Skip to main content

Remote Sensing of Soil Moisture

  • Conference paper

Part of the book series: Nato ASI Series ((ASII,volume 45))

Abstract

Remote sensing methods are of fundamental importance for soil moisture monitoring both on a global and on a regional scale. Experimental research has demonstrated that, while observations in the visible and thermal infrared regions of the electromagnetic spectrum are able to detect the surface moisture of bare soils, microwave sensors are the most promising tools for obtaining quantitative estimates of this parameter. Valuable research on this subject has been performed worldwide, mainly in USA and Europe, and the results are reviewed in this paper on the basis of the most advanced international research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Autret M, Bernard R, Vidal-Madjar D (1989) Theoretical study of the sensitivity of the microwave backscattering coefficient to the soil surface parameters. International Journal of Remote Sensing 10: 171–179

    Article  Google Scholar 

  • Baronti S, Del Frate F, Ferrazzoli P, Paloscia S (1993) Interpretation of Polarimetric MAC-91 data over Montespertoli Agricultural area. Proc. of the 25th Intern. Symposium, Remote Sensinq and Global Change, Graz (Austria), 4–8 April.

    Google Scholar 

  • Baronti S, Del Frate F, Ferrazzoli P, Paloscia S, Pampaloni P, Schiavon G (1995) SAR Polarimetric features of agricultural areas. International Journal of Remote Sensing 16, 14, 2639–2656

    Article  Google Scholar 

  • Basharinov AE, Shutko AM (1975) Simulation studies of the SHF radiation characteristics of soils under moist conditions. NASA Tech. Trans. TTF-16, Greenbelt, MD

    Google Scholar 

  • Basharinov AE, Krylova MS, Maslov AI, Shutko AM (1979) Remote sensing of subsurface soil moisture by means of microwave radiometers. Water Res 5: 538–542

    Google Scholar 

  • Beaudoin A, Le Toan T, Gwyn Q (1990) SAR observations and modelling of the C-band backscatter variability, due to multi-scale geometry and soil moisture. Institute of Electrical and Electronics Engineers Transactions on Geoscience and Remote Sensing 28: 886–895

    Google Scholar 

  • Becker F, Bolle H, Rowntree P (1988) The international satellite land-surface climatology project (ISLSCP). ISLSCP, Berlin Report no 10

    Google Scholar 

  • Bernard R, Vidal-Madjar D, Baudin F, Laurent G (1986) Data Processing and Calibration for an Airborne Scatterometer. Institute of Electrical and Electronics Engineers Transactions on Geoscience and Remote Sensing 24: 709–716

    Google Scholar 

  • Blyth K, Evans R (1985) Results in hydrology and soils. The European SAR-580 Experiment. Investigtors Final Report SAR-580, edited by J.W. Trevett (Commission of European Communities, Joint Research Centre, Ispra Establishment) S.A./I.04.E2.85.12/2., 143–146

    Google Scholar 

  • Campbell G, Norman J (1990) Estimation of plant water status from canopy temperature: an analysis of the inverse problem, in Applications of Remote Sensing in Agriculture, M. Steven and J. Clark editors, Butterworths, London, 255–271

    Google Scholar 

  • Canuti P, D’Auria G, Pampaloni P, Solimini D (1992) MAC-91 on Montespertoli: an experiment for agro-hydrology. Proc. of the International Geos cience and Remote Sensing Symposium — IGARSS 92, Houston, Texas, pp. 1744–1746

    Google Scholar 

  • Carlson T, Rose F, Perry E (1984) Regional-scale estimate of surface moisture availability from GOES Infrared satellite measurements. Agronomy Journal 76: 972–979

    Article  Google Scholar 

  • Coppo P, Ferrazzoli P, Paloscia S, Pampaloni P, Schiavon G, Solimini D (1990) Sensitivity of active and passive microwave sensors to soil moisture of vegetated fields. International Geoscience and Remote Sensing Symposium. Remote Sensing Science for the nineties, edited by R. Mills (IGARSS’90, Washington D.C.), 90CH2825–8, 1851–1854

    Chapter  Google Scholar 

  • Denmead OT (1976) Temperate Cereals, in “Vegetation and Atmosphere” Case study, vol. 2 (Ed. by J.L. Monteith), Academic Press, New York

    Google Scholar 

  • De Loor GP (1979) Soil moisture determination at X band. European Association of Remote Sensing Laboratories (EARSeL). Workshop on Microwave Remote Sensing of Bare Soil, edited by N. Lannelongue (EARSeL, Paris), 198–202

    Google Scholar 

  • De Loor GP (1982) The dielectric properties of wet materials. International Geoscience and Remote Sensing Symposium. Digest, edited by W. Keydel, (IGARSS’82, München), 82CH14723–6, TP-1, 1–5

