Steady States and Variability in Oceanic Zonal Flows

  • Dirk Olbers
  • Christoph Völker
Part of the NATO ASI Series book series (volume 44)


The Antarctic Circumpolar Current (ACC) is the only oceanic flow system of large scale bearing similarity to the atmospheric zonal circulation. There is not only the obvious geometrical similarity — the zonal unboundedness of a current reaching all around the earth —, there are also deeper dynamical correspondences. Though the forcing is different, the dynamical balance of the zonal atmospheric flow and the ACC resides substantially on the excitation of and interaction with synoptic-scale eddies and the intricate correlation of the large-scale pressure field with respect to the underlying topography in shaping what is known as mountain drag in the atmospheric system and bottom form drag (or stress) in the oceanic case.


Rossby Wave Momentum Balance Relative Vorticity Antarctic Circumpolar Current Form Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bendat, J.S., and A.G. Piersol (1986): Random Data. Analysis and measurement procedures, 2nd ed. John Wiley and sons, New YorkGoogle Scholar
  2. Benzi, R., Saltzman, B., and A. Wijn-Nielsen (1986): Anomalous atmospheric flows and blocking. Advances in Geophysics Bd. 29, Academic Press, OrlandoGoogle Scholar
  3. Charney, J.G., and A. Eliassen (1949): A numerical method for predicting the perturbations of the middle latitude westerlies. Tellus 1: 38–54CrossRefGoogle Scholar
  4. Charney, J.G., and J.G. DeVore (1979): Multiple flow equilibra in the atmosphere and blocking. Journal of the Atmospheric Sciences 36: 1205–1216CrossRefGoogle Scholar
  5. Charney, J.G., and D.M. Straus (1980): Form drag instability, multiple equilibra, and propagating planetary waves in baroclinic, orographically forced, planetary wave systems. Journal of the Atmospheric Sciences 37: 1157–1176CrossRefGoogle Scholar
  6. Charney, J.G., Shukla, J., and K.C. Mo (1981): Comparison of a barotropic blocking theory with observation. Journal of the Atmospheric Sciences 38: 762–779CrossRefGoogle Scholar
  7. De Swart, H.E., and J. Grassman (1987): Effect of stochastic perturbations on a low-order spectral model of the atmospheric circulation. Tellus 39A: 10–24Google Scholar
  8. Egger, J. (1978): Dynamics of blocking highs. Journal of the Atmospheric Sciences 35: 1788–1801CrossRefGoogle Scholar
  9. Egger, J. (1981): Stochastically driven large-scale circulations with multiple equilibra. Journal of the Atmospheric Sciences 38: 2606–2618CrossRefGoogle Scholar
  10. The FRAM-Group (1991): An eddy-resolving model of the southern ocean. EOS, Transactions of the American Geophysical Union 72: 169–175CrossRefGoogle Scholar
  11. Guckenheimer, J., and P. Holmes (1993): Nonlinear oscillations, dynamical systems and bifurcations of vector fields, 4th ed. Springer Verlag, New YorkGoogle Scholar
  12. Hasselmann, K. (1979): Linear statistical models. Dyn. Atmos. Oceans 3: 501–521Google Scholar
  13. Hoskins, B.J. (1983): Modelling of the transient eddies and their feedback on the mean flow. In: Large-scale dynamical processes in the atmosphere, Ed. Hoskins, B.J., and R.P. Pearce: Academic Press, New YorkGoogle Scholar
  14. Jenkins, G.M. and D.G. Watts (1968): Spectral analysis and its applications. Holden-Day, San Francisco, DüsseldorfGoogle Scholar
  15. Krupitsky, A., and M.A. Cane (1994): On topographic pressure drag in a zonal channel. Journal of Marine Research 52: 1–23CrossRefGoogle Scholar
  16. Marshall, J., Olbers, D., Ross, H., and D. Wolf-Gladrow (1993): Potential vorticity constraints on the dynamics and hydrography of the southern ocean. Journal of Physical Oceanography 23: 465–487CrossRefGoogle Scholar
  17. McWilliams, J.C., Holland, W.R., and J.H. Chow (1978): A description of numerical Antarctic Circumpolar Currents. Dynamics of Atmospheres and Oceans 2: 213–291CrossRefGoogle Scholar
  18. Munk, W.H., and E. Palmén (1951): Note on the dynamics of the Antarctic Circumpolar Current. Tellus 3: 53–55CrossRefGoogle Scholar
  19. Neelin, J.D., Latif, M., and F.-F. Yin (1994): Dynamics of coupled ocean—atmosphere models: the tropical problem. Ann. Rev. Fluid Mechanics 26: 617–659CrossRefGoogle Scholar
  20. Olbers, D., Wübber, C., and J.O. Wolff (1992): The dynamical balance of wind and buoyancy driven circumpolar currents. Berichte aus dem Fachbereich Physik 32. Alfred-Wegener-Institut für Polar-und MeeresforschungGoogle Scholar
  21. Olbers, D. (1994): Links of the Southern Ocean to the global climate. In: Modelling Oceanic Climate Interactions, Ed. Willebrand J., Anderson D.L.T.: Springer-Verlag, BerlinGoogle Scholar
  22. Rahmstorf, Stefan (1995): Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature, 378: 145–149CrossRefGoogle Scholar
  23. Treguier, A.M., and J.C. McWilliams (1990): Topographic influences on wind-driven, stratified flow in a ß-plane channel: an idealized-model for the Antarctic Circumpolar Current. Journal of Physical Oceanography 20: 321–343CrossRefGoogle Scholar
  24. Tung, K.K., and A.J. Rosenthal (1985): Theories of multiple equilibria-a critical reexamination. Part i: barotropic models. Journal of the Atmospheric Sciences 42: 2804–2819CrossRefGoogle Scholar
  25. Völker, C. (1991): Ein niederdimensionales Modell einer turbulenten Kanalströmung. Diplomarbeit, Universität Bremen.Google Scholar
  26. Völker, C. (1995): Barokline Strömung fiber periodischer Topographie: Untersuchungen an analytischen und numerischen Modellen. PhD Thesis, Universität BremenGoogle Scholar
  27. Whitworth III, T., and R.G. Peterson (1985): The volume transport of the Antarctic Circumpolar Current from three-year bottom pressure measurements. Journal of Physical Oceanography 15: 810–816Google Scholar
  28. Wijn-Nielsen, A. (1979): Steady states and stability properties of a low-order barotropic system with forcing and dissipation. Tellus 31: 375–386CrossRefGoogle Scholar
  29. Wolff, J.O., Maier-Reimer, E., and D.J. Olbers (1991): Wind-driven flow over topography in a zonal ß-plane channel: a quasi-geostrophic model of the Antarctic Circumpolar Current. Journal of Physical Oceanography 21: 236–264CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Dirk Olbers
    • 1
  • Christoph Völker
    • 1
  1. 1.Alfred-Wegener-Institute for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations