Advertisement

An Overview of Century Time-Scale Variability in the Climate System: Observations and Models

  • Thomas F. Stocker
Part of the NATO ASI Series book series (volume 44)

Abstract

Estimates of the development of the Earth’s climate subject to anthropogenic forcing depend critically on our knowledge of natural climate variability on time scales of decades to centuries. Time scales extracted from high-resolution proxy records and observations indicate that the spectrum of climate variability exhibits significant power in the range of decades to centuries superimposed on a red-noise continuum. The classical view of climate variability is based on the concept that observed fluctuations have their origin in periodic forcings on the same time scale, i.e. that the climate system behaves like a linear system that is externally forced. The present sensitivity of the climate system, however, would require strong positive feedback mechanisms to translate the weak forcing signals (e.g. variability of solar irradiation) into detectable fluctuations in observed and proxy variables. Instead, it is proposed that these fluctuations are linked to interactions within and between the different climate system components. An overview of recent modeling results and the discussion of mechanisms involved show that such interactions internal to the climate system cannot only exhibit the correct time scales but also easily account for the amplitudes observed.

Keywords

Climate System Mixed Boundary Condition Ocean General Circulation Model Thermohaline Circulation Freshwater Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blunier, T. (1995). Methanrnessungen aus Arktis, Antarktis and den Walliser Alpen, Interhemisphärischer Gradient and Quellenverteilung. Ph. D. thesis, Physics Institute, University of Bern, Switzerland.Google Scholar
  2. Blunier, T., J. Chappellaz, J. Schwander, B. Stauffer, and D. Raynaud (1995). Variations in the atmospheric methane concentration during the Holocene. Nature 374, 46–49.CrossRefGoogle Scholar
  3. Bond, G. et al. (1992). Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature 360, 245–249.CrossRefGoogle Scholar
  4. Bond, G., W. Broecker, S. Johnsen, J. McManus, L. Labeyrie, J. Jouzel, and G. Bonani (1993). Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143–147.CrossRefGoogle Scholar
  5. Bradley, R. S. and P. D. Jones (Eds.) (1995). Climate since AD 1500. Routledge. 706 pp.Google Scholar
  6. Briffa, K. R. et al. (1992). Fennoscandian summers from ad 500: temperature changes on short and long timescales. Clím. Dyn. 7, 111–119.Google Scholar
  7. Briffa, K. R., P. D. Jones, and F. H. Schweingruber (1992). Tree-ring density reconstructions of summer temperature patterns across Western North America since 1600. J. Climate 7, 735–754.CrossRefGoogle Scholar
  8. Cai, W. (1994). Circulation driven by observed surface thermohaline fields in a coarse resolution ocean general circulation model. J. Geophys. Res. 99, 10163–10181.CrossRefGoogle Scholar
  9. Cai, W. (1995). Interdecadal variability driven by mismatch between surface flux forcing and oceanic freshwater/heat transport. J. Phys. Oceanogr. 25, 2643–2666.CrossRefGoogle Scholar
  10. Cai, W. and S. J. Godfrey (1995). Surface heat flux parameterizeations and the variability of the thermohaline circulation. J. Geophys. Res. 100, 10679–10692.CrossRefGoogle Scholar
  11. Cess, R. D. et al. (1989). Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. Science 245,513–516.Google Scholar
  12. Chappellaz, J., T. Blunier, D. Raynaud, J. M. Barnola, J. Schwander, and B. Stauffer (1993). Synchronous changes in atmospheric CH4 and greenland climate between 40 and 8 kyr BP. Nature 366, 443–445.CrossRefGoogle Scholar
  13. Dansgaard, W., S. J. Johnsen, H. B. Clausen, D. Dahl-Jensen, N. S. Gundestrup, C. U. Hammer, C. S. Hvidberg, J. P. Steffensen, A. E. Sveinbjornsdottir, J. Jouzel, and G. Bond (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218–220.CrossRefGoogle Scholar
  14. Dansgaard, W., J. W. C. White, and S. J. Johnsen (1989). The abrupt termination of the Younger Dryas climate event. Nature 339, 532–534.CrossRefGoogle Scholar
  15. Delworth, T., S. Manabe, and R. J. Stouffer (1993). Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J. Climate 6, 1993–2011.CrossRefGoogle Scholar
  16. Deser, C. and M. L. Blackmon (1993). Surface climate variations over the North Atlantic ocean during winter: 1900–1989. J. Climate 6, 1743–1753.CrossRefGoogle Scholar
  17. ERBE (1990). Earth radiation budget experiment. EOS, Trans. Am. Geophys. Union 71, 297–305.CrossRefGoogle Scholar
  18. Greatbatch, R. J. and S. Zhang (1995). An interdecadal oscillation in an idealized ocean basin forced by constatn heat flux. J. Climate 8, 81–91.CrossRefGoogle Scholar
  19. Hammer, C. U., H. B. Clausen, and C. C. Langway Jr. (1994). Electrical conductivity method (ECM) stratigraphic dating of the Byrd Station ice core, Antarctica,. Ann. Glaciology 20, 115–120.CrossRefGoogle Scholar
  20. Huang, R. X. and R. L. Chou (1994). Parameter sensitivity study of the saline circulation. Clim. Dyn. 9, 391–409.CrossRefGoogle Scholar
  21. Imbrie, J. et al. (1992). On the structure and origin of major glaciation cycles, 1. linear responses to Milankovitch forcing. Paleoceanogr. 7, 701–738.CrossRefGoogle Scholar
  22. Imbrie, J. et al. (1993). On the structure and origin of major glaciation cycles, 1. the 100,000 years cycle. Paleoceanogr. 8,699–735.Google Scholar
  23. James, I. N. and P. M. James (1992). Spatial structure of ultra-low frequency variability of the flow in a simple atmospheric circulation model. Q. J. Roy. Met. Soc. 118, 1211–1233.CrossRefGoogle Scholar
  24. Johnsen, S. J., H. B. Clausen, W. Dansgaard, K. Fuhrer, N. Gundestrup, C. U. Hammer, P. Iversen, J. Jouzel, B. Stauffer, and J. P. Steffensen (1992). Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, 311–313.CrossRefGoogle Scholar
  25. Kushnir, J. (1994). Interdecadal variations in north atlantic sea surface temperature and associated atmospheric conditions. J. Climate 7, 141–157.CrossRefGoogle Scholar
  26. Lazier, J. R. N. (1996). The salinity decrease in the Labraodr Sea over the past thirty years. In Climate Variability on Decade-to-Century Time Scales. National Research Council. (in press).Google Scholar
  27. Lean, J. and D. Rind (1994). Solar variability: Implications for global change. EOS, Trans. Am. Geophys. Union 75, 1–7.CrossRefGoogle Scholar
  28. Lehman, S. J. and L. D. Keigwin (1992). Sudden changes in North Atlantic circulation during the last deglaciation. Nature 356, 757–762.CrossRefGoogle Scholar
  29. Levitus, S. (1989a). Interpentadal variability of salinity in the upper 150 m of the North Atlantic ocean, 1970–1974 versus 1955–1959. J. Geophys. Res. 94, 9679–9685.CrossRefGoogle Scholar
  30. Levitus, S. (1989b). Interpentadal variability of temperature and salinity at intermediate depths of the North Atlantic ocean, 1970–1974 versus 1955–1959. J. Geophys. Res. 94, 6091–6131.CrossRefGoogle Scholar
  31. Levitus, S. (1989c). Interpentadal variability of temperature and salinity in the deep North Atlantic, 1970–1974 versus 1955–1959. J. Geophys. Res. 94, 16125–16131.CrossRefGoogle Scholar
  32. Levitus, S., J. I. Antonov, and T. P. Boyer (1994). Interannual variability of temperature at a depth of 125 meters in the North Atlantic ocean. Science 266, 96–99.CrossRefGoogle Scholar
  33. Lohmann, G., R. Gerdes, and D. Chen (1996). Sensitivity of the thermohaline circulation in coupled ocean GCM - atmospheric EBM experiments. Clim. Dyn. xx,yy. (in press).Google Scholar
  34. Lorenz, E. N. (1963). Deterministic non-periodic flow. J. Atm. Sci. 20, 130–141.CrossRefGoogle Scholar
  35. Lorenz, E. N. (1990). Can chaos and intransitivity lead to interannual variability ? Tellus 42A, 378–389.Google Scholar
  36. Manabe, S. and R. J. Stouffer (1988). Two stable equilibria of a coupled ocean-atmosphere model. J. Climate 1, 841–866.CrossRefGoogle Scholar
  37. Mann, E., J. Park, and R. S. Bradley (1995). Global interdecadal and century-scale oscillations during the past five centuries. Nature 378, 266–270.CrossRefGoogle Scholar
  38. Marotzke, J. (1989). Instabilities and multiple steady states of the thermohaline circulation. In D. L. T. Anderson and J. Willebrand (Eds.), Ocean Circulation Models: Combining Data and Dynamics, NATO ASI, pp. 501–511. Kluwer.Google Scholar
  39. Mikolajewicz, U. and E. Maier-Reimer (1990). Internal secular variability in an ocean general circulation model. Clirn. Dyn. 4, 145–156.Google Scholar
  40. Mikolajewicz, U. and E. Maier-Reimer (1994). Mixed boundary conditions in ocean general circulation models and their influence on the stability of the model’s conveyor belt. J. Geophys. Res. 99, 22633–22644.CrossRefGoogle Scholar
  41. Mitchell, J. M. (1976). An overview of climatic variability and its causal mechanisms. Quat. Res. 6, 481–493.CrossRefGoogle Scholar
  42. Mysak, L. A., T. F. Stocker, and F. Huang (1993). Century-scale variability in a randomly forced, two-dimensional thermohaline ocean circulation model. Chin. Dyn. 8, 103–116.Google Scholar
  43. Osborn, T. J. (1995). Internally-generated variability in some ocean models on decadal to millennial timescales. Ph. D. thesis, Climatic Research Unit, School of Environmental Sciences, University of East Anglia.Google Scholar
  44. Paillard, D. and L. Labeyrie (1994). Role of the thermohaline circulation in the abrupt warming after Heinrich events. Nature 372, 162–164.CrossRefGoogle Scholar
  45. Parilla, G., A. Lavin, H. Bryden, M. Garcia, and R. Millard (1994). Rising temperatures in the subtropical North Atlantic Oocean over the past 35 years. Nature 369, 48–51.CrossRefGoogle Scholar
  46. Pierce, D. W., T. P. Barnett, and U. Mikolajewicz (1995). Competing roles of heat and freshwater flux in forcing thermohaline oscillations. J. Phys. Oceanogr. 25, 2046–2064.CrossRefGoogle Scholar
  47. Rahmstorf, S. (1995). Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378, 145–149.CrossRefGoogle Scholar
  48. Rahmstorf, S. and J. Willebrand (1995). The role of temperature feedback in stabilizing the thermohaline circulation. J. Phys. Oceanogr. 25, 787–805.Google Scholar
  49. Roebber, P. J. (1995). Climate variability in a low-order coupled atmosphere-ocean model. Tellus 47A, 473–494.CrossRefGoogle Scholar
  50. Roemmich, D. and C. Wunsch (1984). Apparent changes in the climatic state of the deep North Atlantic. Nature 307, 447–450.CrossRefGoogle Scholar
  51. Rooth, C. (1982). Hydrology and ocean circulation. Prog. Oceanogr. 11, 131–149. Saltzman, B. (1983). Climatic systems analysis. Adv. Geophys. 25, 173–233.Google Scholar
  52. Schlesinger, M. E. and N. Ramankutty (1994). An oscillation in the global climate system of period 65–70 years. Nature 367, 723–726.CrossRefGoogle Scholar
  53. Schlosser, P., G. Bönisch, M. Rhein, and R. Bayer (1991). Reduction of deepwater formation in the Greenland Sea during the 1980s: Evidence from tracer data. Science 251, 1054–1056.CrossRefGoogle Scholar
  54. Stocker, T. F. (1995). An overview of decadal to century time-scale variability in the climate system. In C. M. Isaacs and V. L. Tharp (Eds.), Proc. 11th Annual Pacific Climate (PA-CUM) Workshop, Number 40 in Tech. Rep., pp. 35–46. Interagency Ecological Program for the Sacramento-San Joaquin Estuary: Calif. Dept. of Water Resources.Google Scholar
  55. Stocker, T. F. and L. A. Mysak (1992) Climatic fluctuations on the century time scale: a review of high-resolution proxy-data. Clim. Change 20, 227–250.CrossRefGoogle Scholar
  56. Stocker, T. F. and D. G. Wright (1991). Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes. Nature 351, 729–732.CrossRefGoogle Scholar
  57. Stocker, T. F., D. G. Wright, and L. A. Mysak (1992). A zonally averaged, coupled ocean-atmosphere model for paleoclimate studies. J. Climate 5, 773–797.CrossRefGoogle Scholar
  58. Stommel, H. (1961). Thermohaline convection with two stable regimes of flow. Tellus 13, 224–241.CrossRefGoogle Scholar
  59. Stuiver, M. (1980). Solar variability and climate change during the current millennium. Nature 286, 868–871.CrossRefGoogle Scholar
  60. Taylor, K. C., G. W. Lamorey, G. A. Doyle, R. B. Alley, P. M. Grootes, P. A. Mayewski, J. W. C. White, and L. K. Barlow (1993). The ‘flickering switch’ of late Pleistocene climate change. Nature 361, 432–436.CrossRefGoogle Scholar
  61. Trenberth, K. E. (Ed.) (1992). Climate System Modeling. Cambridge.Google Scholar
  62. Von Storch, J. (1994). Interdecadal variability in a global coupled model. Tellus 46A, 419–432.CrossRefGoogle Scholar
  63. Weaver, A. J., S. M. Aura, and P. G. Myers (1994). Interdecadal variability in an idealized model of the North Atlantic. J. Geophys. Res. 99, 12423–12441.CrossRefGoogle Scholar
  64. Weaver, A. J., J. Marotzke, P. F. Cummins, and E. S. Sarachik (1993). Stability and variability of the thermohaline circulation. J. Phys. Oceanogr. 23, 39–60.CrossRefGoogle Scholar
  65. Weaver, A. J. and E. S. Sarachik (1991a). Evidence for decadal variability in an ocean general circulation model: an advective mechanism. Atmosphere-Ocean 29, 197–231.CrossRefGoogle Scholar
  66. Weaver, A. J. and E. S. Sarachik (1991b). The role of mixed boundary conditions in numerical models of the ocean’s climate. J. Phys. Oceanogr. 21, 1470–1493.CrossRefGoogle Scholar
  67. Weisse, R., U. Mikolajewicz, and E. Maier-Reimer (1993). Decadal variability of the north atlantic in an ocean general circulation model. J. Geophys. Res. 99, 12411–12422.CrossRefGoogle Scholar
  68. Welander, P. (1986). Thermohaline effects in the ocean circulation and related simple models. In J. Willebrand and D.L.T.Anderson (Eds.), Large-Scale Transport Processes in Oceans and Atmosphere, pp. 163–200. D. Reidel.Google Scholar
  69. Winton, M. (1993). Deep decoupling oscillations of the oceanic thermohaline circulation. In W. Peltier (Ed.), Ice in the climate system, Volume I 12 of NATO ASI, pp. 417–432. Springer.Google Scholar
  70. Winton, M. and E. S. Sarachik (1993). Thermohaline oscillations induced by strong steady salinity forcing of ocean general circulation models. J. Phys. Oceanogr. 23, 1389–1410.CrossRefGoogle Scholar
  71. Wright, D. G. and T. F. Stocker (1991). A zonally averaged ocean model for the thermohaline circulation. Part I: Model development and flow dynamics. J. Phys. Oceanogr. 21 (12), 1713–1724.CrossRefGoogle Scholar
  72. Wright, D. G. and T. F. Stocker (1993). Younger Dryas experiments. In W. R. Peltier (Ed.), Ice in the Climate System, Volume I 12 of NATO ASI, pp. 395–416. Springer Verlag.Google Scholar
  73. Yang, J. and J. D. Neelin (1993). Sea-ice interaction with the thermohaline circulation. Geophys. Res. Lett. 20, 217–220.CrossRefGoogle Scholar
  74. Zhang, S., R. Greatbatch, and C. A. Lin (1993). A reexamination of the polar halocline catastrophe and implications for coupled ocean-atmosphere modeling. J. Phys. Oceanogr. 23, 287–299.CrossRefGoogle Scholar
  75. Zhang, S., C. A. Lin, and R. Greatbatch (1995). A decadal oscillation due to the coupling between an ocean circulation model and a thermodynamic sea-ice model. J. Marine Res. 53, 79–106.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Thomas F. Stocker
    • 1
  1. 1.Climate and Environmental PhysicsBernSwitzerland

Personalised recommendations