Advertisement

Electronic Band Structures

  • Peter Y. Yu
  • Manuel Cardona

Abstract

The property which distinguishes semiconductors from other materials concerns the behavior of their electrons, in particular the existence of gaps in their electronic excitation spectra. The microscopic behavior of electrons in a solid is most conveniently specified in terms of the electronic band structure. The purpose of this chapter is to study the band structure of the most common semiconductors, namely, Si, Ge, and related III– V compounds. We will begin with a quick introduction to the quantum mechanics of electrons in a crystalline solid.

Keywords

Wave Function Valence Band Band Structure Irreducible Representation Brillouin Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2.1
    C. Kittel: Introduction to Solid State Physics, 7th edn. (Wiley, New York 1995) p.37Google Scholar
  2. 2.2
    L.M. Falicov: Group Theory and its Physical Applications (Univ. Chicago Press, Chicago 1966)MATHGoogle Scholar
  3. 2.3
    G.F. Koster: Space groups and their representations, in Solid State Physics 5, 173–256 (Academic, New York 1957)Google Scholar
  4. 2.4
    D.L. Greenaway, G. Harbeke: Optical Properties and Band Structure of Semiconductors (Pergamon, New York 1968) p.44Google Scholar
  5. 2.5
    H. Jones: The Theory of Brillouin Zones and Electronic States in Crystals, 2nd edn. (North-Holland, Amsterdam 1975)Google Scholar
  6. 2.6
    M.L. Cohen, J. Chelikowsky: Electronic Structure and Optical Properties of Semiconductors, 2nd edn., Springer Ser. Solid-State Sci., Vol.75 (Springer, Berlin, Heidelberg 1989)CrossRefGoogle Scholar
  7. 2.7
    J.R. Chelikowsky, D.J. Chadi, M.L. Cohen: Calculated valence band densities of states and photoemission spectra of diamond and zinc-blende semiconductors. Phys. Rev. B 8, 2786–2794 (1973)ADSCrossRefGoogle Scholar
  8. 2.8
    C. Varea de Alvarez, J.P. Walter, R.W. Boyd, M.L. Cohen: Calculated band structures, optical constants and electronic charge densities for InAs and InSb. J. Chem. Phys. Solids 34, 337–345 (1973)CrossRefGoogle Scholar
  9. 2.9
    M.S. Hybertsen, S.G. Louie: Electron correlation in semiconductors and insulators. Phys. Rev. B 34, 5390–5413 (1986)ADSCrossRefGoogle Scholar
  10. 2.10
    E.O. Kane: Band structure of indium antimonide. J. Phys. Chem. Solids 1, 249–261 (1957)ADSCrossRefGoogle Scholar
  11. 2.11
    M. Cardona, F.H. Pollak: Energy-band structure of germanium and silicon. Phys. Rev. 142, 530–543 (1966)ADSCrossRefGoogle Scholar
  12. 2.12
    M. Cardona: Band parameters of semiconductors with zincblende, wurtzite, and germanium structure. J. Phys. Chem. Solids 24, 1543–1555 (1963);ADSCrossRefGoogle Scholar
  13. 2.12a
    M. Cardona: Band parameters of semiconductors with zincblende, wurtzite, and germanium structure. J. Phys. Chem. Solids 26, 1351E (1965)CrossRefGoogle Scholar
  14. 2.13
    O. Madelung, M. Schulz, H. Weiss (eds.): Landolt-Börnstein, Series III, Vol. 17a-h (Semiconductors) (Springer, Berlin, Heidelberg 1987)Google Scholar
  15. 2.14
    E.O. Kane: The k-p method. Semiconductors and Semimetals 1, 75–100 (Academic, New York 1966)CrossRefGoogle Scholar
  16. 2.15
    M. Cardona, N.E. Christensen, G. Fasol: Relativistic band structure and spin-orbit splitting of zincblende-type semiconductors. Phys. Rev. B 38, 1806–1827 (1988)ADSCrossRefGoogle Scholar
  17. 2.16
    G. Dresselhaus, A.F. Kip, C. Kittel: Cyclotron resonance of electrons and holes in silicon and germanium crystals. Phys. Rev. 98, 368–384 (1955)ADSCrossRefGoogle Scholar
  18. 2.17
    J.M. Luttinger: Quantum theory of cyclotron resonance in semiconductors: General theory. Phys. Rev. 102, 1030–1041 (1956)ADSMATHCrossRefGoogle Scholar
  19. 2.18
    W.A. Harrison: Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond (Dover, New York 1989)Google Scholar
  20. 2.19
    D.J. Chadi, M.L. Cohen: Tight-binding calculations of the valence bands of diamond and zincblende crystals. Phys. Stat. Solidi B 68, 405–419 (1975)ADSCrossRefGoogle Scholar
  21. 2.20
    W.A. Harrison: The physics of solid state chemistry, in Festkörperprobleme 17, 135–155 (Vieweg, Braunschweig, FRG 1977)Google Scholar
  22. 2.21
    F. Herman: Recent progress in energy band theory, in Proc. Inf’l Conf. on Physics of Semiconductors (Dunod, Paris 1964) pp. 3–22Google Scholar
  23. 2.22
    T.N. Morgan: Symmetry of electron states in GaP. Phys. Rev. Lett. 21, 819–823 (1968)ADSCrossRefGoogle Scholar
  24. 2.23
    R.M. Wentzcovitch, M. Cardona, M.L. Cohen, N.E. Christensen: X1 and X3 states of electrons and phonons in zincblende-type semiconductors. Solid State Commun. 67, 927–930 (1988)ADSCrossRefGoogle Scholar
  25. 2.24
    S.H. Wei, A. Zunger: Band gaps and spin-orbit splitting of ordered and disordered AlxGa1‒x As and GaAsxSb1‒x alloys. Phys. Rev. B 39, 3279–3304 (1989)ADSCrossRefGoogle Scholar

General Reading Group Theory and Applications

  1. Burns G.: Introduction to Group Theory and Applications (Academic, New York 1977)Google Scholar
  2. Evarestov R.A., V.P. Smirnov: Site Symmetry in Crystals, Springer Ser. Solid-State Sci., Vol.108 (Springer, Berlin, Heidelberg 1993)CrossRefGoogle Scholar
  3. Falicov L.M.: Group Theory and Its Physical Applications (Univ. Chicago Press, Chicago 1966)MATHGoogle Scholar
  4. Heine V.: Group Theory in Quantum Mechanics (Pergamon, New York 1960)MATHGoogle Scholar
  5. Inui T., Tanabe, Y., Onodera, Y.: Group Theory and Its Applications in Physics, Springer Ser. Solid-State Sci., Vol.78 (Springer, Berlin, Heidelberg 1990)MATHCrossRefGoogle Scholar
  6. Jones H.: Groups, Representations, and Physics (Hilger, Bristol 1990)MATHCrossRefGoogle Scholar
  7. Koster G.F.: Space groups and their representations. Solid State Physics 5, 173–256 (Academic, New York 1957)CrossRefGoogle Scholar
  8. Lax M.: Symmetry Principles in Solid State and Molecular Physics (Wiley, New York 1974)Google Scholar
  9. Ludwig W., C. Falter: Symmetries in Physics, 2nd edn., Springer Ser. Solid-State Sci., Vol.64 (Springer, Berlin, Heidelberg 1995)Google Scholar
  10. Tinkham M.: Group Theory and Quantum Mechanics (McGraw-Hill, New York 1964)MATHGoogle Scholar
  11. Vainshtein B.K.: Fundamentals of Crystals, 2nd edn., Modern Crystallography, Vol.1 (Springer, Berlin, Heidelberg 1994)Google Scholar

General Reading Electronic Band Structures

  1. Cohen M.L. Chelikowsky, J.: Electronic Structure and Optical Properties of Semiconductors, 2nd edn., Springer Ser. Solid-State Sci., Vol.75 (Springer, Berlin, Heidelberg 1989)CrossRefGoogle Scholar
  2. Greenaway D.L., Harbeke, G.: Optical Properties and Band Structure of Semiconductors (Pergamon, New York 1968)Google Scholar
  3. Harrison W.A.: Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond (Dover, New York 1989)Google Scholar
  4. Jones H.: The Theory of Brillouin Zones and Electronic States in Crystals (North-Holland, Amsterdam 1962)Google Scholar
  5. Phillips J.C.: Covalent Bonding in Crystals, Molecules, and Polymers (Univ. Chicago Press, Chicago 1969)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Peter Y. Yu
    • 1
  • Manuel Cardona
    • 2
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Max-Planck-Institut für FestkörperforschungStuttgartGermany

Personalised recommendations