Semi-Leptonic Interactions of Hadrons

  • Walter Greiner
  • Berndt Müller


All strongly interacting particles are called hadrons. One distinguishes baryons (baryon number B = ±1), which are fermions and carry spin ½, 3/2,..., and mesons (baryon number B = 0), which always have integer spin. The lightest hadrons, with equal spin (and equal parity), can be arranged in simple multiplets, where two further quantum numbers serve as order criteria: the isospin I, and its third component I 3, and the strangeness S, or alternatively the so-called strong hypercharge Y = B + S. These quantum numbers are characterized by the fact that they are exactly conserved under strong interactions. Conservation of strangeness is broken by weak interactions, which leads to decays of, for example, the Λ particle. The most important multiplets1 are depicted in Figs. 6.1-4.


Weak Interaction Neutrino Oscillation Baryon Number Neutral Current Parity Violation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See W. Greiner and B. Müller: Quantum Mechanics-Symmetries (Springer, Berlin, Heidelberg, New York 1994).MATHCrossRefGoogle Scholar
  2. 2.
    M. Gell-Mann: Phys. Lett. 8, 214 (1964); G. Zweig, CERN Report No. 8182/TH 401. (This latter work could not be published in a scientific journal, which shows that sometimes strong resistance has to be overcome before a new idea gains common acceptance.).ADSCrossRefGoogle Scholar
  3. 3.
    See W. Greiner and A. Schäfer: Quantum Chromodynamics (Springer, Berlin, Heidelberg, New York 1994).MATHCrossRefGoogle Scholar
  4. 4.
    V. Barger, J.L. Hewett, and T.G. Rizzo: Phys. Rev. Lett. 65, 1313 (1990).ADSCrossRefGoogle Scholar
  5. L.A. Vasilevskaya, A.A. Gvozdov, and N.N. Mikheev: JETP Lett. 51, 501 (1990).ADSGoogle Scholar
  6. 5.
    CDF Collaboration (F. Abe et al. — 397 authors) Phys. Rev. Lett. 73, 225 (1994).ADSCrossRefGoogle Scholar
  7. CDF Collaboration: Phys. Rev. D50, 2966 (1994).Google Scholar
  8. 6.
    S.M. Berman: Phys. Rev. Lett 1, 468 (1958).ADSCrossRefGoogle Scholar
  9. T. Kinoshita: Phys. Rev. Lett. 2, 477 (1959).ADSCrossRefGoogle Scholar
  10. 7.
    M. Kobayashi and K. Maskawa: Prog. Theor. Phys. 49, 652 (1973).ADSCrossRefGoogle Scholar
  11. 8.
    For the definition of the Euler angles we refer to W. Greiner: Theoretische Physik, Mechanik II, 5th ed (Harri Deutsch, Frankfurt 1989).Google Scholar
  12. H. Goldstein: Classical Mechanics, 2nd ed (Addison-Wesley, Reading MA 1980).MATHGoogle Scholar
  13. 9.
    Evidence for the top quark production in collisions at √s = 1.8 TeV has recently been reported:.Google Scholar
  14. CDF collaboration (F. Abe et al. — 397 authors) Phys. Rev. Lett. 73, 225 (1994).CrossRefGoogle Scholar
  15. CDF collaboration Phys. Rev. D50, 2966 (1994).Google Scholar
  16. 10.
    N. Cabibbo: Phys. Rev. Lett. 10, 531 (1963).ADSCrossRefGoogle Scholar
  17. 11.
    See W. Greiner and B. Müller: Quantum Mechanics — Symmetries (Springer, Berlin, Heidelberg, New York 1994).Google Scholar
  18. 12.
    S.L. Glashow, J.C. Iliopoulos, and L. Maiani: Phys. Rev. D2, 1285 (1970). The name “charm” is to be understood as “magic”, since the charmed quark eliminates the undesirable terms.ADSGoogle Scholar
  19. 13.
    P. Langacker and A.K. Mann: Physics Today, 42, 22 (1989).ADSCrossRefGoogle Scholar
  20. 14.
    E.D. Commins and P.H. Bucksbaum: Ann. Rev. Nucl. Part. Sci. 30, 1 (1980).ADSCrossRefGoogle Scholar
  21. 15.
    See W. Greiner and J. Reinhardt: Quantum Electrodynamics (Springer, Berlin, Heidelberg, New York 1994).MATHCrossRefGoogle Scholar
  22. 16.
    M.A. Bouchiat, J. Guena, L. Hember, L. Portier: Phys. Lett. B117, 358 (1982).ADSGoogle Scholar
  23. P. Buchsbaum, E. Commins, L. Hember: Phys. Rev. Lett. 46, 640 (1981)ADSCrossRefGoogle Scholar
  24. J.H. Mollister, G.R. Apperson, L.L. Lewis, T.P. Emmons, T.G. Vold, E.N. Fortson: Phys. Rev. Lett. 46, 643 (1981).ADSCrossRefGoogle Scholar
  25. 17.
    See W. Greiner: Relativistic Quantum Mechanics — Wave Equations (Springer, Berlin, Heidelberg, New York 1995).CrossRefGoogle Scholar
  26. 18.
    M.A. Bouchiat and C. Bouchiat: Journal de Physique 35, 899 (1974).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Walter Greiner
    • 1
    • 2
  • Berndt Müller
    • 3
  1. 1.Institut für Theoretische PhysikJohann Wolfgang Goethe-Universität FrankfurtFrankfurt am MainGermany
  2. 2.Frankfurt am MainGermany
  3. 3.Physics DepartmentDuke UniversityDurhamUSA

Personalised recommendations