A Look at Some Remarkable Mathematical Techniques



The nonlinear equations that we have encountered in the previous chapters can be solved by using mathematical techniques such as the powerful inverse scattering transform (IST) (Gardner et al. 1967) and the remarkable Hirota method (Hirota 1971). Specifically, in addition to the one-soliton solutions, explicit multisoliton solutions representing the interaction of any number of solitons can be constructed. Moreover, in several cases a precise prediction, closely related to experiments, can be made by the IST of the nonlinear response of the physical system, that is, of the number of solitons that can emerge from a finite initial disturbance (Zakharov, 1980. Ablowitz and Segur 1981; Calogero and Degasperis 1981; Newell 1985).


Continuous Spectrum Soliton Solution Nonlinear Evolution Equation Initial Disturbance Inverse Spectral Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  1. 1.Laboratoire de Physique, Phénomènes non-linéaires — URA CNRS no 1796Université de BourgogneDijonFrance

Personalised recommendations