Remote Sensing Parameterization of Meso-scale Land Surface Evaporation

  • W. G. M. Bastiaanssen
  • M. Menenti
  • A. J. Dolman
  • R. A. Feddes
  • H. Pelgrum
Part of the Nato ASI Series book series (volume 45)

Abstract

Land surface fluxes vary spatially as a result of the spatial heterogeneity of soil physical properties, fractional soil cover, land use, rainfall and hydrological processes. The scale at which this variability of surface fluxes occurs may be as low as a fraction of a meter, and time variations over a period of hours may be significant. The spatial average land surface flux at regional scale is because of length scale and sampling size difficult to quantify from field measurements. Although considerable progress has been made in this area over the last decade (e.g. Michand and Shuttleworth, 1996), there is no general consensus at this moment how to extrapolate surface fluxes from patch scale to meso-scale.

Keywords

Microwave Depression Europe Radar Assimilation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asrar G, Myneni RB, Choudhury BJ (1992) Spatial heterogeneity in vegetation canopies and remote sensing of absorbed photosynthetically active radiation: a modeling study. Rem Sens Env 41: 85–103CrossRefGoogle Scholar
  2. Bastiaanssen WGM, Hoekman DH, Roebeling RA (1994) A methodology for the assessment of surface resistance and soil water storage variability at mesoscale based on remote sensing measurements. IAHS Special Publication no. 2, IAHS Press Wallingford, UK: pp. 66Google Scholar
  3. Bastiaanssen WGM (1995) Regionalization of surface fluxes and moisture indicators at comnposite terrain, Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands, appeared also as Staring Centre Report 109: pp. 273Google Scholar
  4. Bastiaanssen WGM, Pelgrum H, Menenti M, and Feddes RA (1996) Estimation od surface resistance and Priestly-Taylor a-parameter at different scales, in (Eds.) JB Stewart, ET Engman, RA Feddes and Y Kerr, Scaling up in hydrology using remote sensing, Institute of Hydrology, Wallingford, UK: 93–111Google Scholar
  5. Becker F, Li ZL (1990) Towards a local split window method over land surfaces. Int J of Rem Sens, vol. II, no. 3: 369–393CrossRefGoogle Scholar
  6. Beljaars ACM, Holtslag AAM (1991) Flux parameterization over land surfaces for atmospheric models. J of Applied Met, vol. 30, no. 3: 327–341CrossRefGoogle Scholar
  7. Bolle HJ, Andre JC, Arrue JL et al. (1993) EFEDA: the European Field Experiment in a Desertification threatened Area. Ann Geophys II:173–189Google Scholar
  8. Blyth EM, Dolman AJ, Wood N (1993) Effective resistance to sensible and latent heat flux in heterogeneous terrain. Q J R Met Soc 119: 423–442CrossRefGoogle Scholar
  9. Blyth EM, Dolman AJ (1995) The roughness length for heat of sparse vegetation. J Applied Met (Feb. 95): 583–585CrossRefGoogle Scholar
  10. Bruin de HAR, Bink NJ, Kroon LJM (1991) Fluxes in the surface layer under advective conditions, in (Eds. Schmugge and Andre), Land surface evaporation, measurement and parameterization, Springer Verlag, pp. 157–169CrossRefGoogle Scholar
  11. Brutsaert W (1982) Evaporation into the atmosphere, theory, history and applications, Reidel Dordrecht, 299 ppCrossRefGoogle Scholar
  12. Brutsaert W, Hsu AY, Schmugge TJ (1993) Parameterization of surface heat fluxes above forest with satellite thermal sensing and boundary layer soundings. J of Applied Met vol. 32 (5): 909–917CrossRefGoogle Scholar
  13. Budyko MI (1956) Teplovoi balans zemnoi poverkhnosti. Gidrometeoizdat, Leningrad; Heat balance of the Earth’s Surface; translated by N.A.Stepanova (1958). U.S. Weather Bureau, Washington, D.C.Google Scholar
  14. Carlson TN, Buffum MJ (1989) On estimating total daily evapotranspiration from remote surface temperature measurements. Rem Sens Env 29: 197–207CrossRefGoogle Scholar
  15. Chamberlain AC (1966) Proc Roy Soc London A290: 236–265Google Scholar
  16. Chen E, Allen LH, Bartholic JF, Gerber JF (1983) Comparison of winter-nocturnal geostationary satellite infared-surface temperature wityh shelter-height temperature in Florida. Rem Sens of Env 13: 313–327CrossRefGoogle Scholar
  17. Choudhury BJ (1989) Estimating evaporation and carbon assimilation using infared temperature data: vistas in modelling, in G. Asrar (ed.), Theory and applications of optical remote sensing, John Wiley, New York, pp. 628–690Google Scholar
  18. Choudhury BJ (1991) Multispectral satellite data in the contex of land surface heat balance. Review of Geophysics 29: 217–236CrossRefGoogle Scholar
  19. Clauusen M (1990) Area-averaging of surface fluxes in a neutrally stratified, horizontally inhomogeneous atmospheric boundary layer. Atmospheric Environment, vol. 24A, No. 6: 1349–1360Google Scholar
  20. Davis PA, Tarpley JD (1983) Estimation of shelter temperatures from operational satellite sounder data. J of Climate and Applied Meteorology, vol. 22: 369–376CrossRefGoogle Scholar
  21. Dedieu G, Deschamps PY, Kerr YH (1987) Satellite estimation of solar irradiance at the surface of the earth and of surface albedo using a physical model appliesd to METEOSAT data, J of Climate and Applied Meteorology, vol. 26: 79–87CrossRefGoogle Scholar
  22. Diak G, Whipple MS (1993) Improvements to models and methods for evaluating the landsurface energy balance and ‘effective’ roughness using radiosonde reports and satellite-measured ‘skin’ temperature data. Agr and For Met 63: 189–218CrossRefGoogle Scholar
  23. Dolman AJ (1993) A multiple-source land surface energy balance model for use in general circulation models. Agr and For Met 65: 21–45CrossRefGoogle Scholar
  24. Dolman AJ, Blyth EM (1996) Patch scale aggregation of heterogeneous land surface cover for mesoscale meteorological models, submitted to J of Hydr, special issue Tucson aggregation workshop, in pressGoogle Scholar
  25. Eagleson PS (1981) (Ed.). Land surface processes in atmospheric general circulation models. JSC/WCP Study Conference, Greenbelt, Md. WCP 46: 56 ppGoogle Scholar
  26. Fung AK, Zongqian L, Chen KS (1992) Backscattering from a randomly rough dielectric surface. IEEE Transactions on Geoscience and Remote Sensing vol. 30: 356–610CrossRefGoogle Scholar
  27. Gash JHC (1986) A note on estimating the effect of a limited fetch on micrometeorological measurements. Bound Layer Met 35: 409–413CrossRefGoogle Scholar
  28. Goutorbe JP, Lebel T, Tinga A et al. (1993) HAPEX-SAHEL: a large scale study of landatmosphere interactions in the semi-arid tropics. Ann Geophys 12: 53–64CrossRefGoogle Scholar
  29. Griend van de AA, Owe M (1994) The influence of polarization on canopy transmission properties at 6.6 Ghz and implications for large scale soil moisture monitoring in semi-arid environments. IEEE Transactions on geoscience and remote sensing vol. 32, no. 2: 409–415CrossRefGoogle Scholar
  30. Gurney RJ, Foster JL, Parkinson CL (1994) Atlas of satellite observations related to global change, Cambridge University Press, 470 ppGoogle Scholar
  31. Hall FG, Huemmrich KF, Goetz SJ, Sellers PJ, Nickeson JE (1992) Satellite remote sensing of surface energy balance: success, failures and unresolved issues in FIFE. J of Geophysical Research vol. 97, no. D17: 19061–19089CrossRefGoogle Scholar
  32. Henderson-Sellers A, Pitman AJ, Love PK, Irranejad P, Chen TH (1995) The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3. Bulletin of the American Meteorological Society vol. 76, no. 4: 489–503CrossRefGoogle Scholar
  33. Holtslag AAM, Ek M (1996) Simulation of surface fluxes and boundary layer development over the pine forest in HAPEX-Mobilhy. J Applied Met, in pressGoogle Scholar
  34. Hurk van den BJJM, Verhoef A, van den Berg AR, de Bruin HAR (1995) An intercomparison of three vegetation/soil models for a sparse vineyard canopy. Q J R Met Soc 121: 1867–1889CrossRefGoogle Scholar
  35. Jackson RD, Reginato RJ, Idso SB (1977) Wheat canopy temperature: a practical tool for evaluating water requirements. Water Resources Research vol. 13, no. 3: 651–656CrossRefGoogle Scholar
  36. Jochum AM (1993) Evaporation and energy fluxes during EFEDA: horizontal variability and area averaging, in (eds.) Bolle, Feddes and Kalma, Exchange processes at the land surface for a range of space and time scales. IAHS Publ no. 212: 373–380Google Scholar
  37. Justice CO, Townsend JRG, Holben BN, Tucker CJ (1985) Analysis of the phenology of global vegetation using meteorological satellite data. Int J of Rem Sens 6–8: 1271–1318CrossRefGoogle Scholar
  38. Kahle AB, Alley RE (1992) Separation of temperature and emittance in remotely sensed radiance measurements. Rem Sens Env vol 42: 107–112CrossRefGoogle Scholar
  39. Kalma JD, Jupp DLB (1990) Estimating evaporation from pasture using infrared thermometry: evaluation of a one-layer resistance model. Agr and Forest Met 51: 223–246CrossRefGoogle Scholar
  40. Klaassen W, van de Berg W (1985) Evapotranspiration derived from satellite observed surface temperatures. J of Climate and Applied Met vol. 24: 412–424CrossRefGoogle Scholar
  41. Kneizys FX, Shettle EP, Abreu LW (1988) User’s guide to LOWTRTAN7, Env. Res. Papers no. 10101, Report AFGL-TR-88–0177, Air Force Geophysics Laboratory, Hanscom Air Force Base, MA 01737: pp 137Google Scholar
  42. Kustas WP, Choudhury BJ, Moran MS, Reginato RJ, Jackson RD, Gay LW, Weaver HL (1989) Determination of sensible heat flux over sparse canopy using thermal infrared data. Agr and Forest Met 44: 197–216CrossRefGoogle Scholar
  43. Kustas WP, Moran MS, Humes KS, Stannard DI, Pinter PJ, Hipps LE, Swiatek E, Goodrich DC (1994) Surface energy balance estimates at local and regional scales using optical remote sensing from aircraft platform and atmospheric data collected over semiarid rangelands. Water Resources Research vol. 30, no. 5: 1241–1259CrossRefGoogle Scholar
  44. Lhomme JP, Monteny B, Amadou M (1994) Estimating sensible heat flux from radiometric temperature over sparse millet. Agr and Forest Met 68: 77–91CrossRefGoogle Scholar
  45. Manabe S (1969) Climate and ocean circulation: 1. The atmospheric circulation and the hydrology of the earth’s surface. Monthly Weather Review vol. 97(11):739–774CrossRefGoogle Scholar
  46. Menenti M, Bastiaanssen WGM, van Eick D (1989) Determination of surface hemispherical reflectance with Thematic Mapper data. Rem Sens Env 28: 327–337CrossRefGoogle Scholar
  47. Menenti M, Bastiaanssen WGM, Hefny K, Abdel Karim MH (1991) Mapping of groundwater losses by evaporation in the Western Desert of Egypt, D LO-Winand Staring Centre Report 43, Wageningen, The Netherlands: pp. 116Google Scholar
  48. Menenti M (1993) Understanding land surface evapotranspiration with satellite multispectral measurements. Adv in Space Research vol. 13, no. 5: 89–100CrossRefGoogle Scholar
  49. Menenti M, Ritchie JC (1994) Estimation of effective aerodynamic roughness of Walnut Gulch watershed with laser altimeter measurements. Water Resources Research vol. 30, no. 5: 1329–1337CrossRefGoogle Scholar
  50. Menenti M, Choudhury BJ (1994) Synergistic use of thermal infrared and other spectral measurements for land surface studies, Proc. Workshop on Thermal remote sensing, La Londe, September 1993: 167–176Google Scholar
  51. Michand , Shuttleworth WJ (1996) (eds.) J of Hydr, special issue (Tucson aggregation workshop)Google Scholar
  52. Milly PCD, Dunne KA (1994) Sensitivity of the global water cycle to the water- holding capacity of land. J Climate 506–526Google Scholar
  53. Mintz Y (1982) The sensitivity of numerically simulated climate to land surface boundary conditions. NASA Technical Memorandum No. 83985: 81 ppGoogle Scholar
  54. Monteith JL (1965) Evaporation and the environment, In: The state and movement of water in living organisms, XIXth Symp. Soc. for Exp. Biol., Swansea, Cambridge University Press, pp. 205–234Google Scholar
  55. Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Monthly Weather Review vol. 117, no. 3: 536–549CrossRefGoogle Scholar
  56. Oh Y, Sarabandi K, Ulaby FT (1992) An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Transactions on Geoscience and Remote Sensing vol. 30: 370–381CrossRefGoogle Scholar
  57. Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Applied Met 9: 857–861CrossRefGoogle Scholar
  58. Pelgrum H, Bastiaanssen WGM (1996) An intercomparison of techinques to determine the area-averaged latent heat flux from individual in situ observations: A remote sensing approach using the EFEDA data. Water Resources Research, in pressGoogle Scholar
  59. Pinty B, Ramond D (1987) A method for the estimate of broadband directional surface albedo from a geostationary satellite. J Clim Appl Met 26: 1709–1722CrossRefGoogle Scholar
  60. Prevot L, Brunet Y, Paw KT, Seguin B (1994) Canopy modelling for estimating sensible heat flux from thermal infrared measurements, in Proc. Workshop on Thermal remote sensing, La Londe, September 1993: 17–22Google Scholar
  61. Pierce LL, Walker J, Downling TI, Vicar TR, Hatton TJ, Running SW, Coughlan JC (1992) Ecological change in the Murray-Darling Basin III: A simulation of regional hydrological changes. J of Applied Ecology 30: 283–294CrossRefGoogle Scholar
  62. Price JC (1984) Land surface temperature measurements from the split window channels of the NOAA-7 Advanced Very High Resolution Radiometer. J Geophys Res 89: 7231–7237CrossRefGoogle Scholar
  63. Rosema A (1990) Comparison of Meteosat-based rainfall and evapotranspiration mapping in the Sahel region. Int J Rem Sens vol. 11, no. 12: 2299–2309CrossRefGoogle Scholar
  64. Rowntree PR, Bolton J (1983) Simulation of the atmospheric response to soil moisture anomalies over Europe. Quart J R Met Soc vol. 109: 501–526CrossRefGoogle Scholar
  65. Salisbury JW, D’Aria DM (1992) Emittance of terrestrial materials in the 8–14 mm atmospheric window. Rem Sens Env vol 42: 83–106CrossRefGoogle Scholar
  66. Schmugge TJ, Jackson TJ, Kustas WP, Wang JR (1992) Passive microwave remote sensing of soil moisture; Results from HAPEX, F11 and MONSOON90, ISPRS. J Photogrammetry and Remote Sensing 47: 127–143CrossRefGoogle Scholar
  67. Schmugge TJ, Hook S, Kahle A (1995) TIMS observation of surface emittance in HAPEX Sahel, Proc. IGARSS 1995, Proc. Florence, ItalyGoogle Scholar
  68. Seguin B, Itier B (1983) Using midday surface temperature to estimate daily evaporation from satellite thermal IR data. Int J Rem Sens 4: 371–383CrossRefGoogle Scholar
  69. Sellers PJ, Mintz Y, Sud YC, Dalcher A (1986) A SImple Biosphere model (SiB) for use within general circulation models, J. of the Atm. Sciences, vol. 43, no. 6: 505–531CrossRefGoogle Scholar
  70. Shuttleworth WJ, Gurney RJ, Hsu AY and Ormsby JP (1989) FIFE: The variation in energy partitioning at surface flux sites, Rem. Sens. and large-scale global processes, Proc. Baltimore Symp, IAHS Publ no. 186: 67–74Google Scholar
  71. Stewart JB, Kustas WP, Humes KS, Nichols WD, Moran MS, de Bruin HAR (1994) Sensible heat flux — radiometric surface temperature relationship for 8 semi-arid areas, in Proc. Workshop on Thermal remote sensing, La Londe, September 1993: 27–30Google Scholar
  72. Stricker JNM, Kim CP, Feddes RA, van Dam J, Droogers P, de Rooy GH (1993) Modelling and observing the terrestrial hydrological cycle, in (eds.) L. Raschke and D. Jacob, NATO-ASI Glücksburg: 419–444Google Scholar
  73. Sud YC, Sellers PJ, Mintz Y, Chou MD, Walker GK, Smith WE (1990) Influence of biosphere on the global circulation and hydrologic cycle — a GCM simulation experiment. Agr and For Met 52: 133–180CrossRefGoogle Scholar
  74. Sugita M, Brutsaert W (1990) Regionalization surface fluxes from remotely sensed skin temperature and lower boundary layer measurements. Water Resources Research vol. 26, no. 12: 2937–2944CrossRefGoogle Scholar
  75. Thornthwaite CW, Mather JR (1955) The water balance. Publications in Climatology, Laboratory of Climatology, Centerton, New Jersey. vol.8(1) : 86 ppGoogle Scholar
  76. Townsend AA (1965) The response of a turbulent boundary layer to abrupt changes in surface conditions. J Fluid Mech 22: 799–822CrossRefGoogle Scholar
  77. Tucker CJ (ed.)(1986) Monitoring the grasslands of semi-arid Africa using NOAA AVHRR data. Int J Rem Sens (special issue), 7–11: 1383–1622Google Scholar
  78. Wan Z, Dozier J (1989) Land-surface temperature measurement from space: physical principles and inverse modeling. IEEE Transactions on Geoscience and Remote Sensing vol. 27, no. 3: 268–278CrossRefGoogle Scholar
  79. Wang J, Hu Y, Sahashi K, Mitsuta Y (1994) Outline of HEIFE field observations. in: Y. Mitsuta (ed.): Proceedings Int. Symp. onHEIFE. Disaster Prevention Research Institute, Kyoto University: 22–29Google Scholar
  80. Wieringa J (1986) Roughness-dependent geographical interpolation of surface wind speed averages. Q J R Met Soc 112: 867–889CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • W. G. M. Bastiaanssen
    • 1
  • M. Menenti
    • 1
  • A. J. Dolman
    • 1
  • R. A. Feddes
    • 1
  • H. Pelgrum
    • 1
  1. 1.Soil and Water ResearchDLO Winand Staring Centre for Integrated LandWageningenThe Netherlands

Personalised recommendations