Observational Requirements for Modeling of Global and Regional Climate Change

  • Anthony D. Del Genio
Part of the Nato ASI Series book series (volume 45)


Predicting the rate and geographic distribution of future climate changes caused by anthropogenic perturbations such as increasing greenhouse gas and aerosol concentrations is perhaps the most important single problem in the earth sciences today. General circulation models (GCMs) are the tools of choice for making such projections. Simulating climate change with GCMs has become a worldwide activity; 12 modeling groups thus far have performed equilibrium doubled CO2 calculations with atmosphere-only GCMs, and 8 are simulating transient greenhouse gas increase scenarios with coupled ocean-atmosphere models for the 1995 IPCC scientific assessment.


Optical Thickness Atmospheric Model Intercomparison Project Liquid Water Path Water Vapor Feedback Cloud Base Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barkstrom BR (1984) The Earth Radiation Budget Experiment (ERBE). Bull Amer Meteor Soc 67: 1170–1185CrossRefGoogle Scholar
  2. Betts AK, Harshvardhan (1987) Thermodynamic constraint on the cloud liquid water feedback in climate models. J Geophys Res 92: 8483–8485CrossRefGoogle Scholar
  3. Broecker WS (1991) The great ocean conveyor. Oceanography 4: 79–89CrossRefGoogle Scholar
  4. Cess RD, Potter GL, Blanchet JP, Boer GJ, Del Genio AD, Deque M, Dymnikov V, Galin V, Gates WL, Ghan SJ, Kiehl JT, Lacis AA, Le Tfreut H, Li Z-X, Liang X-Z, McAvaney BJ, Meleshko VP, Mitchell JFB, Morcrette J-J, Randall DA, Rikus L, Roeckner EE, Royer JF, Schlese U, Sheinin DA, Slingo A, Sokolov AP, Taylor KE, Washington WM, Wetherald RT, Yagai I, Zhang M-H (1990) Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J Geophys Res 95: 16601–16615CrossRefGoogle Scholar
  5. Cess RD, Zhang MH, Minnis P, Corsetti L, Dutton EG, Forgan BW, Garber DP, Gates WL, Hack JJ, Harrison EF, Jing X, Kiehl JT, Long CN, Morcrette J-J, Potter GL, Ramanathan V, Subasilar B, Whitlock CH, Young DF, Zhou Y (1995) Absorption of solar radiation by clouds: Observations versus models. Science 267: 496–499CrossRefGoogle Scholar
  6. Cess RD, Zhang MH, Potter GL, Alekseev V, Barker HW, Cohen-Solal E, Colman RA, Dazlich DA, Del Genio AD, Dix MR, Dymnikov V, Esch M, Fowler LD, Fraser JR, Galin V, Gates WL, Hack JJ, Ingram WJ, Kiehl JT, Le Treut H, Lo KK-W, McAvaney BJ, Meleshko VP, Morcrette J-J, Randall DA, Roeckner E, Royer J-F, Schlesinger ME, Sporyshev PV, Timbal B, Volodin EM, Taylor KE, Wang W, Wetherald RT (1996) Cloud feedback in atmospheric general circulation models: An update. J Geophys Res, submittedGoogle Scholar
  7. Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326: 655–661CrossRefGoogle Scholar
  8. Charlson RJ, Langner J, Rodhe H, Leovy CB, Warren SG (1991) Perturbation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus 43AB: 152–163Google Scholar
  9. Charlson RJ, Schwartz SE, Hales JM, Cess RD, Coakley JA, Hansen JE, Hofmann DJ (1992) Climate forcing by anthropogenic aerosols. Science 255: 423–430CrossRefGoogle Scholar
  10. Curry JA, Ebert EE (1992) Annual cycle of radiation fluxes over the Arctic Ocean: Sensitivity to cloud optical properties. J Climate 5: 1267–1280CrossRefGoogle Scholar
  11. Dai A (1995) Global precipitation variability and its relationship with other climate changes. Ph.D. dissertation, Columbia University, New YorkGoogle Scholar
  12. Del Genio AD (1993a) Convective and large-scale cloud processes in global climate models. Energy and Water Cycles in the Climate System (E Raschke and D Jacob, eds), SpringerVerlag, Berlin Heidelberg New York: 95–121CrossRefGoogle Scholar
  13. Del Genio AD (1993b) Accuracy requirements. Proceedings, Workshop on Long-Term Monitoring of Global Climate Forcings and Feedbacks (J Hansen, W Rossow and I Fung, eds), NASA CP-3234: 13–19Google Scholar
  14. Del Genio AD (1996a) GCM implications for mechanisms determining cloud and water vapor feedbacks. In Climate Sensitivity to Radiative Perturbations: Physical Mechanisms and Validation (H Le Treut, ed), Springer-Verlag, Berlin Heidelberg New York, p. 107–125CrossRefGoogle Scholar
  15. Del Genio AD (1996b) TRMM: The Tropical Rainfall Measuring Mission: This volume, chapter 20Google Scholar
  16. Del Genio AD, Kovari W, Yao M-S (1994) Climatic implications of the seasonal variation of upper troposphere water vapor. Geophys Res Letters 21: 2701–2704CrossRefGoogle Scholar
  17. Del Genio AD, Yao M-S, Kovari W, Lo KK-W (1996) A prognostic cloud water parameterization for global climate models. J Climate 9: 270–304CrossRefGoogle Scholar
  18. Elliott WP, Gaffen DJ (1991) On the utility of radiosonde humidity archives for climate studies. Bull Amer Meteor Soc 72: 1507–1520CrossRefGoogle Scholar
  19. Feigelson EM (1978) Preliminary radiation model of a cloudy atmosphere. Part I — Structure of clouds and solar radiation. Beitr Phys Atmos 51: 203–229Google Scholar
  20. Gleckler PJ, Randall DA, Boer G, Colman R, Dix M, Galin V, Helfand M, Kiehl J, Kitoh A, Lau W, Liang X-Y, Lykossov V, McAvaney B, Miyakoda K, Planton S, Stern W (1995) Cloud- radiative effects on implied oceanic energy transports as simulated by atmospheric general circulation models. Geophys Res Letters 22: 791–794CrossRefGoogle Scholar
  21. Han Q, Rossow WB, Lacis AA (1994) Near-global survey of effective cloud droplet radii in liquid water clouds using ISCCP data. J Climate 7: 465–497CrossRefGoogle Scholar
  22. Hansen J, Fung I, Lacis A, Rind D, Lebedeff S, Ruedy R, Russell G, Stone P (1988) Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model. J Geophys Res 93: 9341–9364CrossRefGoogle Scholar
  23. Hansen J, Sato M, Ruedy R (1995a) Long-term changes of the diurnal temperature cycle: Implications about mechanisms of global climate change. Atmos Res, submittedGoogle Scholar
  24. Hansen J, Rossow W, Carlson B, Lacis A, Travis L, Del Genio A, Fung I, Cairns B, Mishchenko M, Sato M (1995b) Low-cost long-term monitoring of global climate forcings and feedbacks. Clim Change, in pressGoogle Scholar
  25. Henderson-Sellers A (1992) Continental cloudiness changes this century. Geo Journal 27: 255–262Google Scholar
  26. Horel JD, Wallace JM (1981) Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon Wea Rev 109: 813–829CrossRefGoogle Scholar
  27. IPCC (Intergovernmental Panel on Climate Change), Varney SK (1992) Climate change 1992. In The Supplementary Report to the IPCC Scientific Assessment (Houghton JT, Callander BA, eds.), Cambridge University Press, 200 ppGoogle Scholar
  28. Jones A, Roberts LD, Slingo A (1994) A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols. Nature 370: 450–453CrossRefGoogle Scholar
  29. Karl TR, Jones PD, Knight RW, Kukla G, Plummer N, Razuvayev V, Gallo KP, Lindseay J, Charlson RJ, Peterson TC (1993) A new perspective on recent global warming. Bull Amer Meteor Soc 74: 1007–1023CrossRefGoogle Scholar
  30. Klein SA, Hartmann DL (1993) The seasonal cycle of low stratiform clouds. J Climate 6: 1587–1606CrossRefGoogle Scholar
  31. Kuo H, Schubert WH (1988) Stability of cloud-topped boundary layers. Quart J Roy Meteor Soc 114: 887–916CrossRefGoogle Scholar
  32. Li Z-X, LeTreut H (1992) Cloud-radiation feedbacks in a general circulation model and their dependence on cloud modeling assumptions. Clim Dyn 7: 133–139CrossRefGoogle Scholar
  33. Liao X, Rind D, Rossow WB (1995) Comparison between SAGE II and ISCCP high-level clouds. Part II: Locating cloud tops. J Geophys Res 100: 1137–1147CrossRefGoogle Scholar
  34. Lin B, Rossow WB (1994) Observations of cloud liquid water path over oceans: Optical and microwave remote sensing methods. J Geophys Res 99: 20909–20927Google Scholar
  35. Liu WT (1988) Moisture and latent heat flux variabilities in the tropical Pacific derived from satellite data. J Geophys Res 93: 6749–6760CrossRefGoogle Scholar
  36. Macke A (1993) Scattering of light by polyhedral ice crystals. Appl Optics 32: 2780–2788CrossRefGoogle Scholar
  37. Marotzke J, Willebrand J (1991) Multiple equilibria of the global thermohaline circulation. J Phys Ocean 21: 1372–1385CrossRefGoogle Scholar
  38. Miller RL, Del Genio AD (1994) Tropical cloud feedbacks and decadal variability of climate. J Climate 7: 1388–1402CrossRefGoogle Scholar
  39. Minnis P, Liou K-N, Takano Y (1993) Inference of cirrus cloud properties using satelliteobserved visible and infrared radiances. Part I: Parameterization of radiance fields. J Atmos Sci 50: 1279–1304CrossRefGoogle Scholar
  40. Mitchell JFB, Senior CA, Ingram WJ (1989) CO2 and climate: A missing feedback? Nature 341: 132–134CrossRefGoogle Scholar
  41. Oort AH (1983) Global atmospheric circulation statistics, 1958–1973. NOAA Prof. Paper 14, U.S. Dept. of Commerce, Washington, DC: 180 ppGoogle Scholar
  42. Pan YH, Oort AH (1983) Global climate variations connected with sea surface temperature anomalies in the eastern equatorial Pacific Ocean for the 1958–1973 period. Mon Wea Rev 111: 1244–1258CrossRefGoogle Scholar
  43. Penner JE, Dickinson RE, O’Neill CA (1992) Effects of aerosol from biomass burning on the global radiation budget. Science 256: 1432–1434CrossRefGoogle Scholar
  44. Platnick S, Twomey S (1994) Determining the susceptibility of cloud albedo to changes in droplet concentration with the Advanced Very High Resolution Radiometer. J Appl Meteor 33: 334–347CrossRefGoogle Scholar
  45. Ramanathan V, Collins W (1991) Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature 351: 27–32CrossRefGoogle Scholar
  46. Randall DA (1980) Conditional instability of the first kind upside-down. J Atmos Sci 37: 125–130CrossRefGoogle Scholar
  47. Randall DA, Cess RD, Blanchet JP, Boer GJ, Dazlich DA, Del Genio AD, Deque M, Dymnikov V, Galin V, Ghan SJ, Lacis AA, Le Treut H, Li Z-X, Liang X-Z, McAvaney BJ, Meleshko VP, Mitchell JFB, Morcrette J-J, Potter GL, Rikus L, Roeckner E, Royer JF, Schlese U, Sheinen DA, Slingo J, Sokolov AP, Taylor KE, Washington WM, Wetherald RT, Yagai I, Zhang M-H (1992) Intercomparison and interpretation of surface energy fluxes in atmospheric general circulation models. J Geophys Res 97: 3711–3724CrossRefGoogle Scholar
  48. Raschke E (1996) Energy and water cycles in the climate system. This volume, chapter 1Google Scholar
  49. Rind D, Chiou E-W, Chu W, Larsen J, Oltmans S, Lerner J, McCormick P, McMaster L (1991) Positive water vapor feedback in climate models confirmed by satellite data. Nature 349: 500–503CrossRefGoogle Scholar
  50. Rossow WB (1996) Atmospheric water vapor. This volume, chapter 8Google Scholar
  51. Rossow WB, Schiffer RA (1991) ISCCP cloud data products. Bull Amer Meteor Soc 72: 2–20CrossRefGoogle Scholar
  52. Soden BJ, Bretherton FP (1993) Upper tropospheric relative humidity from the GOES 6.7 μm channel: Method and climatology for July 1987. J Geophys Res 98: 16669–16688CrossRefGoogle Scholar
  53. Somerville RCJ, Remer LA (1984) Cloud optical thickness feedbacks in the CO2 climate problem. J Geophys Res 89: 9668–9673CrossRefGoogle Scholar
  54. Tselioudis G, Rossow WB, Rind D (1992) Global patterns of cloud optical thickness variation with temperature. J Climate 5: 1484–1495CrossRefGoogle Scholar
  55. Twomey S (1977) Atmospheric Aerosols. Elsevier Amsterdam Oxford New York: 302 ppGoogle Scholar
  56. Walcek CJ (1994) Cloud cover and its relationship to relative humidity during a springtime midlatitude cyclone. Mon Wea Rev 122: 1021–1035CrossRefGoogle Scholar
  57. Wang Q, Albrecht BA (1994) Observations of cloud-top entrainment in marine stratocumulus clouds. J Atmos Sci 51: 1530–1547CrossRefGoogle Scholar
  58. Wang J, Rossow WB (1995) Determination of cloud vertical structure from upper-air observations. J Appl Meteor 34: 2243–2258CrossRefGoogle Scholar
  59. Warren SG, Hahn CJ, London J, Chervin RM, Jenne RL (1986) Global distribution of total cloud cover and cloud type amounts over land. NCAR/TN-273+STR/DOE Tech. Report ER/60085-H1: 29 pp and 200 mapsGoogle Scholar
  60. Warren SG, Hahn CJ, London J, Chervin RM, Jenne RL (1988) Global distribution of total cloud cover and cloud type amounts over ocean. NCAR/TN-317-+-STR/DOE Tech. Report ER-0406: 42 pp + 170 mapsCrossRefGoogle Scholar
  61. Wielicki BA, Parker L (1992) On the determination of cloud cover from satellite sensors: The effect of sensor spatial resolution. J Geophys Res 97: 12799–12823CrossRefGoogle Scholar
  62. Ye B, Del Genio AD, Lo KK-W (1996) CAPE variations in the current climate and in a climate change. J Climate , submittedGoogle Scholar
  63. Zaucker F, Stocker TF, Broecker WS (1994) Atmospheric freshwater fluxes and their effect on the global thermohaline circulation. J Geophys Res 99: 12443–12457CrossRefGoogle Scholar
  64. Zhang Y-C, Rossow WB, Lacis AA (1994) Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets. 1. Method and sensitivity to input data uncertainties. J Geophys Res 100: 1149–1165CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Anthony D. Del Genio
    • 1
  1. 1.NASA Goddard Institute for Space StudiesNew YorkUSA

Personalised recommendations