    Google Scholar 

  • Dobson C, Ulaby F, Hallikainen M, El-Rayes M (1985) Microwave Dielectric behaviour of wet soil — Part II: Four component dielectric mixing models. IEEE Transactions on Geoscience and Remote Sensing 23, 4, 35–46

    Article  Google Scholar 

  • Dobson C, Pierce L, Sarabandi K, Ulaby F, Sharik T (1992) Preliminary analysis of ERS-1 SAR for forest ecosystem studies. IEEE Transactions on Geoscience and Remote Sensing 30, 2, 203–211

    Article  Google Scholar 

  • Dubois P, van Zyl J, Engman T (1995) Measuring soil moisture with imaging radar. IEEE Transactions on Geoscience and Remote Sensing 33, 4, 915–926

    Article  Google Scholar 

  • Engman ET, Gurney RJ (1991) Remote Sensing in Hydrology. Remote Sensing Applications, Chapman and Hall, London

    Google Scholar 

  • Hallikainen M, Ulaby F, Dobson M, El-rayes M, Wu L (1985) Microwave dielectric behavior of wet soil — Part I: Empirical models and experimental observations. IEEE Transactions on Geoscience and Remote Sensing 23, 25–34

    Article  Google Scholar 

  • Haefner H, Pampaloni P (1992) Water Resources. International Journal of Remote Sensing 13, 6–7, 1277–1303

    Article  Google Scholar 

  • Heilman J, Moore D (1982) Evaluating near-surface soil moisture using Heat Capacity Mapping Mission Data. Remote Sensing of the Environment 12: 117–121

    Article  Google Scholar 

  • Huppi R, Stotzer E, Schanda E (1985) Calibrated microwave signature measurements of soil and wheat. Proceedings of the 3rd International Colloquium. Spectral Signatures of Objects in Remote Sensing, edited by T.D. Guyenne (European Space Agency, Noordwijk) SP-247: 351–355

    Google Scholar 

  • Huppi R, Schanda E (1986) L to X band scatter and emission measurements of vegetation. International Geoscience and Remote Sensing Symposium. Moving Towards the 21st Century, edited by T.D. Guyenne and J.J. Hunt (European Space Agency, Paris), SP- 284: 1113–1118

    Google Scholar 

  • Idso S, Jackson R, Reginato R, Kimball B, Nakayama F (1975) The dependence of bare soil albedo on soil water content. Journal of Applied Meteorology 14: 109–113

    Article  Google Scholar 

  • Ijjas G, Juhasz I, Zilahy (1989) Airborne Microwave equipment for soil moisture investigation. Microwave Radiometry and Remote Sensing Applications, edited by P. Pampaloni (Utrecht, VSP), 321–328

    Google Scholar 

  • Ijjas G, Rieger J, Aujesky L, Paloscia S, Susini C, Bechini C (1993) Microwave experiment on Montespertoli area. EARSeL Workshop on Agrometeorology, Florence, April 13–14 1992, EARSeL Advances in Remote sensing vol. 2–VI: 40–45

    Google Scholar 

  • Jackson RD (1982) Soil moisture inferences from thermal-infrared measurements of vegetation temperatures. IEEE Transactions on Geoscience and Remote Sensing 20: 282–286

    Article  Google Scholar 

  • Jackson T, Schmugge T, Wang J (1982) Passive microwave remote sensing of soil moisture under vegetation canopies. Water Resources Research 18: 1137–1142

    Article  Google Scholar 

  • Jackson T, Engman ET, Le Vine D, Schmugge T, Lang R, Wood E, Teng W (1994) Multitemporal passive microwave mapping in Machydro’90. IEEE Transactions on Geoscience and Remote Sensing 32, 1, 201–206

    Article  Google Scholar 

  • Jackson T, Le Vine D, Griffis A, Goodrich D, Schmugge T, Swift C, O’Neill P (1993) Soil moisture and rainfall estimation over a semiarid environment with the ESTAR microwave radiometer. IEEE Transactions on Geoscience and Remote Sensing 31, 4, 836–841

    Article  Google Scholar 

  • Kirdiashev K, Chuklantsev A, Shutko A (1979) Microwave radiation of the earth’s surface in the presence of vegetation cover. Radio Engineering and Electronics 24: 256–264 (English Translation)

    Google Scholar 

  • Kramer PJ (1969) Plant and Soil relationships. A modern synthesis. McGraw — Hill Book Company, New York

    Google Scholar 

  • Le Toan T (1982) Active microwave signatures of soil and crops: significant results of three years of experiments. International Geoscience and Remote Sensing Symposium. Digest, edited by W. Keydel, (IGARSS, Munchen), 82CH14723–6, TP2, 3.1–3.5

    Google Scholar 

  • Le Vine D, Kao M, