten Herzens zur Bestimmung der Wirkungsstärke digitalisartiger Körper. Arch Int Pharmacodyn 175: 365–372PubMedGoogle Scholar
  726. Linz W, Schölkens BA, Han YF (1986) Beneficial effects of the converting enzyme inhibitor, ramipril, in ischemic rat hearts. J Cardiovasc Pharmacol 8 (Suppl 10): S91 - S99PubMedCrossRefGoogle Scholar
  727. Matthews PM, Radda GK (1984) Applications of nuclear magnetic resonance to the study of myocardial metabolism and pharmacology. In: Schwartz A (ed) Methods in Pharmacology, Vol 5, Myocardial Biology., Plenum Press, Ney York and London, pp 175–228Google Scholar
  728. Michio F, Hideo I, Tetsuya A (1985) In vitro assessment of myocardial function using a working rabbit heart. J Pharmacol Meth 14: 49–60.CrossRefGoogle Scholar
  729. Neely JR, Liebermeister H, Batterbsy EJ, Morgan HE (1967) Effect of pressure development on oxygen consumption by isolated rat heart. Am J Physiol 212: 804–814PubMedGoogle Scholar
  730. Ross BD (1972) Perfusion techniques in biochemistry. A laboratory manual in the use of isolated perfused organs in biochemical experimentation. Clarendon Press, Oxford, Chapter 5: Heart and skeletal muscle. pp 258–320Google Scholar
  731. Rothaul AL, Broadley KJ (1982) Measurements of oxygen tension in perfusates from guinea pig isolated hearts and the demonstration of coronary vasodilator material. J Pharmacol Meth 7: 91–103CrossRefGoogle Scholar
  732. Sakai K, Akima M, Tsuyama K (1983) Evaluation of the isolated perfused heart of mice, with special reference to vasoconstriction caused by intracoronary acetylcholine. J Pharmacol Meth 10: 263–270CrossRefGoogle Scholar
  733. Takeo S, Tanonaka K, Liu JX, Ohtsuka Y (1992) Protective effects of antiarrhythmic agents on oxygen-deficiencyinduced contractile dysfunction of isolated perfused hearts. In: Yasuda H, Kawaguchi H (eds) New Aspects in the Treatment of Failing Heart. Springer, Tokyo, Berlin, Heidelberg, pp 13–219Google Scholar
  734. Xiang JZ, Linz W, Becker H, Ganten D, Lang RE, Schölkens B, Unger Th (1985) Effects of converting enzyme inhibitors: Ramipril and enalapril on peptide action and neurotransmission in the isolated heart. Eur J Pharmacol 113: 215–223Google Scholar
  735. Zander B, Euler H (1976) Concentration measurements of physically dissolved oxygen by the classical van Slyke principle. In: Degn H, Balslen J; Brook R (eds.) Measurement of oxygen. Elsevier Scientific Publ. C., Amsterdam, pp 271–276Google Scholar
  736. Grupp IL, Grupp G (1984) Isolated heart preparations perfused or superfused with balanced salt solutions. In: Schwartz A (ed) Methods in Pharmacology, Vol 5: Myocardial Biology. pp 111–128. Plenum Press, New York and LondonCrossRefGoogle Scholar
  737. Kannengieser, GJ, Lubbe WF, Opie LH (1975) Experimental myocardial infarction with left ventricular failure in the isolated perfused rat heart. Effects of isoproterenol and pacing. J Mol Cell Cardiol 7: 135–151Google Scholar
  738. Linz W, Schölkens BA, Han YF (1986) Beneficial effects of the converting enzyme inhibitor, ramipril, in ischemic rat hearts. J Cardiovasc Pharmacol 8 (Suppl 10): S91 - S99PubMedCrossRefGoogle Scholar
  739. Linz W, Schölkens BA, Kaiser J, Just M, Bei-Yin Q, Albus U, Petry P (1989) Cardiac arrhythmias are ameliorated by local inhibition of angiotensin formation and bradykinin degradation with the converting-enzyme inhibitor ramipril. Cardiovasc Drugs Ther 3: 873–882PubMedCrossRefGoogle Scholar
  740. Linz W, Schölkens BA, Manwen J, Wilhelm M, Ganten D (1986) The heart as a target for converting enzyme inhibitors: Studies in ischaemic isolated working hearts. J Hypertension 4, Suppl 6, S477 - S479Google Scholar
  741. Martorana PA, Linz W, Göbel H, Petry P, Schölkens BA (1987) Effects of nicainoprol on reperfusion arrhythmia in the isolated working rat heart and on ischemia and reperfusion arrhythmia and myocardial infarct size in the anesthetized rat. Eur J Pharmacol 143: 391–401PubMedCrossRefGoogle Scholar
  742. Rajagopalan R, Ghate AV, Subbarayan P, Linz W, Schoelkens BA (1993) Cardiotonic activity of the water soluble forskoline derivative 8,13-epoxy-613-(piperidinoacetoxy)-1 a, 71:1,9a-trihydroxy-labd-14-en-11-one. Arzneiur Forsch/Drug Res 43: 313–319Google Scholar
  743. Schölkens BA, Linz W, Lindpaintner K, Ganten D (1987) Angiotensin deteriorates but bradykinin improves cardiac function following ischaemia in isolated rat hearts. J Hyper-tens 5:Suppl 5, S7 - S9CrossRefGoogle Scholar
  744. Scholz W, Albus U, Lang HJ, Linz W, Martorana PA, Englert HC, Schölkens BA (1993) Hoe 694, a new Na’/H’ exchange inhibitor and its effects in cardiac ischemia. Br J Pharmacol 109: 562–568PubMedCrossRefGoogle Scholar
  745. Scholz W, Albus U, Linz W, Martorana P, Lang HJ, Schölkens BA (1992) Effects of Na’/H’ exchange inhibitors in cardiac ischaemia. J Mol Cell Cardiol 24: 731–740PubMedCrossRefGoogle Scholar
  746. van Gilst WH, de Graeff PA, Wesseling H, de Langen CDJ (1986) Reduction of reperfusion arrhythmias in the ischemic isolated rat heart by angiotensin converting enzyme inhibitors: A comparison of captopril, enalapril, and HOE 498. J Cardiovasc Pharmacol 8: 722–728PubMedGoogle Scholar
  747. Vleeming W, van der Wouw PA, van Rooij HI-I, Werner J, Porsius AJ (1989) In vitro method for measurement of cardiac performance and responses to inotropic drugs after experimentally induced myocardial infarction in the rat. J Pharmacol Meth 21: 95–102CrossRefGoogle Scholar
  748. Vogel WM, Lucchesi BR (1980) An isolated, blood perfused, feline heart preparation for evaluating pharmacological interventions during myocardial ischemia. J Pharmacol Meth 4: 291–303CrossRefGoogle Scholar
  749. Dusting GJ, Moncada S, Vane JR (1977) Prostacyclin ( PGX) is the endogenous metabolite responsible for relaxation of coronary arteries induced by arachidonic acid. Prostaglandins 13: 3–15Google Scholar
  750. Gilmore N, Vane JR, Wyllie JH (1968) Prostaglandins released by the spleen. Nature 218: 1135–1140PubMedCrossRefGoogle Scholar
  751. Bhargava AS, Preus M, Khater AR, Günzel P (1990) Effect of iloprost on serum creatine kinase and lactate dehydrogenase isoenzymes after isoprenaline-induced cardiac damage in rats. Arzneim Forsch/Drug Res 40: 248–252Google Scholar
  752. Brodowicz GR, Lamb DR (1991) Exercise training, indomethacin, and isoproterenol-induced myocardial necrosis in rats. Bas Res Cardiol 86: 40–48CrossRefGoogle Scholar
  753. Ciplea AG, Kretschmar R, Heimann W, Kirchengast M, Safer A (1988) Protective effect of the new calcium antagonist Anipamil against isoprenaline-induced cardionecrosis in rats. Arzneim.-Forsch/Drug Res 38: 215–221Google Scholar
  754. Classen L, Michalsky G, Kammermeier H (1993) Catecholamine-induced cardiac necroses: Protective effect of leucocytopenia, influence of an S2 antagonist, thromboxansynthetase inhibitor and prostacyclin analogue. Bas Res Cardiol 88: 52–59Google Scholar
  755. Ferrans VJ, Hibbs RG, Black WC, Weilbaecher DG (1964) Isoproterenol-induced myocardial necrosis. A histochemical and electron microscopic study. Am Heart J 68: 71–90Google Scholar
  756. Genovese A, Chiariello M, de Alfieri W, Latte S, Ferro G, Condorelli M (1982) Quantitative assessment of infarct size in isoproterenol-infarcted rats. Jpn Heart J 23: 997–1006PubMedCrossRefGoogle Scholar
  757. Handforth CP (1962) Isoproterenol-induced myocardial infarction in animals. Arch Path 73: 161–165PubMedGoogle Scholar
  758. Joseph X, Bloom S; Pledger G, Balazs T (1983) Determinants of resistance to the cardiotoxicity of isoproterenol in rats. Toxicol Appl Pharmacol 69: 199–205PubMedCrossRefGoogle Scholar
  759. Knufman NMJ, van der Laarse A, Vliegen HW, Brinkman CJJ (1987) Quantification of myocardial necrosis and cardiac hypertrophy in isoproterenol-treated rats. Res Commun Chem Pathol Pharmacol 57: 15–32PubMedGoogle Scholar
  760. Meijer AEFH, Hettwer H, Ciplea AG (1988) An enzyme histochemical study of isoproterenol-induced myocardial necroses in rats. Histochem J 20: 697–707CrossRefGoogle Scholar
  761. Preus M, Bhargava AS, Khater AER, Günzel P (1988) Diagnostic value of serum creatine kinase and lactate dehydro genase isoenzyme determinations for monitoring early cardiac damage in rats. Toxicol Letters 42: 225–253CrossRefGoogle Scholar
  762. Rona G (1967) Experimental drug-induced myocardial infarction for animal pharmacologic screening. In: Siegeler PE, Moyer JH (eds) Animal and clinical pharmacologic techniques in drug evaluation. Vol II, pp 464–470, Year Book Medical Publ. ChicagoGoogle Scholar
  763. Rona G, Chappel CI, Balazs T, Gaudry R (1959) An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. Arch Path 76: 443–455Google Scholar
  764. Rona G, Chappel CI, Kahn DS (1963) The significance of factors modifying the development of isoproterenolinduced myocardial necrosis. Am Heart J 66: 389–395PubMedCrossRefGoogle Scholar
  765. Vértesi, C, Knopf E, Gaâl, Körmöczy PS (1991) Comparison of the cardioprotective effects of nitroglycerin, molsidomine, and SIN-1 in rats. J Cardiovasc Pharmacol 17 (Suppl 3) S141 - S144CrossRefGoogle Scholar
  766. Wexler BC (1985) Prolonged protective effects following propranolol withdrawal against isoproterenol-induced myocardial infarction in normotensive and hypertensive rats. Br J exp Path 66: 143–154Google Scholar
  767. Abendroth RR, Meesmann W, Stephan K, Schley G, Hübner H (1977) Effects of the ß-blocking agent Atenolol on arrhythmias especially ventricular fibrillation and fibrillation threshold after acute experimental coronary artery occlusion. Z Kardiol 66: 341–350PubMedGoogle Scholar
  768. Gomoll AW, Lekich RF (1990) Use of the ferret for a myocardial ischemia/salvage model. J Pharmacol Meth 23: 213–233CrossRefGoogle Scholar
  769. Hartman JC, Warltier DC (1990) A model of multivessel coronary artery disease using conscious, chronically instrumented dogs. J Pharmacol Meth 24: 297–310CrossRefGoogle Scholar
  770. Johns TNP, Olson BJ (1954) Experimental myocardial infarction. I. A method of by coronary occlusion in small animals. Ann Surg 140: 675–682Google Scholar
  771. Martorana PA, Göbel H, Kettenbach B, Nitz RE (1982). Comparison of various methods for assessing infarct-size in the dog. Basic Res. Cardiol. 77: 301–308Google Scholar
  772. Martorana PA, Kettenbach B, Breipohl G, Linz W (1990) Reduction of infarct size by local angiotensin-converting enzyme inhibition is abolished by a bradykinin antagonist. Eur J Pharmacol 182: 395–396PubMedCrossRefGoogle Scholar
  773. Raberger G, Krumpl G, Mayer N (1986) A model of transient myocardial dysfunction in conscious dogs. J Pharmacol Meth 16: 23–37CrossRefGoogle Scholar
  774. Reimer KA, Jennings RB, Cobb FR, Murdock RH, Greenfield JC, Becker LC, Bulkley BH, Hutchins GM, Schwartz RP, Bailey KR, Passamani ER (1985) Animal models for protecting ischemic myocardium: Results of the NHLBI cooperative study. Comparison of unconscious and conscious dog models. Circ Res 56: 651–665Google Scholar
  775. Sakai K, Akima M, Aono J (1981) Evaluation of drug effects in a new experimental model of angina pectoris in the intact anesthetized rat. J Pharmacol Meth 5: 325–336CrossRefGoogle Scholar
  776. Schaper W, Frenzel H, Hort W (1979). Experimental coronary artery occlusion. I. Measurement of infarct size. Basic Res. Cardiol. 74: 46–53Google Scholar
  777. Scherlag BJ, El-Sherif N, Hope R, Lazzara R (1974) Characterization and localization of ventricular arrhythmias resulting from myocardial ischemia and infarction. Circ Res 35: 372–383PubMedCrossRefGoogle Scholar
  778. Gorodetskaya EA, Dugin SF, Medvedev OS, Allabergenova AE (1990) A simple method to produce acute heart failure by coronary vessel embolization in closed chest rats with microspheres. J Pharmacol Meth 24: 43–51CrossRefGoogle Scholar
  779. Rooke GA, Feigl EO (1982) Work as a correlate of canine left ventricular oxygen consumption, and the problem of catecholamine oxygen wasting. Circ Res 50: 273–286PubMedCrossRefGoogle Scholar
  780. Schölkens BA, Martorana PA, Göbel H, Gehring D (1986) Cardiovascular effects of the converting enzyme inhibitor ramipril (Hoe 498) in anesthetized dogs with acute ischemic left ventricular failure. Clin and Exp Theory and Practice A8 (6): 1033–1048Google Scholar
  781. Smiseth OA (1983) Effects of the ß-adrenergic receptor agonist pirbuterol on cardiac performance during acute ischaemic left ventricular failure in dogs. Eur J Pharmacol 87: 379–386PubMedCrossRefGoogle Scholar
  782. Smiseth OA; Mjms OD (1982) A reproducible and stable model of acute ischemic left ventricular failure in dogs. Clin Physiol 2: 225–239PubMedCrossRefGoogle Scholar
  783. Al-Wathiqui MH, Hartman JC, Brooks HL, Warltier DC (1988) Induction of cyclic flow reduction in the coronary, carotid, and femoral arteries of conscious chronically instrumented dogs. A model for investigating the role of platelets in severely constricted arteries. J Pharmacol Meth 20: 85–92Google Scholar
  784. Apprill P, Schmitz JM, Campbell WB, Tilton G, Ashton J, Raheja S, Buja LM, Willerson JT (1985). Cyclic blood flow variations induced by platelet-activating factor in stenosed canine coronary arteries despite inhibition of thromboxane synthetase, serotonin receptors, and α-adrenergic receptors. Circulation 72: 397–405PubMedCrossRefGoogle Scholar
  785. Ashton JH, Ogletree ML, Taylor AL, Fitzgerald C, Raheja S, Campbell WB, Buja LM, Willerson JT (1985) A thromboxan receptor antagonist, SQ 29,548, abolishes or attenuates cyclic flow variations in severely narrowed canine coronary arteries. Circulation 72: A273Google Scholar
  786. Folts JD, Crowell EB, Rowe GG (1976). Platelet aggregation in partially obstructed vessels and its elimination with aspirin. Circulation 54: 365–370PubMedCrossRefGoogle Scholar
  787. Folts JD, Gallagher K, Rowe GG (1982) Blood flow reductions in stenosed canine coronary arteries: vasospasm or platelet aggregation ? Circulation 65: 248–255PubMedCrossRefGoogle Scholar
  788. Harris AS (1950) Delayed development of ventricular ectopic rhythms following experimental coronary occlusion. Circ Res 1: 1318–1328CrossRefGoogle Scholar
  789. Just M, Schönafinger K (1991) Antithrombotic properties of a novel sydnonimine derivative. J Cardiovasc Pharmacol 17 (Suppl 3): S121 - S126CrossRefGoogle Scholar
  790. Kingaby RO, Lab MJ, Cole AWG, Palmer TN (1986) Relation between monophasic action potential duration, ST segment elevation, and regional myocardial blood flow after coronary occlusion in the pig. Cardiovasc Res 20: 740–751Google Scholar
  791. Romson JL, Haack DW, Lucchesi BR (1980). Electrical induction of coronary artery thrombosis in the ambulatory canine: A model for in vivo evaluation of anti-thrombotic agents. Thromb. Res. 17: 841–853Google Scholar
  792. Scott JC (1964) Methods of measuring coronary blood flow. In: Nodine JH, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. pp 167–183. Year Book Medical Publ. ChicagoGoogle Scholar
  793. Tada M, Esumi K, Yamageshi M, Kuzuya T, Matsuda H, Abe H, Uchida Y, Murao S (1984) Reduction of prostaglandin synthesis as a possible cause of transient flow reduction in a partially constricted canine coronary artery. Mol Cell Biol 16: 1137–1149Google Scholar
  794. Warltier DC, Lamping KA, Pelc LR, Gross GJ (1987) A canine model of thrombin-induced coronary artery thrombosis: Effects of intracoronary streptokinase on regional myocardial blood flow, contractile function, and infarct size. J Pharmacol Meth 18: 305–318Google Scholar
  795. Garcia-Dorado D, Théroux P, Elizaga J, Galiiianes M, Solares J, Riesgo M, Gomez MJ, Garcia-Dorado A, Aviles FF (1987) Myocardial reperfusion in the pig heart model: infarct size and duration of coronary occlusion. Cardiovasc Res 21: 537–544PubMedCrossRefGoogle Scholar
  796. Gross JG, Auchampach JA. (1992) Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res 70: 223–233Google Scholar
  797. Hoff PT, Tamura Y, Lucchesi BR (1990) Cardioprotective effects of amlodipine on ischemia and reperfusion in two experimental models. Am J Cardiol 66: 10H - 16HPubMedCrossRefGoogle Scholar
  798. Li GC, Vasquez JA, Gallagher KP, Lucchesi BR (1990) Myocardial protection with preconditioning. Circulat 82: 609–619CrossRefGoogle Scholar
  799. Linz W, Wiemer G, Gohlke P, Unger T, Schölkens BA (1994) Kardioprotektive Effekte durch Ramipril nach Ischämie and Reperfusion in tierexperimentellen Studien. Z Kardiol 83: Suppl 4, 53–56Google Scholar
  800. Linz W, Wiemer G, Schölkens BA (1992) ACE-inhibition induces NO-formation in cultured bovine endothelial cells and protects isolated ischemic rat hearts. J Mol Cell Cardiol 24: 909–919PubMedCrossRefGoogle Scholar
  801. Liu GS, Thornton J, Van Winkle DM, Stanley WH, Olsson RA, Downey JM (1991) Protection against infarction afforded by preconditioning is mediated by Al adenosine receptors in rabbit heart. Circulation 84: 350–356PubMedCrossRefGoogle Scholar
  802. Mickelson JK, Simpson PJ, Lucchesi BR (1989) Streptokinase improves reperfusion blood flow after coronary artery occlusion. Intern J Cardiol 23: 373–384CrossRefGoogle Scholar
  803. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischaemia: a delay of lethal cell injury in ischaemic myocardium. Circulation 74: 1124–1136PubMedCrossRefGoogle Scholar
  804. Parratt JR (1994) Protection of the heart by ischemic preconditioning: mechanisms and possibilities for pharmacological exploitation. TIPS 15: 19–25PubMedGoogle Scholar
  805. Simpson PJ, Fantone JC, Mickelson JK, Gallagher KP, Lucchesi BR (1988) Identification of a time window for therapy to reduce experimental canine myocardial injury: suppression of neutrophil activation during 72 hours of reperfusion. Circ Res 63: 1070–1079PubMedCrossRefGoogle Scholar
  806. Tamura Y, Chi L, Driscoll EM, Hoff PT, Freeman BA, Gallagher KP, Lucchesi BR (1988) Superoxide dismutase conjugated to polyethylene glycol provides sustained protection against myocardial ischemia/reperfusion injury in canine heart. Circ Res 63: 944–959PubMedCrossRefGoogle Scholar
  807. Toombs CF, McGee DS, Johnston WE, Vinten-Johansen J (1993) Protection from ischaemic-reperfusion injury with adenosine pretreatment is reversed by inhibition of ATP sensitive potassium channels. Cardiovasc Res. 27: 623–629PubMedCrossRefGoogle Scholar
  808. van Guist WH, de Graeff PA, Wesseling H, de Langen CDJ (1986) Reduction of reperfusion arrhythmias in the ischemic isolated rat heart by angiotensin converting enzyme inhibitors: A comparison of captopril, enalapril, and HOE 498. J Cardiovasc Pharmacol 8: 722–728Google Scholar
  809. Vegh A, Szekeres L, Parrat JR (1990) Protective effects of preconditioning of the ischaemic myocardium involve cyclo-oxygenase products. Cardiovasc Res 24: 1020–1023PubMedCrossRefGoogle Scholar
  810. Volovsek A, Subramanian R, Reboussin D (1992) Effects of duration of ischaemia during preconditioning on mechanical function, enzyme release and energy production in the isolated working rat heart. J Mol Cell Cardiol 24: 1011–1019PubMedCrossRefGoogle Scholar
  811. Wiemer G, Schölkens BA, Becker RHA, Busse R (1991) Ramiprilat enhances endothelial autacoid formation by inhibiting breakdown of endothelium-derived bradykinin. Hypertension 18: 585–563CrossRefGoogle Scholar
  812. Kadatz R (1969) Sauerstoffdruck und Durchblutung im gesunden und koronarinsuffizienten Myocard des Hundes und ihre Beeinflussung durch koronarerweiternde Pharmaka. Arch Kreislaufforsch 58: 263–293PubMedCrossRefGoogle Scholar
  813. Kadatz R (1971) Agents acting on coronary blood vessels. In Turner RA, Hebborn P (eds) Screening methods in pharmacology, Vol II, pp 41–60. Academic Press, New York and LondonGoogle Scholar
  814. Meesman W (1982) Early arrhythmias and primary ventricular fibrillation after acute myocardial ischemia in relation to pre-existing collaterals. In: Parratt JR (ed) Early Arrhythmia- Resulting from Myocardial Ischemia. Mechanisms and Prevention by Drugs. McMillan London, pp 93–112Google Scholar
  815. Meesmann W, Bachmann GW (1966) Pharmakodynamisch induzierte Entwicklung von Koronar-Kollateralen in Abhängigkeit von der Dosis. Arzneim Forsch 16: 501–509Google Scholar
  816. Meesmann W, Schulz FW, Schley G, Adolphsen P (1970) Überlebensquote nach akutem experimentellem Coronarverschluß in Abhängigkeit von Spontankollateralen des Herzens. Z ges exp Med 153: 246–264CrossRefGoogle Scholar
  817. Schaper W, Xhonneux R, Jageneau AHM (1965) Stimulation of the coronary collateral circulation by Lidoflazine (R 7904) Naunyn-Schmiedebergs Arch exp Path Pharmak 252: 1–8Google Scholar
  818. Schmidt HD, Schmier J (1966) Eine Methode zur Herstellung anatomischer Korrosionspräparate — dargestellt am Koronargefäßsystem des Hundes. Zschr Kreislaufforsch 55: 297–305PubMedGoogle Scholar
  819. Vineberg AM, Chari RS, Pifarré R, Mercier C (1962) The effect of Persantin on intercoronary collateral circulation and survival during gradual experimental coronary occlusion. Can Med Ass J 87: 336–345PubMedGoogle Scholar
  820. Barhanin J, Borsotto M, Coppola T, Fosset M, Hosey MM, Mourre C, Pauron D, Qar J, Romey G, Schmid A, Vandaele S, Van Renterghem C, Lazdunski M (1989) Biochemistry, molecular pharmacology, and functional control of Ca2+-channels. In: Wray DW, Norman RI, Hess P (eds) Calcium Channels: Structure and Function. Ann NY Acad Sci 560: 15–26Google Scholar
  821. Bean BP (1989) Classes of calcium channels in vertebrate cells. Annu Rev Physiol 51: 367–384PubMedCrossRefGoogle Scholar
  822. Bertolino M, Llinâs RR (1992) The central role of voltage-activated and receptor-operated calcium channels in neuronal cells. Annu Rev Pharmacol Toxicol 32: 399–421PubMedCrossRefGoogle Scholar
  823. Catterall WA, Saegar MJ, Takahashi M, Nunoki K (1989) Molecular properties of dihydropyridine-sensitive calcium channels. In: Wray DW, Norman RI, Hess P (eds) Calcium Channels: Structure and Function. Ann NY Acad Sci 560: 1–14Google Scholar
  824. Dascal N (1990) Analysis and functional characteristics of dihydropyridine-sensitive and -insensitive calcium channel proteins. Biochem Pharmacol 40: 1171–1178PubMedCrossRefGoogle Scholar
  825. Dolphin AC (1991) Regulation of calcium channel activity by GTP binding proteins and second messengers. Biochim Biophys Acta 1091: 68–80PubMedCrossRefGoogle Scholar
  826. Ferrante J Triggle DJ (1990) Drug-and disease-induced regulation of voltage-dependent calcium channels. Pharmacol Rev 42: 29–44PubMedGoogle Scholar
  827. Fleckenstein A (1964) Die Bedeutung der energiereichen Phosphate fir Kontraktilität and Tonus des Myocards. Verh Dtsch Ges Inn Med 70: 81–99PubMedGoogle Scholar
  828. Fleckenstein A (1983) History of calcium antagonists. Circ Res 52 (Suppl I): 3–16Google Scholar
  829. Fleckenstein A, Frey M, Fleckenstein-GIiln G (1983) Consequences of uncontrolled calcium entry and its prevention with calcium antagonists. Eur Heart J 4 (Suppl H): 43–50PubMedCrossRefGoogle Scholar
  830. Fleckenstein A, Frey M, Fleckenstein-Griin G (1986) Antihypertensive and arterial anticalcinotic effects of calcium antagonists. Am J Cardiol 57: 1D - 10DPubMedCrossRefGoogle Scholar
  831. Fleckenstein A, Kammermeier H, Döring HJ, Freund HJ (1967) Zum Wirkungsmechanismus neuartiger Koronardilatatoren mit gleichzeitig Sauerstoff-einsparenden Myocardeffekten, Prenylamin, Irpoveratril. Z Kreislaufforsch 56:716–744, 839–853Google Scholar
  832. Galizzi JP, Quar J, Fosset M, Van Renterghem C, Lazdunski M (1987) Regulation of calcium channels in aortic muscle cells by protein kinase C activators (diacylglycerol and phorbol esters) and by peptides (vasopressin and bombesin) that stimulate phosphoinositide breakdown. J Biol Chem 262: 6947–6950PubMedGoogle Scholar
  833. Hosey MM, Chang FC, O’Callahan CM, Ptasienski J (1989) L-type channels in cardiac and skeletal muscle: purification and phosphorylation. In: Wray DW, Norman RI, Hess P (eds) Calcium Channels: Structure and Function. Ann NY Acad Sci 560: 27–38Google Scholar
  834. Maggi CA, Tramontana M, Cecconi R, Santicioli P (1990) Neurochemical evidence of N-type calcium channels in transmitter secretion from peripheral nerve endings of sensory nerves in guinea pigs. Neurosci Lett 114: 203–206PubMedCrossRefGoogle Scholar
  835. Mintz IM, Adams ME, Bean BP (1992) P-Type calcium chan- nels in rat central and peripheral neurons. Neuron 9: 85–95PubMedCrossRefGoogle Scholar
  836. Moresco RM, Govoni S, Battaini F, Trivulzio S, Trabucchi M (1990) Omegaconotoxin binding decreases in aged rat brain. Neurobiol Aging 11: 433–436PubMedCrossRefGoogle Scholar
  837. Nakao SI, Ebata H, Hamamoto T, Kagawa Y, Hirata H (1988) Solubilization and reconstitution of voltage-dependent cal-cium channel from bovine cardiac muscle. Ca2+ influx assay using the fluorescent dye Quin2. Biochim Biophys Acta 944: 337–343PubMedCrossRefGoogle Scholar
  838. Porzig (1990) Pharmacological modulation of voltage-dependent calcium channels in intact cells. Rev Physiol Biochem Pharmacol 114: 209–262PubMedCrossRefGoogle Scholar
  839. Rampe D, Triggle DJ (1993) New synthetic ligands for L-type voltage-gated calcium channels. Progr Drug Res 40: 191–238Google Scholar
  840. Reuter H, Porzig H, Kokubun S, Prod’Hom B (1988) Calcium channels in the heart. Properties and modulation by dihydropyridine enantiomers. Ann NY Acad Sci 522: 16–24Google Scholar
  841. Rosenberg RL, Isaacson JS, Tsien RW (1989) Solubilization, partial purification, and properties of w-conotoxin receptors associated with voltage-dependent calcium channels. In: Wray DW, Norman RI, Hess P (eds) Calcium Channels: Structure and Function. Ann NY Acad Sci 560: 39–52Google Scholar
  842. Spedding M, Paoletti R (1992) Classification of calcium channels and the sites of action of drugs modifying channel function. Pharmacol Rev 44: 363–376PubMedGoogle Scholar
  843. Tsien RW, Tsien RY (1990) Calcium channels, stores and oscillations. Annu Rev Cell Biol 6: 715–760PubMedCrossRefGoogle Scholar
  844. Balwierczak JL, Grupp IL, Grupp G, Schwartz A (1986). Effects of bepridil and diltiazem on [3H] nitrendipine binding to canine cardiac sarcolemma. Potentiation of pharmacological effects of nitrendipine by bepridil. J Pharmacol Exp Ther 237: 40–48Google Scholar
  845. Bellemann P, Ferry D, Lübbecke F, Glossmann H (1981) [3H]Nitrendipine, a potent calcium antagonist, binds with high affinity to cardiac membranes. Arzneim Forsch/Drug Res 31: 2064–2067Google Scholar
  846. Boles RG, Yamamura HI, Schoemaker H, Roeske WR (1984). Temperature-dependent modulation of [3H]nitrendipine binding by the calcium channel antagonists verapamil and diltiazem in rat brain synaptosomes. J Pharmacol Exp Ther 229: 333–339PubMedGoogle Scholar
  847. Bolger GT, Genko P, Klockowski R, Luchowski E, Siegel H, Janis RA, Triggle AM, Triggle DJ (1983) Characterization of binding of the Ca++ channel antagonist, [3H]nitrendipine, to guinea pig ileal smooth muscle. J Pharmacol Exp Ther 225: 291–309PubMedGoogle Scholar
  848. Bolger GT, Skolnick P (1986) Novel interactions of cations with dihydropyridine calcium antagonist binding sites in brain. Br J Pharmac 88: 857–866CrossRefGoogle Scholar
  849. Cheng YC, Prusoff WH (1973). Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22: 3099–3108PubMedCrossRefGoogle Scholar
  850. Cohen CJ, Ertel EA, Smith MM, Venam VJ, Adams ME, Leibowitz MD (1992) High affinity block of myocardial L-type calcium channels by the spider toxin w-aga-toxin IIIA: advantages over 1,4-dihydropyridines. Mol Pharmacol 42: 947–951PubMedGoogle Scholar
  851. Ehlert FJ, Itoga E, Roeske WR, Yamamura HI (1982) The interaction of [3H]nitrendipine with receptors for calcium antagonists in the cerebral cortex and heart of rats. Biochem Biophys Res Commun 104: 937–943PubMedCrossRefGoogle Scholar
  852. Ehlert FJ, Roeske WR, Itoga E, Yamamura HI (1982) The binding of [3H]nitrendipine to receptors for calcium channel antagonists in the heart, cerebral cortex, and ileum of rats. Life Sci 30: 2191–2202PubMedCrossRefGoogle Scholar
  853. Feigenbaum P, Garcia ML, Kaczorowski GJ (1988) Evidence for distinct sites coupled with high affinity w-conotoxin receptors in rat brain synaptic plasma membrane vesicles. Biochem Biophys Res Commun 154: 298–305PubMedCrossRefGoogle Scholar
  854. Ferry DR, Glossmann H (1982) Identification of putative calcium channels in skeletal muscle microsomes. FEBS Lett 148: 331–337PubMedCrossRefGoogle Scholar
  855. Ferry DR, Goll A, Gadow C, Glossmann H (1984) (-)-3Hdesmethoxyverapamil labelling of putative calcium channels in brain: autoradiographic distribution and allosteric coupling to 1,4-dihydropyridine and diltiazem binding sites. Naunyn Schmiedeberg’s Arch Pharmacol 327: 183–187Google Scholar
  856. Ferry DR, Goll A, Glossmann H (1987) Photoaffinity labelling of the cardiac calcium channel. Biochem J 243: 127–135PubMedGoogle Scholar
  857. Fleckenstein A (1977) Specific pharmacology of calcium in myocardium, cardiac pacemakers and vascular smooth muscle. Ann Rev Pharmacol Toxicol 17: 149–177CrossRefGoogle Scholar
  858. Glossmann H, Ferry DR (1985) Assay for calcium channels. Meth Enzymol 109: 513–550PubMedCrossRefGoogle Scholar
  859. Glossmann H, Ferry DR, Goll A, Striessnig J, Schober M (1985) Calcium channels: Basic properties as revealed by radioligand binding studies. J Cardiovasc Pharmacol 7 (Suppl 6): S20 - S30PubMedCrossRefGoogle Scholar
  860. Glossmann H, Ferry DR, Goll A, Striessnig J, Zernig G (1985) Calcium channels and calcium channel drugs: Recent biochemical and biophysical findings. Arzneim Forsch./Drug Res 35: 1917–1935Google Scholar
  861. Glossmann H, Ferry DR, Striessnig J, Goll A, Moosburger K (1987) Resolving the structure of the Cat+ channel by photoaffinity labelling. Trends Pharmacol Sci 8: 95–100CrossRefGoogle Scholar
  862. Glossmann H, Linn T, Rombusch M, Ferry DR (1983) Temperature-dependent regulation of d-cis-[3H]diltiazem binding to Cat+ channels by 1,4-dihydropyridine channel agonists and antagonists. FEBS Letters 160: 226–232PubMedCrossRefGoogle Scholar
  863. Goll A, Ferry DR, Striessnig J, Schober M, Glossmann H (1984) (-)-[3H]Desmethoxyverapamil, a novel Cat+ channel probe. FEBS Lett 176: 371–377Google Scholar
  864. Gould RJ, Murphy KMM, Snyder SH (1982) [3H]Nitrendipinelabeled calcium channels discriminate inorganic calcium agonists and antagonists. Proc Nat Acad Sci, USA 79: 3656–3660Google Scholar
  865. Gould RJ, Murphy KMM, Snyder SH (1983). Tissue heterogeneity of calcium channel antagonist binding sites labeled by [3H]nitrendipine. Mol Pharmacol 25: 235–241Google Scholar
  866. Janis RA, Sarmianto JG, Maurer SC, Bolger GT, Triggle DJ (1984). Characteristics of the binding of [3H]nitrendipine to rabbit ventricular membranes: Modification by other CC channel antagonists and by the Ca++ channel agonist Bay K 8644. J Pharmacol Exp Ther 231: 8–15PubMedGoogle Scholar
  867. Lee HR, Roeske WR, Yamamura HI (1984) High affinity specific [3H](+)PN 200–110 binding to dihydropyridine receptors associated with calcium channels in rat cerebral cortex and heart. Life Sci 35: 721–732PubMedCrossRefGoogle Scholar
  868. Marangos PJ, Patel J, Miller Ch, Martino AM (1982) Specific calcium antagonist binding sites in brain. Life Sci 31: 1575–1585PubMedCrossRefGoogle Scholar
  869. Reynolds IJ, Snowman AM, Snyder SH (1986) (-)[3H]Desmethoxyverapamil labels multiple calcium channel modulator receptors in brain and skeletal muscle membranes: Differentiation by temperature and dihydropyridines. J Pharmacol Exp Ther 237: 731–738Google Scholar
  870. Ruth P, Flockerzi V, von Nettelblatt V, Oeken J, Hoffmann F (1985) Characterization of binding sites for nimodipine and (-)-desmethoxyverapamil in bovine sarcolemma. Eur J Biochem 150: 313–322PubMedCrossRefGoogle Scholar
  871. Schoemaker H, Langer SZ (1985) [3H]diltiazem binding to calcium channel antagonists recognition sites in rat cerebral cortex. Eur J Pharmacol 111: 273–277Google Scholar
  872. Wagner JA, Snowman AM,. Biswas A, Olivera BM, Snyder SH (1988) w-Conotoxin GVIA binding to a high-affinity receptor in brain: Characterization, calcium sensitivity, and solubilization. J Neurosci 8: 3354–3359Google Scholar
  873. Grupp IL, Grupp G (1984) Isolated heart preparations perfused or superfused with balanced salt solutions. In: Schwartz A (ed) Methods in Pharmacology, Vol 5: Myocardial Biology. pp 111–128. Plenum Press, New York and LondonCrossRefGoogle Scholar
  874. Kohlhardt M, Fleckenstein A (1977). Inhibition of the slow inward current by nifedipine in mammalian ventricular myocardium. Naunyn Schmiedeberg’s Arch Pharmacol 298: 267–272PubMedCrossRefGoogle Scholar
  875. Linz W, Schölkens BA, Kaiser J, Just M, Bei-Yin Q, Albus U, Petry P (1989) Cardiac arrhythmias are ameliorated by local inhibition of angiotensin formation and bradykinin degradation with the converting-enzyme inhibitor ramipril. Cardiovasc Drugs Ther 3: 873–882PubMedCrossRefGoogle Scholar
  876. Striessnig J, Meusburger E, Grabner M, Knaus HG, Gloss-mann H, Kaiser J, Schölkens B, Becker R, Linz W, Henning R (1988) Evidence for a distinct Cat+ antagonist receptor for the novel benzothiazinone compound Hoe 166. Naunyn-Schmiedeberg’s Arch Pharmacol 337: 331–340PubMedGoogle Scholar
  877. Church J, Zsotér TT (1980) Calcium antagonistic drugs. Mechanism of action. Can J Physiol Pharmacol 58: 254–264Google Scholar
  878. Grupp IL, Grupp G (1984) Isolated heart preparations perfused or superfused with balanced salt solutions. In: Schwartz A (ed) Methods in Pharmacology, Vol 5: Myocardial Biology. pp 111–128. Plenum Press, New York and LondonCrossRefGoogle Scholar
  879. Leboeuf J, Baissat J, Massingham R (1992) Protective effect of bepridil and against veratrine-induced contracture in rat atria. Eur J Pharmacol 216: 183–189PubMedCrossRefGoogle Scholar
  880. Lindner E, Ruppert D (1982) Effects of calcium antagonists on coronary spasm and pulmonary artery contraction in comparison to their antagonistic action against K-strophanthin in isolated guinea-pig atria. Pharmacology 24: 294–302PubMedCrossRefGoogle Scholar
  881. Rajagopalan R, Ghate AV, Subbarayan P, Linz W, Schoelkens BA (1993) Cardiotonic activity of the water soluble forskoline derivative 8,13-epoxy-63-(piperidinoacetoxy)1a,713,9a-trihydroxy-labd-14-en-l1-one. Arzneim Forsch/ Drug Res 43 (1) 313–319Google Scholar
  882. Salako LA, Vaugham Williams EM, Wittig JH (1976) Investigations to characterize a new anti-arrhythmic drug, ORG 6001, including a simple test for calcium antagonism. Br J Pharmacol 57: 251–262PubMedCrossRefGoogle Scholar
  883. Hof RP, Vuorela HJ (1983) Assessing calcium antagonism on vascular smooth muscle: comparison of three methods. J Pharmacol Meth 9: 41–52CrossRefGoogle Scholar
  884. Matsuo K, Morita S, Uchida MK, Sakai K (1989) Simple and specific assessment of Ca-entry-blocking activities of drugs by measurement of Ca reversal. J Pharmacol Meth 22: 265–275CrossRefGoogle Scholar
  885. Micheli D, Collodel A, Semerano C, Gaviraghi G, Carpi C (1990) Lacidipine: A calcium antagonist with potent and long-lasting antihypertensive effects in animal studies. J Cardiovasc Pharmacol 15: 666–675Google Scholar
  886. Robinson CP, Sastry BVR (1976) The influence of mecamylamine on contraction induced by different agonists and the role of calcium ions in the isolated rabbit aorta. J Pharmacol Exp Ther 197: 57–65PubMedGoogle Scholar
  887. Striessnig J, Meusburger E, Grabner M, Knaus HG, Gloss-mann H, Kaiser J, Schölkens B, Becker R, Linz W, Henning R (1988) Evidence for a distinct Cat+ antagonist receptor for the novel benzothiazinone compound Hoe 166. Naunyn-Schmiedeberg’s Arch Pharmacol 337: 331–340PubMedGoogle Scholar
  888. Towart R (1982) Effects of nitrendipine (Bay e 5009), nifedipine, verapamil, phentolamine, papaverine, and minoxidil on contractions of isolated rabbit aortic smooth muscle. J Cardiovasc Pharmacol 4: 895–902PubMedCrossRefGoogle Scholar
  889. Turner RA (1965) Cardiotonic agents; The aortic strip of the rabbit. In: Turner RA (ed) Screening methods in pharmacology. pp 203–209. Academic Press, New York and LondonGoogle Scholar
  890. Green AF, Boura ALA (1964) Sympathetic nerve blockade. In: Laurence DR, Bacharach AL (eds.) Evaluation of drug activities: Pharmacometrics. Academic Press, London and New York, pp 370–430Google Scholar
  891. Lindner E, Ruppert D (1982) Effects of Cat’ antagonists on coronary spasm and pulmonary artery contraction in comparison to their antagonistic action against k-strophanthin in isolated guinea-pig atria. Pharmacology 24: 294–302PubMedCrossRefGoogle Scholar
  892. Striessnig J, Meusburger E, Grabner M, Knaus HG, Gloss-mann H, Kaiser J, Schölkens B, Becker R, Linz W, Henning R (1988) Evidence for a distinct Ca2+ antagonist receptor for the novel benzothiazinone compound Hoe 166. Naunyn-Schmiedeberg’s Arch Pharmacol 337: 331–340PubMedGoogle Scholar
  893. Clapham JC (1988) A method for in vivo assessment of calcium slow channel blocking drugs. J Cardiovasc Pharmacol 11: 56–60PubMedCrossRefGoogle Scholar
  894. Bergey JL, Nocella K, McCallum JD (1982) Acute coronary artery occlusion-reperfusion-induced arrhyhythmias in rats, dogs, and pigs: antiarrhythmic evaluation of quinidine, procainamide and lidocaine. Eur J Pharmacol 81: 205–216PubMedCrossRefGoogle Scholar
  895. Borchard U, Berger F, Hafner D (1989) Classification and action of antiarrhythmic drugs. Eur Heart J 10 (Suppl E): 31–40PubMedCrossRefGoogle Scholar
  896. Brooks RR, Miller KE, Carpenter JF, Jones SM (1989) Broad sensitivity of rodent arrhythmia models to class I, II, III, and IV antiarrhythmic agents. Proc Soc Exp Biol Med 191: 201–209Google Scholar
  897. Colatsky TJ, Follmer CH (1990) Potassium channels as targets for antiarrhythmic drug action. Drug Devel Res 19: 129–140CrossRefGoogle Scholar
  898. Coromilas J (1991) Classification of antiarrhythmic agents: electropharmacologic basis and clinical relevance. Cardiovasc Clin 22: 97–116Google Scholar
  899. Curtis MJ, Macleod BA, Walker MJA (1987) Models for the study of arrhythmia in myocardial ischaemia and infarction: the use of the rat. J Mol Cell Cardiol 19: 399–419PubMedCrossRefGoogle Scholar
  900. Ellis CH (1956) Screening of drugs for antiarrhythmic activity. Ann NY Acad Sci 64: 552–563PubMedCrossRefGoogle Scholar
  901. Frumin H, Kerin NZ, Rubenfire M (1989) Classification of antiarrhythmic drugs. J Clin Pharmacol 29: 387–394PubMedCrossRefGoogle Scholar
  902. Grant (1992) On the mechanism of action of antiarrhythmic agents. Am Heart J 123: 1130–1136PubMedCrossRefGoogle Scholar
  903. Harris AS (1950) Delayed development of ventricular ectopic rhythms following experimental coronary occlusion. Circ Res 1: 1318–1328CrossRefGoogle Scholar
  904. Harumi K, Tsutsumi T, Sato T, Sekiya S (1989) Classification of antiarrhythmic drugs based on ventricular fibrillation threshold. Am J Cardiol 64: 10J - 14JPubMedCrossRefGoogle Scholar
  905. Nattel S (1991) Antiarrhythmic drug classifications. A critical appraisal of their history, present status, and clinical relevance. Drugs 41: 672–701PubMedCrossRefGoogle Scholar
  906. Nattel S (1993) Comparative mechanisms of action of antiarrhythmic drugs. Am J Cardiol 72: 13F - 17FPubMedCrossRefGoogle Scholar
  907. Podrid PJ, Mendes L, Beau SL, Wilson JS (1990) The oral antiarrhythmic drugs. Progr Drug Res 35: 151–247Google Scholar
  908. Ravens U (1992) Einteilungsprinzipien der Antiarrhythmika bei Herzrhythmusstörungen. Z Kardiol 81: Suppl 4, 119–125Google Scholar
  909. Rosen MR, Schwartz PJ (1991) The Sicilian Gambit. A new approach to the classification of antiarrhythmic drugs based on their actions on arrhythmogenic mechanisms. Circulation 84: 1831–1851Google Scholar
  910. Sanguinetti MC (1992) Modulation of potassium channels by antiarrhythmic and antihypertensive drugs. Hypertension 19: 228–236PubMedCrossRefGoogle Scholar
  911. Scholz H (1991) New classification of antiarrhythmic drugs. The modulated receptor hypothesis. New Trends Antiar-rhythm 7: 275–289Google Scholar
  912. Scholz H (1994) Classification and mechanism of action of antiarrhythmic drugs. Fundam Clin Pharmacol 8: 385–390PubMedCrossRefGoogle Scholar
  913. Sugimoto T, Murakawa Y, Toda I (1989) Evaluation of antifibrillatory effects of drugs. Am J Cardiol 64: 33J - 36JPubMedCrossRefGoogle Scholar
  914. Szekeres L, Papp JG (1971) Production of experimental arrhythmias and methods for evaluating antiarrhythmic action. In: Experimental Cardiac Arrhythmias and Antiar-rhythmic drugs. Académiai Kladb, Budapest, pp 24–92Google Scholar
  915. Szekeres L, Papp JG (1975) Experimental cardiac arrhythmias. In: Schmier J, Eichler O (eds) Experimental Production of Diseases, Part 3, Heart and Circulation, Handbook of Experimental Pharmacology Vol XVI/3, Springer-Verlag New York Berlin Heidelberg, pp 131–182CrossRefGoogle Scholar
  916. The cardiac arrhythmia suppression trial (CAST) investigators (1990) Preliminary report: Effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. New Engl J Med 321: 406–412Google Scholar
  917. Vaughan Williams EM (1975) Classification of antidysrhythmic drugs. Pharmacol Ther B1: 115–138Google Scholar
  918. Vaughan Williams EM (1984) A classification of antiarrhythmic actions reassessed after a decade of new drugs. J Clin Pharmacol 24: 129–147CrossRefGoogle Scholar
  919. Vaughan Williams EM (1988) Classification of antiarrhythmic actions. In: Handbook of Experimental Pharmacology Vol 89:45–67, Springer, HeidelbergGoogle Scholar
  920. Vaughan Williams EM (1991) Significance of classifying antiarrhythmic actions since the cardiac arrhythmia suppression trial. J Clin Pharmacol 31: 123–135CrossRefGoogle Scholar
  921. Vaughan Williams EM (1992) Classifying antiarrhythmic actions: by facts or speculation. J Clin Pharmacol 32: 964–977CrossRefGoogle Scholar
  922. Vaughan-Williams EM (1970) Classification of antiarrhythmic drugs. In: Sandee E, Flensted-Jensen E, OLesen KH (eds.) Symposium on cardiac arrhythmias. Elsinore, Denmark, April 23–25, 1970, Publ. by AB Astra, Södertälje, Sweden. pp 449–472Google Scholar
  923. Walker MJA, Curtis MJ, Hearse DJ, Campbell RWF, Janse MJ, Yellon DM, Cobbe SM, Coker SJ, Harness JB, Harron DWG, Higgins AJ, Julian DG, Lab MJ, Manning AS, Northover BJ, Parratt JR, Riemersma RA, Riva E, Russell DC, Sheridan DJ, Winslow E, Woodward B (1988) The Lambeth Conventions: guidelines for the study of arrhythmias in ischemia, infarction, and reperfusion. Cardiovasc Res 22: 447–455PubMedCrossRefGoogle Scholar
  924. Weirich J, Antoni H (1990) Differential analysis of the frequency-dependent effects of class 1 antiarrhythmic drugs according to periodical ligand binding: implications for antiarrhythmic and proarrhythmic activity. J Cardiovasc Pharmacol 15: 998–1009PubMedCrossRefGoogle Scholar
  925. Weirich J, Antoni H (1991) Neue Aspekte zur frequenzabhängigen Wirkung von Klasse-l-Antiarrhythmika. Eine kritische Analyse der gebräuchlichen Subklassifikation. Z Kardiol 80: 177–186Google Scholar
  926. Wilson E (1984) Methods for detection and assessment of antiarrhythmic activity. Pharmacol Ther 24: 401–433CrossRefGoogle Scholar
  927. Winbury MM (1956) Relation between atrial and ventricular antiarrhythmic assay methods: rationale for a screening program. Ann NY Acad Sci 64: 564–573PubMedCrossRefGoogle Scholar
  928. Woosley RL (1991) Antiarrhythmic drugs. Annu Rev Pharmacol Toxicol 31: 427–455PubMedCrossRefGoogle Scholar
  929. Bazzani C; Genedani S, Tagliavini S, Bertolini A (1989) Putrescine reverses aconitine-induced arrhythmia in rats. J Pharm Pharmacol 41: 651–653PubMedCrossRefGoogle Scholar
  930. Brooks RR, Carpenter JF, Jones SM, Gregory CM (1989) Effects of dantrolene sodium in rodent models of cardiac arrhythmia. Eur J Pharmacol 164: 521–530PubMedCrossRefGoogle Scholar
  931. Dadkar NK, Bhattacharya BK (1974) A rapid screening procedure for antiarrhythmic activity in the mouse. Arch Int Pharmacodyn Ther 212: 297–301PubMedGoogle Scholar
  932. Lawson JW (1968) Antiarrhythmic activity of some isoquinoline derivatives determined by a rapid screening procedure in the mouse. J Pharmacol Exp Ther 160: 22–31PubMedGoogle Scholar
  933. Lu HR, De Clerk F (1993) R 56 865, a Na+/Ca2+-overload inhibitor, protects against aconitine-induced cardiac arrhythmias in vivo. J Cardiovasc Pharmacol 22: 120–125PubMedCrossRefGoogle Scholar
  934. Nakayama K, Oshima T, Kumakura S, Hashimoto K (1971) Comparison of the effects of various 3-adrenergic blocking agents with known antiarrhythmic drugs on aconitine-arrhythmia produced by the cup method. Eur J Pharmacol 14: 9–18PubMedCrossRefGoogle Scholar
  935. Nwangwu PU, Holcslaw TL, Stohs JS (1977) A rapid in vivo technique for preliminary screening of antiarrhythmic agents in mice. Arch Int Pharmacodyn 229: 219–226PubMedGoogle Scholar
  936. Papp G, Szekeres L, Szmolenszky T (1967) The effects of quinidine, ajmaline, papaverine and adrenergic beta-receptor inhibitors in experimental BaC12 arrhythmia developed for the quantitative assay of antiarrhythmic drugs. Acta Phys Acad Sci Hung 32: 365–375Google Scholar
  937. Pardczai M, K€trpâti E, Solti F (1990) The effect of bisaramil on experimental arrhythmias. Pharmacol Res 22: 463–480Google Scholar
  938. Sono K, Akimoto Y, Magaribuchi T, Kurahashi K, Fujiwara M (1985) A new model of ventricular fibrillation induced by isoprenaline and catechol-O-methyl transferase inhibitor at high perfusion temperature in isolated rat hearts. J Pharmacol Meth 14: 249–254CrossRefGoogle Scholar
  939. Takei (1994) Grayanotoxin-I induced experimental arrhythmia in guinea pig. J Aichi Med Univ Assoc 22: 495–512Google Scholar
  940. Tripathi RM, Thomas GP (1986) A simple method for the production of ventricular tachycardia in the rat and guinea pig. J Pharmacol Meth 15: 279–282CrossRefGoogle Scholar
  941. Vaille A, Scotto di Tella AM, Maldonado J, Vanelle P (1992) Selectivity of a CaCl2continuous infusion screening method in rats. Meth Find Exp Clin Pharmacol 14: 183–187Google Scholar
  942. Wenzel DG, Kloeppel JW (1978) Arrhythmias induced by changing the medium of cultured rat heart muscle cells: a model for assessment of antiarrhythmic agents. J Pharmacol Meth 1: 269–276CrossRefGoogle Scholar
  943. Winslow E (1980) Evaluation of antagonism of aconitine-induced dysrhythmias in mice as a method of detecting and assessing antidysrhythmic activity. Br J Pharmac 71: 615–622CrossRefGoogle Scholar
  944. Winslow E (1981) Hemodynamic and arrhythmogenic effects of aconitine applied to the left atria of anesthetized cats. Effects of amiodarone and atropine. J Cardiovasc Pharmac 3: 87–100CrossRefGoogle Scholar
  945. Yamamoto T, Hosoki K, Karasawa T (1993) Anti-arrhythmic effects of a new calcium antagonist, Monopetil, AJ-2615, in experimental arrhythmic models. Clin Exper Pharmacol Physiol 20: 497–500CrossRefGoogle Scholar
  946. Brooks RR, Carpenter JF, Jones SM, Gregory CM (1989) Effects of dantrolene sodium in rodent models of cardiac arrhythmia. Eur J Pharmacol 164: 521–530PubMedCrossRefGoogle Scholar
  947. Dörner J (1955) Zur Frage der Beziehungen zwischen Strophanthintoxicität und der Größe der Coronardurchblutung. Arch exp Path Pharmakol 226: 152–162Google Scholar
  948. Lindner E (1963) Untersuchungen über die flimmerwidrige Wirkung des N-(3’-phenyl-propyl-(2’))-1,1-diphenyl-propyl(3)-amins (Segontin®). Arch Int Pharmacodyn 146: 485–500PubMedGoogle Scholar
  949. Linz W, Schölkens BA, Kaiser J, Just M, Bei-Yin Q, Albus U, Petry P (1989) Cardiac arrhythmias are ameliorated by local inhibition of angiotensin formation and bradykinin degradation with the converting-enzyme inhibitor ramipril. Cardiovasc Drugs Ther 3: 873–882PubMedCrossRefGoogle Scholar
  950. Windus H (1952) Die Beeinflussung der Glykosidwirkung am Herzen durch coronargefässwirksame Medikamente. Klin Wschr 30: 215–217PubMedCrossRefGoogle Scholar
  951. Brooks RR, Miller KE, Carpenter JF, Jones SM (1989) Broad sensitivity of rodent arrhythmia models to class I, II, III, and IV antiarrhythmic agents. Proc Soc Exp Biol Med 191: 201–209Google Scholar
  952. Dörner J (1955) Zur Frage der Beziehungen zwischen Strophanthintoxicität and Größe der Coronardurchblutung. Arch exper Path Pharmakol 226: 152–162Google Scholar
  953. Duce BR, Garberg L, Johansson B (1967) The effect of propranolol and the dextro and laevo isomers of H 56/28 upon ouabain-induced ventricular tachycardia in unanaesthetized dogs. Acta pharmacol toxicol 25: Supp12, 41–49Google Scholar
  954. Kerr MJ, Wilson R, Shanks RG (1985) Suppression of ventricular arrhythmias after coronary artery ligation by Pinacidil, a vasodilator drug. J Cardiovasc Pharmacol 7: 875–883PubMedCrossRefGoogle Scholar
  955. Krzeminski T (1991) A rapid in vivo technique for the screening of potential anti-dysrhythmic agents. In: 7th Freiburg Focus on Biomeasurement. Cardiovascular and Respiratory in vivo Studies. Biomesstechnik-Verlag March GmbH, 79232 March, Germany. pp 131–135Google Scholar
  956. Rao TS, Seth SD, Nayar U, Manchanda SC (1988) Modified method for the production of cardiac arrhythmias by ouabain in anesthetized cats. J Pharmacol Meth 20: 255–263CrossRefGoogle Scholar
  957. Raper C, Wale J (1968) Propranolol, MJ-1999 and Ciba39089-Ba in ouabain and adrenaline induced cardiac arrhythmias. Eur J Pharmac 4: 1–12CrossRefGoogle Scholar
  958. Wascher TC; Dittrich P, Kukovetz WR (1991) Antiarrhythmic effects of two new propafenone related drugs. A study on four animals models of arrhythmia. Arzneim Forsch/Drug Res 41: 119–124Google Scholar
  959. Burgess MJ, Williams D, Ershler P (1977) Influence of test site on ventricular fibrillation threshold. Am Heart J 94: 55–61PubMedCrossRefGoogle Scholar
  960. Harumi K, Tsutsumi T, Sato T, Sekiya S (1989) Classification of antiarrhythmic drugs based on ventricular fibrillation threshold. Am J Cardiol 64: 10J - 14JPubMedCrossRefGoogle Scholar
  961. Jaillon P, Schnittger I, Griffn JC, Winkle RA (1980) The relationship between the repetitive extrasystole threshold and the ventricular fibrillation threshold in the dog. Circ Res 46: 599–605PubMedCrossRefGoogle Scholar
  962. Marshall RJ, Muir AW, Winslow E (1981) Comparative antidysrhythmic and hemodynamic effects of orally or intravenously administered mexiletine and Org 6001 in the anesthetized rat. Br J Pharmacol 74: 381–388PubMedCrossRefGoogle Scholar
  963. Murakawa Y, Toda I, Nozaki A, Kawakubo K, Sugimoto T (1989) Effects of antiarrhythmic drugs on the repetitive extrasystole threshold and ventricular fibrillation threshold. Cardiology 76: 58–66PubMedCrossRefGoogle Scholar
  964. Papp JG, Szekeres L (1968) Analysis of the mechanism of adrenaline actions on ventricular vulnerability. Eur J Pharmacol 3: 15–26PubMedCrossRefGoogle Scholar
  965. Sugimoto T, Murakawa Y, Toda I (1989) Evaluation of antifibrillatory effects of drugs. Am J Cardiol 64: 33J - 36JPubMedCrossRefGoogle Scholar
  966. Vanremoortere E, Wauters E (1986) Fibrillation threshold curves and anti-arrhythmic drugs. Arch Int Pharmacodyn 176: 476–479