Skip to main content

An Overview of Century Time-Scale Variability in the Climate System: Observations and Models

  • Conference paper
Decadal Climate Variability

Part of the book series: NATO ASI Series ((ASII,volume 44))

Abstract

Estimates of the development of the Earth’s climate subject to anthropogenic forcing depend critically on our knowledge of natural climate variability on time scales of decades to centuries. Time scales extracted from high-resolution proxy records and observations indicate that the spectrum of climate variability exhibits significant power in the range of decades to centuries superimposed on a red-noise continuum. The classical view of climate variability is based on the concept that observed fluctuations have their origin in periodic forcings on the same time scale, i.e. that the climate system behaves like a linear system that is externally forced. The present sensitivity of the climate system, however, would require strong positive feedback mechanisms to translate the weak forcing signals (e.g. variability of solar irradiation) into detectable fluctuations in observed and proxy variables. Instead, it is proposed that these fluctuations are linked to interactions within and between the different climate system components. An overview of recent modeling results and the discussion of mechanisms involved show that such interactions internal to the climate system cannot only exhibit the correct time scales but also easily account for the amplitudes observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blunier, T. (1995). Methanrnessungen aus Arktis, Antarktis and den Walliser Alpen, Interhemisphärischer Gradient and Quellenverteilung. Ph. D. thesis, Physics Institute, University of Bern, Switzerland.

    Google Scholar 

  • Blunier, T., J. Chappellaz, J. Schwander, B. Stauffer, and D. Raynaud (1995). Variations in the atmospheric methane concentration during the Holocene. Nature 374, 46–49.

    Article  Google Scholar 

  • Bond, G. et al. (1992). Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 360, 245–249.

    Article  Google Scholar 

  • Bond, G., W. Broecker, S. Johnsen, J. McManus, L. Labeyrie, J. Jouzel, and G. Bonani (1993). Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143–147.

    Article  Google Scholar 

  • Bradley, R. S. and P. D. Jones (Eds.) (1995). Climate since AD 1500. Routledge. 706 pp.

    Google Scholar 

  • Briffa, K. R. et al. (1992). Fennoscandian summers from ad 500: temperature changes on short and long timescales. ClĂ­m. Dyn. 7, 111–119.

    Google Scholar 

  • Briffa, K. R., P. D. Jones, and F. H. Schweingruber (1992). Tree-ring density reconstructions of summer temperature patterns across Western North America since 1600. J. Climate 7, 735–754.

    Article  Google Scholar 

  • Cai, W. (1994). Circulation driven by observed surface thermohaline fields in a coarse resolution ocean general circulation model. J. Geophys. Res. 99, 10163–10181.

    Article  Google Scholar 

  • Cai, W. (1995). Interdecadal variability driven by mismatch between surface flux forcing and oceanic freshwater/heat transport. J. Phys. Oceanogr. 25, 2643–2666.

    Article  Google Scholar 

  • Cai, W. and S. J. Godfrey (1995). Surface heat flux parameterizeations and the variability of the thermohaline circulation. J. Geophys. Res. 100, 10679–10692.

    Article  Google Scholar 

  • Cess, R. D. et al. (1989). Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. Science 245,513–516.

    Google Scholar 

  • Chappellaz, J., T. Blunier, D. Raynaud, J. M. Barnola, J. Schwander, and B. Stauffer (1993). Synchronous changes in atmospheric CH4 and greenland climate between 40 and 8 kyr BP. Nature 366, 443–445.

    Article  Google Scholar 

  • Dansgaard, W., S. J. Johnsen, H. B. Clausen, D. Dahl-Jensen, N. S. Gundestrup, C. U. Hammer, C. S. Hvidberg, J. P. Steffensen, A. E. Sveinbjornsdottir, J. Jouzel, and G. Bond (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218–220.

    Article  Google Scholar 

  • Dansgaard, W., J. W. C. White, and S. J. Johnsen (1989). The abrupt termination of the Younger Dryas climate event. Nature 339, 532–534.

    Article  Google Scholar 

  • Delworth, T., S. Manabe, and R. J. Stouffer (1993). Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J. Climate 6, 1993–2011.

    Article  Google Scholar 

  • Deser, C. and M. L. Blackmon (1993). Surface climate variations over the North Atlantic ocean during winter: 1900–1989. J. Climate 6, 1743–1753.

    Article  Google Scholar 

  • ERBE (1990). Earth radiation budget experiment. EOS, Trans. Am. Geophys. Union 71, 297–305.

    Article  Google Scholar 

  • Greatbatch, R. J. and S. Zhang (1995). An interdecadal oscillation in an idealized ocean basin forced by constatn heat flux. J. Climate 8, 81–91.

    Article  Google Scholar 

  • Hammer, C. U., H. B. Clausen, and C. C. Langway Jr. (1994). Electrical conductivity method (ECM) stratigraphic dating of the Byrd Station ice core, Antarctica,. Ann. Glaciology 20, 115–120.

    Article  Google Scholar 

  • Huang, R. X. and R. L. Chou (1994). Parameter sensitivity study of the saline circulation. Clim. Dyn. 9, 391–409.

    Article  Google Scholar 

  • Imbrie, J. et al. (1992). On the structure and origin of major glaciation cycles, 1. linear responses to Milankovitch forcing. Paleoceanogr. 7, 701–738.

    Article  Google Scholar 

  • Imbrie, J. et al. (1993). On the structure and origin of major glaciation cycles, 1. the 100,000 years cycle. Paleoceanogr. 8,699–735.

    Google Scholar 

  • James, I. N. and P. M. James (1992). Spatial structure of ultra-low frequency variability of the flow in a simple atmospheric circulation model. Q. J. Roy. Met. Soc. 118, 1211–1233.

    Article  Google Scholar 

  • Johnsen, S. J., H. B. Clausen, W. Dansgaard, K. Fuhrer, N. Gundestrup, C. U. Hammer, P. Iversen, J. Jouzel, B. Stauffer, and J. P. Steffensen (1992). Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, 311–313.

    Article  Google Scholar 

  • Kushnir, J. (1994). Interdecadal variations in north atlantic sea surface temperature and associated atmospheric conditions. J. Climate 7, 141–157.

    Article  Google Scholar 

  • Lazier, J. R. N. (1996). The salinity decrease in the Labraodr Sea over the past thirty years. In Climate Variability on Decade-to-Century Time Scales. National Research Council. (in press).

    Google Scholar 

  • Lean, J. and D. Rind (1994). Solar variability: Implications for global change. EOS, Trans. Am. Geophys. Union 75, 1–7.

    Article  Google Scholar 

  • Lehman, S. J. and L. D. Keigwin (1992). Sudden changes in North Atlantic circulation during the last deglaciation. Nature 356, 757–762.

    Article  Google Scholar 

  • Levitus, S. (1989a). Interpentadal variability of salinity in the upper 150 m of the North Atlantic ocean, 1970–1974 versus 1955–1959. J. Geophys. Res. 94, 9679–9685.

    Article  Google Scholar 

  • Levitus, S. (1989b). Interpentadal variability of temperature and salinity at intermediate depths of the North Atlantic ocean, 1970–1974 versus 1955–1959. J. Geophys. Res. 94, 6091–6131.

    Article  Google Scholar 

  • Levitus, S. (1989c). Interpentadal variability of temperature and salinity in the deep North Atlantic, 1970–1974 versus 1955–1959. J. Geophys. Res. 94, 16125–16131.

    Article  Google Scholar 

  • Levitus, S., J. I. Antonov, and T. P. Boyer (1994). Interannual variability of temperature at a depth of 125 meters in the North Atlantic ocean. Science 266, 96–99.

    Article  Google Scholar 

  • Lohmann, G., R. Gerdes, and D. Chen (1996). Sensitivity of the thermohaline circulation in coupled ocean GCM - atmospheric EBM experiments. Clim. Dyn. xx,yy. (in press).

    Google Scholar 

  • Lorenz, E. N. (1963). Deterministic non-periodic flow. J. Atm. Sci. 20, 130–141.

    Article  Google Scholar 

  • Lorenz, E. N. (1990). Can chaos and intransitivity lead to interannual variability ? Tellus 42A, 378–389.

    Google Scholar 

  • Manabe, S. and R. J. Stouffer (1988). Two stable equilibria of a coupled ocean-atmosphere model. J. Climate 1, 841–866.

    Article  Google Scholar 

  • Mann, E., J. Park, and R. S. Bradley (1995). Global interdecadal and century-scale oscillations during the past five centuries. Nature 378, 266–270.

