Skip to main content

Vibrational Properties of Semiconductors, and Electron-Phonon Interactions

  • Chapter
Fundamentals of Semiconductors
  • 391 Accesses

Abstract

We will start the discussion of the vibrational properties of semiconductors by reviewing the theory of the dynamics of a crystalline lattice. The Hamilto-nian describing a perfect crystal has already been given in (2.1). We note that the electrons have been separated into two groups. The core electrons are assumed to move rigidly with the nucleus to form what has been referred to as the ion. The valence electrons interact with these ions via the pseudopotentials. The part Hamiltonian in (2.1) which involves the nuclear motions is given by

$$ {H_{ion}}({R_1},...,{R_n}) = \sum\limits_j {\frac{{P_j^2}}{{2{M_j}}} + \sum\limits_{j,j'} {^,} \frac{1}{2}\frac{{{Z_j}{Z_{j'}}{e^2}}}{{\left| {{R_j} - {R_{j'}}} \right|}} - \sum\limits_{i.j} {\frac{{{Z_j}{e^2}}}{{\left| {{r_i} - {R_j}} \right|}}} } $$
((3.1))

, where R j, P j, Z j and M j are, respectively, the nuclear positions, momentum, charge, and mass, r t is the position of the electron and Σ means summation over pairs of indices j and j’ where j is not equal to j’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.N. Talwar, M. Vandevyver, K. Kunc, M. Zigone: Lattice dynamics of zinc chalcogenides under compression: Phonon dispersion, mode Grüneisen, and thermal expansion. Phys Rev. B 24, 741–753 (1981)

    Article  ADS  Google Scholar 

  2. H. Goldstein: Classical Mechanics (Addison-Wesley, Reading 1950) p.329

    Google Scholar 

  3. G. Nilsson, G. Nelin: Study of the homology between silicon and germanium by thermal-neutron spectroscopy. Phys. Rev. B 6, 3777–3786 (1972)

    Article  ADS  Google Scholar 

  4. W. Weber: Adiabatic bond charge model for the phonons in diamond, Si, Ge, and α-Sn. Phys. Rev. B 15, 4789–4803 (1977)

    Article  ADS  Google Scholar 

  5. D. Strauch, B. Dorner: Phonon dispersion in GaAs. J. Phys.: Condens. Matter 2, 1457–1474 (1990)

    Article  ADS  Google Scholar 

  6. M. Born, K. Huang: Dynamical Theory of Crystal Lattices (Oxford Univ. Press, Oxford 1988, reprint of the original 1954 edition)

    MATH  Google Scholar 

  7. M. Born: The space lattice theory of diamond. Ann. Physik 44, 605–642 (1914) in German

    Article  ADS  Google Scholar 

  8. Y.C. Hsieh: The vibrational spectrum and the specific heat of germanium and silicon. J. Chem. Phys. 22, 306–311 (1954)

    Article  ADS  Google Scholar 

  9. F. Herman: Lattice vibrational spectrum of germanium. J. Phys. Chem. Solids 8, 405–418 (1959)

    Article  ADS  Google Scholar 

  10. W. Cochran: Theory of the lattice vibrations of germanium. Proc. R. Soc. (London) Ser.A 253, 260–276 (1959)

    Article  ADS  Google Scholar 

  11. G. Dolling, R.A. Cowley: The thermodynamics and optical properties of germanium, silicon, diamond, and gallium arsenide. Proc. Phys. Soc. 88, 463–494 (1966)

    Article  ADS  Google Scholar 

  12. J.C. Phillips: Covalent bonds in crystals. I. Elements of a structural theory. Phys. Rev. 166, 832–838 (1968);

    Article  ADS  Google Scholar 

  13. J.C. Phillips: Covalent bonds in crystals. II. Partially ionic bonding, Phys. Rev. 168, 905–911 (1968)

    Article  ADS  Google Scholar 

  14. M.J.P. Musgrave, J.A. Pople: A general valence force field for diamond. Proc. R. Soc. (London) Ser.A 268, 474–484 (1962)

    Article  ADS  Google Scholar 

  15. M.A. Nusimovici, J.L. Birman: Lattice dynamics of Wurtzite: CdS. Phys. Rev. 156, 925–938 (1967)

    Article  ADS  Google Scholar 

  16. J.M. Rowe, R.M. Nicklow, D.L. Price, K. Zanio: Lattice dynamics of cadmium telluride. Phys. Rev. B 10, 671–675 (1974)

    Article  ADS  Google Scholar 

  17. P.N. Keating: Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys. Rev. 145, 637–645 (1966)

    Article  ADS  Google Scholar 

  18. R.M. Martin: Elastic properties of ZnS structure semiconductors. Phys. Rev. B 1, 4005–4011 (1970)

    Article  ADS  Google Scholar 

  19. R.M. Martin: Dielectric screening model for lattice vibrations of diamond-structure crystals. Phys. Rev. 186, 871 (1969)

    Article  ADS  Google Scholar 

  20. J. Noolandi: Theory of crystal distortions in AnBIVC2 v and A1BIIIC2 VI chalco-pyrite semiconductors. Phys. Rev. B 10, 2490–2494 (1974)

    Article  ADS  Google Scholar 

  21. S. Göttlicher, E. Wolfel: X-ray determination of the electron distribution in crystals (in German). Z. Elektrochem. 63, 891–901 (1959) in German

    Google Scholar 

  22. L.W. Yang, P. Coppens: On the experimental electron distribution in silicon. Solid State Commun. 15, 1555–1559 (1974)

    Article  ADS  Google Scholar 

  23. J. Chelikowsky, M.L. Cohen: Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zincblende semiconductors. Phys. Rev. B 14, 556–582 (1976)

    Article  ADS  Google Scholar 

  24. P. Pavone, K. Karch, O. Schütt, W. Windl, D. Strauch, P. Gianozzi, S. Baroni: Ab initio lattice dynamics of diamond. Phys. Rev. B 48, 3156–3163 (1993)

    Article  ADS  Google Scholar 

  25. G.P. Srivastava: The Physics of Phonons (Hilger, Bristol 1990)

    Google Scholar 

  26. A. Blacha, H. Presting, M. Cardona: Deformation potentials of k=0 states of tetrahedral semiconductors. Phys. Stat. Solidi b 126, 11–36 (1984)

    Article  ADS  Google Scholar 

  27. D.D. Nolte, W. Walukiewicz, E.E. Haller: Critical criterion for axial modes of defects in as-grown n-type GaAs. Phys. Rev. B 36, 9374–9377 (1987)

    Article  ADS  Google Scholar 

  28. M. Cardona, N.E. Christensen: Acoustic deformation potentials and heterostruc-ture band offsets in semiconductors. Phys. Rev. B 35, 6182–6194 (1987)

    Article  ADS  Google Scholar 

  29. E.O. Kane: Strain effects on optical critical-point structure in diamond-type crystals. Phys. Rev. 178, 1368–1398 (1969)

    Article  ADS  Google Scholar 

  30. G.E. Pikus, G.L. Bir: Effect of deformation on the hole energy spectrum of germanium and silicon. Sov. Phys.-Solid State 1, 1502–1517 (1960)

    MathSciNet  Google Scholar 

  31. G.E. Pikus, G.L. Bir: Symmetry and Strain Induced Effects in Semiconductors (Wiley, New York 1974)

    Google Scholar 

  32. C. Herring, E. Vogt: Transport and deformattion-potential theory for many-valley semiconductors with anisotropic scattering. Phys. Rev. 101, 944–961 (1956)

    Article  ADS  MATH  Google Scholar 

  33. H. Brooks: Theory of the electrical properties of germanium and silicon. Advances in Electronics and Electron Physics 7, 85–182 (Academic, New York 1955)

    Google Scholar 

  34. J.F. Nye: Physical Properties of Crystals (Oxford Univ. Press, Oxford 1969)

    Google Scholar 

  35. G.D. Mahan, J.J. Hopfield: Piezoelectric polaron effects in CdS. Phys. Rev. Lett. 12, 241–243 (1964)

    Article  ADS  Google Scholar 

  36. K. Hübner: Piezoelectricity in zincblende- and wurtzite-type crystals. Phys. Stat. Solidi B 57, 627–634 (1973)

    Article  ADS  Google Scholar 

  37. W.A. Harrison: Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond (Dover, New York 1989) p.224

    Google Scholar 

  38. O. Madelung, M. Schulz, H. Weiss (eds.): Landolt-Börnstein, Series III, Vol.22 (Semiconductors), Subvolume a. Intrinsic Properties of Group IV Elements, III–V, II–VI and I–VII Compounds (Springer, Berlin, Heidelberg 1987)

    Google Scholar 

  39. S. Adachi: GaAs, AlAs, and AlxGa1‒xAs: Materials parameters for use in research and device applications. J. Appl. Phys. 58, R1–29 (1985)

    Article  ADS  Google Scholar 

  40. L. Kleinman: Deformation potentials in Si: I. Uniaxial strain. Phys. Rev. 128, 2614–2621 (1962)

    Article  ADS  Google Scholar 

  41. E. Anastassakis, M. Cardona: Internal strains and Raman-active optical pho-nons. Phys. Stat. Solidi B 104, 589–600 (1981)

    Article  ADS  Google Scholar 

  42. W. Plötz, P. Vogl: Theory of optical-phonon deformation potentials in tetrahedral semiconductors. Phys. Rev. B 24, 2025–2037 (1981)

    Article  ADS  Google Scholar 

  43. M. Cardona, M. Grimsditch, D. Olego: Theoretical and experimental determinations of Raman scattering cross sections in simple solids, in Light Scattering in Solids, ed. by J.L. Birman, H.Z. Cummins, K.K. Rebane (Plenum, New York 1979) pp. 249–256

    Chapter  Google Scholar 

  44. S. Zollner, S. Gopalan, M. Cardona: Intervalley deformation potentials and scattering rates in zincblende semiconductors. Appl. Phys. Lett. 54, 614–616 (1989)

    Article  ADS  Google Scholar 

  45. C. Carabatos, B. Prevot: Rigid ion model lattice dynamics of cuprite (Cu2O). Phys. Status Solid B 44, 701–712 (1971)

    Article  ADS  Google Scholar 

  46. P. Molinás-Mata, M. Cardona: Planar force-constant models and internal strain parameter of Ge and Si. Phys. Rev. B 43, 9799–9809 (1991)

    Article  ADS  Google Scholar 

  47. P. Molinás-Mata, A.J. Shields, M. Cardona: Phonons and internal stresses in IV–VI and III–V semicoductors: The planar bond-charge model. Phys. Rev. B 47, 1866–1875 (1993)

    Article  ADS  Google Scholar 

General Reading Lattice Dynamics

  • Bilz H., W. Kress: Phonon Dispersion Relations in Insulators, Springer Ser. Solid-State Sci., Vol.10 (Springer, Berlin, Heidelberg 1979). This is touted as a “phonon atlas” by its authors. It presents a collection of phonon dispersion curves and densities of states for more than a hundred insulators, including all the well-known semiconductors.

    Book  Google Scholar 

  • Born M., K. Huang: Dynamical Theory of Crystal Lattices (Oxford Univ. Press, Oxford 1988), reprint of the original 1954 edition

    MATH  Google Scholar 

  • Horton G.K., Maradudin, A.A. (eds.): Dynamical Properties of Solids, Vols. 1–5 (North-Holland, Amsterdam 1974)

    Google Scholar 

  • Sinha S.K.: Phonons in semiconductors. CRC Critical Reviews in Solid State Sciences 3, 273–334 (1973)

    Article  Google Scholar 

  • Srivastava G.P.: The Physics of Phonons (Hilger, Bristol 1990)

    Google Scholar 

General Reading Properties related to phonons

  • Harrison W.A.: Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond (Dover, New York, 1989)

    Google Scholar 

  • Kittel C.: Introduction to Solid State Physics, 7th edn. (Wiley, New York 1995) Chap. 4

    Google Scholar 

  • Madelung O.: Introduction to Solid-State Theory, Springer Ser. Solid-State Sci., Vol.2 (Springer, Berlin, Heidelberg 1978)

    Book  Google Scholar 

  • Madelung O., Schulz, M., Weiss, H. (eds.): Landolt-Börnstein, Series III, Vol.22 (Semiconductors), Sub volume a) Intrinsic Properties of Group IV Elements, III–V, II–VI and I–VII Compounds (Springer, Berlin, Heidelberg 1987)

    Google Scholar 

  • Nye J.F.: Physical Properties of Crystals (Oxford Univ. Press, Oxford 1969)

    Google Scholar 

  • Pikus G.E., Bir, G.L.: Symmetry and Strain Induced Effects in Semiconductors (Wiley, New York 1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yu, P.Y., Cardona, M. (1996). Vibrational Properties of Semiconductors, and Electron-Phonon Interactions. In: Fundamentals of Semiconductors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03313-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03313-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61461-6

  • Online ISBN: 978-3-662-03313-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics