Electrical Transport

  • Peter Y. Yu
  • Manuel Cardona

Abstract

In Chap. 4 we studied electrons and holes located on defects. Since these electrons and holes are immobile they are known as bound electrons and holes, respectively. In contrast, electrons in the conduction band and holes in the valence band of a semiconductor can carry electrical current. Hence they are referred to as free carriers. In this chapter we will study the effect of an external electric field on free carriers in a semiconductor. The response of these carriers to an electric field depends on the field strength. We will first consider the case of weak electric fields, where the behavior of carriers can be described by Ohm’s law. Under high electric fields, carriers in a semiconductor can acquire so much energy that their average kinetic energy becomes higher than that of the lattice. Such energetic electrons are known as hot electrons. It is very difficult to calculate their properties analytically, so our discussions of hot electrons will be qualitative.

Keywords

Microwave Anisotropy Recombination GaAs Lime 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Chapter 5

  1. 5.1
    J.M. Ziman: Principles of the Theory of Solids, 2nd edn. (Cambridge Univ. Press, Cambridge 1972) pp. 129–178CrossRefGoogle Scholar
  2. 5.2
    B.K. Ridley: Quantum Processes in Semiconductors, 2nd edn. (Clarendon, Oxford 1988)Google Scholar
  3. 5.3
    H.S. Robertson: Statistical Thermophysics (Prentice Hall, Englewood Cliffs, NJ 1993) pp. 445–449Google Scholar
  4. 5.4
    C. Jacoboni, P. Lugli: The Monte Carlo Method for Semiconductor Device Simulation (Springer, Berlin, Heidelberg 1989) pp. 104–160Google Scholar
  5. 5.5
    D.K. Ferry: Semiconductors (Macmillan, New York 1991)Google Scholar
  6. 5.6
    S.S. Devlin: Transport properties, in Physics and Chemistry of II–VI Compounds, ed. by M. Aven, J.S. Prener (North-Holland, Amsterdam 1967)Google Scholar
  7. 5.7
    C. Kittel: Introduction to Solid State Physics, 6th edn. (Wiley, New York 1986)Google Scholar
  8. 5.8
    E.M. Conwell, M.O. Vassel: High-field distribution function in GaAs. IEEE Trans. ED-13, 22–27 (1966)ADSGoogle Scholar
  9. 5.9
    C.L. Collins, P.Y. Yu: Nonequilibrium phonon spectroscopy: A new technique for studying intervalley scattering in semiconductors. Phys. Rev. B 27, 2602–2604(1983)ADSCrossRefGoogle Scholar
  10. 5.10
    D.L. Rode: Low field electron transport. Semiconductors and Semimetals 10, 1–89 (Academic, New York 1982)Google Scholar
  11. 5.11
    D. Long: Scattering of conduction electrons by lattice vibrations in silicon. Phys. Rev. 120, 2024–2032 (1960)ADSCrossRefGoogle Scholar
  12. 5.12
    J.L. Birman, M. Lax, R. Loudon: Intervalley-scattering selection rules in III–V semiconductors. Phys. Rev. 145, 620–622 (1966)ADSCrossRefGoogle Scholar
  13. 5.13
    D.K. Ferry: First-order optical and intervalley scattering in semiconductors. Phys. Rev. B 14, 1605–1609 (1976)ADSCrossRefGoogle Scholar
  14. 5.14
    H. Brooks: Scattering by ionized impurities in semiconductors. Phys. Rev. 83, 879(1951)Google Scholar
  15. 5.15
    E.M. Conwell, V. Weisskopf: Theory of impurity scattering in semiconductors. Phys. Rev. 77, 388–390 (1950)ADSMATHCrossRefGoogle Scholar
  16. 5.16
    R.L. Liboff: Quantum Mechanics (Addison-Wesley, Reading, MA 1980) p.625Google Scholar
  17. 5.17
    S.M. Sze: Semiconductor Devices (Wiley, New York 1985) p.33Google Scholar
  18. 5.18
    G.E. Stillman, C.M. Wolfe, J.O. Dimmock: Hall coefficient factor for polar mode scattering in n-type GaAs. J. Phys. Chem. Solids 31, 1199–1204 (1970)ADSCrossRefGoogle Scholar
  19. 5.19
    K. Fletcher, P.N. Butcher: An exact solution of the linearized Boltzmann equation with applications to the Hall mobility and Hall factor of n-GaAs. J. Phys. C 5, 212–224(1972)ADSCrossRefGoogle Scholar
  20. 5.20
    H.L. Störnier, R. Dingle, A.C. Gossard, W. Wiegmann, R.A. Logan: Electronic properties of modulation-doped GaAs-AlxGa1-xAs Superlattices, in Physics of Semiconductors 1978, ed. by B.L.H. Wilson (Inst. Phys., Bristol 1979) pp.557–560Google Scholar
  21. 5.21
    W. Walukiewicz, H.E. Ruda, J. Lagowski, H.C. Gatos: Electron mobility in modulation-doped heterostructures. Phys. Rev. B 30, 4571–4582 (1984)ADSCrossRefGoogle Scholar
  22. 5.22
    S. Wang: Fundamentals of Semiconductor Theory and Device Physics (Prentice Hall, Englewood Cliffs, NJ 1989)Google Scholar
  23. 5.23
    E.M. Conwell: High Field Transport in Semiconductors. Solid State Physics, Suppl. 9 (Academic, New York 1967)Google Scholar
  24. 5.24
    E.J. Yoffa: Dynamics of dense laser-induced plasmas. Phys. Rev. B 21, 2415–2425 (1980)ADSCrossRefGoogle Scholar
  25. 5.25
    W.H. Knox, C. Hirlimann, D.A.B. Miller, J. Shah, D.S. Chemla, C.V. Shank: Femtosecond excitation of nonthermal carrier populations in GaAs Quantum Wells. Phys. Rev. Lett. 56, 1191–1193 (1986)ADSCrossRefGoogle Scholar
  26. 5.26
    K. Seeger: Semiconductor Physics, 5th edn., Springer Ser. Solid-State Sci., Vol.40 (Springer, Berlin, Heidelberg 1991)CrossRefGoogle Scholar
  27. 5.27
    B. Carnez, A. Cappy, A. Kaszynski, E. Constant, G. Salmer: Modeling of a submicrometer gate field-effect transistor including effects of nonstationary electron dynamics. J. Appl. Phys. 51, 784–790 (1980)ADSCrossRefGoogle Scholar
  28. 5.28
    J. Singh: Physics of Semiconductors and Their Heterostructures (McGraw-Hill, New York 1993) pp. 524–531Google Scholar
  29. 5.29
    J.S. Blakemore: Semiconducting and other major properties of gallium arsenide. J. Appl. Phys. 53, R123–181 (1982)ADSCrossRefGoogle Scholar
  30. 5.30
    J. Shah, B. Deveaud, T.C. Damen, W.T. Tsang, A.C. Gossard, P. Lugli: Determination of intervalley scattering rates in GaAs by subpicosecond luminescence spectroscopy. Phys. Rev. Lett. 59, 2222–2225 (1987)ADSCrossRefGoogle Scholar
  31. 5.31
    D.K. Kim, P.Y. Yu: Hot-electron relaxation and hot phonons in GaAs studied by subpicosecond Raman scattering. Phys. Rev. B 43, 4158–4169 (1991)ADSCrossRefGoogle Scholar
  32. 5.32
    P.J. Vinson, C. Pickering, A.R. Adams, W. Fawcett, G.D. Pitt: The band structure of GaAs from transferred electron effects at high pressure, in: Physics of Semiconductors 1976, ed. by F.G. Fumi (Tipografia Marves, Rome 1976) pp.1243–1246Google Scholar
  33. 5.33
    J.B. Gunn: Microwave oscillations of current in III–V semiconductors. Solid State Commun. 1, 88–91 (1963)ADSCrossRefGoogle Scholar
  34. 5.34
    J.B. Gunn: Microwave oscillations of current in III–V semiconductors. IBM J. Res. Dev. 8, 141–159(1964)CrossRefGoogle Scholar
  35. 5.35
    R. Dalven: Introduction to Applied Solid State Physics, 2nd edn. (Plenum, New York 1990) pp. 158–165CrossRefGoogle Scholar
  36. 5.36
    K. Seeger: Semiconductor Physics, 5th edn., Springer Ser. Solid-State Sci., Vol.40 (Springer, Berlin, Heidelberg 1991) pp. 217–272Google Scholar
  37. 5.37
    C. Herring, E. Vogt: Transport and deformation potential theory for many-valley semiconductors with anisotropic scattering. Phys. Rev. 101, 944–961 (1956); erratum 105, 1933 (1956)ADSMATHCrossRefGoogle Scholar
  38. 5.38
    E.H. Hall: On a new action of the magnet on electric current. Am. J. Math. 2, 287–292 (1879)MATHCrossRefGoogle Scholar
  39. 5.39
    L. van der Pauw: A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Rep. 13, 1–9 (1958)Google Scholar

General Reading, Transport Properties

  1. Dalven R.: Introduction to Applied Solid State Physics, 2nd edn. (Plenum, New York 1990)CrossRefGoogle Scholar
  2. Ferry D.K.: Semiconductors (Macmillan, New York 1991)Google Scholar
  3. Rode D.L.: Low field electron transport. Semiconductors and Semimetals 10, 1–89 (Academic, New York 1982)Google Scholar
  4. Kittel C: Introduction to Solid State Physics 7th edn. (Wiley, New York 1995)Google Scholar
  5. Nag B.R.: Electron Transport in Compound Semiconductors, Springer Ser. Solid-State Sci., Vol.11 (Springer, Berlin, Heidelberg 1980)CrossRefGoogle Scholar
  6. Ridley B.K.: Quantum Processes in Semiconductors, 2nd edn. (Clarendon, Oxford 1988)Google Scholar
  7. Seeger K.: Semiconductor Physics, 5th edn., Springer Ser. Solid-State Sci., Vol.40 (Springer, Berlin, Heidelberg 1991)CrossRefGoogle Scholar
  8. Wiley J.D.: Mobility of holes in III–V compounds. Semiconductors and Semimetals 10, 91–174 (Academic, New York 1982)Google Scholar
  9. Ziman J.M.: Principles of the Theory of Solids, 2nd edn. (Cambridge Univ. Press, Cambridge 1972)CrossRefGoogle Scholar

Hot Carriers

  1. Conwell E.M.: High Field Transport in Semiconductors, Solid State Physics, Suppl.9 (Academic, New York 1967)Google Scholar
  2. Conwell E.M.: In Handbook of Semiconductors (North-Holland, Amsterdam 1982) Vol.1, pp. 513–561Google Scholar
  3. Jacoboni C., Lugli P.: The Monte Carlo Method for Semiconductor Device Simulation (Springer, New York 1989)CrossRefGoogle Scholar

Devices

  1. Singh J.: Physics of Semiconductors and Their Heterostructures (McGraw-Hill, New York 1993)Google Scholar
  2. Sze S.M.: Semiconductor Devices (Wiley, New York 1985)Google Scholar
  3. Wang, S.: Fundamentals of Semiconductor Theory and Device Physics (Prentice Hall Englewood Cliffs, NJ 1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Peter Y. Yu
    • 1
  • Manuel Cardona
    • 2
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Max-Planck-Institut für FestkörperforschungStuttgartGermany

Personalised recommendations