    Article  Google Scholar 

  • Marotzke, J. (1989). Instabilities and multiple steady states of the thermohaline circulation. In D. L. T. Anderson and J. Willebrand (Eds.), Ocean Circulation Models: Combining Data and Dynamics, NATO ASI, pp. 501–511. Kluwer.

    Google Scholar 

  • Mikolajewicz, U. and E. Maier-Reimer (1990). Internal secular variability in an ocean general circulation model. Clirn. Dyn. 4, 145–156.

    Google Scholar 

  • Mikolajewicz, U. and E. Maier-Reimer (1994). Mixed boundary conditions in ocean general circulation models and their influence on the stability of the model’s conveyor belt. J. Geophys. Res. 99, 22633–22644.

    Article  Google Scholar 

  • Mitchell, J. M. (1976). An overview of climatic variability and its causal mechanisms. Quat. Res. 6, 481–493.

    Article  Google Scholar 

  • Mysak, L. A., T. F. Stocker, and F. Huang (1993). Century-scale variability in a randomly forced, two-dimensional thermohaline ocean circulation model. Chin. Dyn. 8, 103–116.

    Google Scholar 

  • Osborn, T. J. (1995). Internally-generated variability in some ocean models on decadal to millennial timescales. Ph. D. thesis, Climatic Research Unit, School of Environmental Sciences, University of East Anglia.

    Google Scholar 

  • Paillard, D. and L. Labeyrie (1994). Role of the thermohaline circulation in the abrupt warming after Heinrich events. Nature 372, 162–164.

    Article  Google Scholar 

  • Parilla, G., A. Lavin, H. Bryden, M. Garcia, and R. Millard (1994). Rising temperatures in the subtropical North Atlantic Oocean over the past 35 years. Nature 369, 48–51.

    Article  Google Scholar 

  • Pierce, D. W., T. P. Barnett, and U. Mikolajewicz (1995). Competing roles of heat and freshwater flux in forcing thermohaline oscillations. J. Phys. Oceanogr. 25, 2046–2064.

    Article  Google Scholar 

  • Rahmstorf, S. (1995). Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378, 145–149.

    Article  Google Scholar 

  • Rahmstorf, S. and J. Willebrand (1995). The role of temperature feedback in stabilizing the thermohaline circulation. J. Phys. Oceanogr. 25, 787–805.

    Google Scholar 

  • Roebber, P. J. (1995). Climate variability in a low-order coupled atmosphere-ocean model. Tellus 47A, 473–494.

    Article  Google Scholar 

  • Roemmich, D. and C. Wunsch (1984). Apparent changes in the climatic state of the deep North Atlantic. Nature 307, 447–450.

    Article  Google Scholar 

  • Rooth, C. (1982). Hydrology and ocean circulation. Prog. Oceanogr. 11, 131–149. Saltzman, B. (1983). Climatic systems analysis. Adv. Geophys. 25, 173–233.

    Google Scholar 

  • Schlesinger, M. E. and N. Ramankutty (1994). An oscillation in the global climate system of period 65–70 years. Nature 367, 723–726.

    Article  Google Scholar 

  • Schlosser, P., G. Bönisch, M. Rhein, and R. Bayer (1991). Reduction of deepwater formation in the Greenland Sea during the 1980s: Evidence from tracer data. Science 251, 1054–1056.

    Article  Google Scholar 

  • Stocker, T. F. (1995). An overview of decadal to century time-scale variability in the climate system. In C. M. Isaacs and V. L. Tharp (Eds.), Proc. 11th Annual Pacific Climate (PA-CUM) Workshop, Number 40 in Tech. Rep., pp. 35–46. Interagency Ecological Program for the Sacramento-San Joaquin Estuary: Calif. Dept. of Water Resources.

    Google Scholar 

  • Stocker, T. F. and L. A. Mysak (1992) Climatic fluctuations on the century time scale: a review of high-resolution proxy-data. Clim. Change 20, 227–250.

    Article  Google Scholar 

  • Stocker, T. F. and D. G. Wright (1991). Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes. Nature 351, 729–732.

    Article  Google Scholar 

  • Stocker, T. F., D. G. Wright, and L. A. Mysak (1992). A zonally averaged, coupled ocean-atmosphere model for paleoclimate studies. J. Climate 5, 773–797.

    Article  Google Scholar 

  • Stommel, H. (1961). Thermohaline convection with two stable regimes of flow. Tellus 13, 224–241.

    Article  Google Scholar 

  • Stuiver, M. (1980). Solar variability and climate change during the current millennium. Nature 286, 868–871.

    Article  Google Scholar 

  • Taylor, K. C., G. W. Lamorey, G. A. Doyle, R. B. Alley, P. M. Grootes, P. A. Mayewski, J. W. C. White, and L. K. Barlow (1993). The ‘flickering switch’ of late Pleistocene climate change. Nature 361, 432–436.

    Article  Google Scholar 

  • Trenberth, K. E. (Ed.) (1992). Climate System Modeling. Cambridge.

    Google Scholar 

  • Von Storch, J. (1994). Interdecadal variability in a global coupled model. Tellus 46A, 419–432.

    Article  Google Scholar 

  • Weaver, A. J., S. M. Aura, and P. G. Myers (1994). Interdecadal variability in an idealized model of the North Atlantic. J. Geophys. Res. 99, 12423–12441.

    Article  Google Scholar 

  • Weaver, A. J., J. Marotzke, P. F. Cummins, and E. S. Sarachik (1993). Stability and variability of the thermohaline circulation. J. Phys. Oceanogr. 23, 39–60.

    Article  Google Scholar 

  • Weaver, A. J. and E. S. Sarachik (1991a). Evidence for decadal variability in an ocean general circulation model: an advective mechanism. Atmosphere-Ocean 29, 197–231.

    Article  Google Scholar 

  • Weaver, A. J. and E. S. Sarachik (1991b). The role of mixed boundary conditions in numerical models of the ocean’s climate. J. Phys. Oceanogr. 21, 1470–1493.

    Article  Google Scholar 

  • Weisse, R., U. Mikolajewicz, and E. Maier-Reimer (1993). Decadal variability of the north atlantic in an ocean general circulation model. J. Geophys. Res. 99, 12411–12422.

    Article  Google Scholar 

  • Welander, P. (1986). Thermohaline effects in the ocean circulation and related simple models. In J. Willebrand and D.L.T.Anderson (Eds.), Large-Scale Transport Processes in Oceans and Atmosphere, pp. 163–200. D. Reidel.

    Google Scholar 

  • Winton, M. (1993). Deep decoupling oscillations of the oceanic thermohaline circulation. In W. Peltier (Ed.), Ice in the climate system, Volume I 12 of NATO ASI, pp. 417–432. Springer.

    Google Scholar 

  • Winton, M. and E. S. Sarachik (1993). Thermohaline oscillations induced by strong steady salinity forcing of ocean general circulation models. J. Phys. Oceanogr. 23, 1389–1410.

    Article  Google Scholar 

  • Wright, D. G. and T. F. Stocker (1991). A zonally averaged ocean model for the thermohaline circulation. Part I: Model development and flow dynamics. J. Phys. Oceanogr. 21 (12), 1713–1724.

    Article  Google Scholar 

  • Wright, D. G. and T. F. Stocker (1993). Younger Dryas experiments. In W. R. Peltier (Ed.), Ice in the Climate System, Volume I 12 of NATO ASI, pp. 395–416. Springer Verlag.

    Google Scholar 

  • Yang, J. and J. D. Neelin (1993). Sea-ice interaction with the thermohaline circulation. Geophys. Res. Lett. 20, 217–220.

    Article  Google Scholar 

  • Zhang, S., R. Greatbatch, and C. A. Lin (1993). A reexamination of the polar halocline catastrophe and implications for coupled ocean-atmosphere modeling. J. Phys. Oceanogr. 23, 287–299.

    Article  Google Scholar 

  • Zhang, S., C. A. Lin, and R. Greatbatch (1995). A decadal oscillation due to the coupling between an ocean circulation model and a thermodynamic sea-ice model. J. Marine Res. 53, 79–106.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stocker, T.F. (1996). An Overview of Century Time-Scale Variability in the Climate System: Observations and Models. In: Anderson, D.L.T., Willebrand, J. (eds) Decadal Climate Variability. NATO ASI Series, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03291-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03291-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08258-0

  • Online ISBN: 978-3-662-03291-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics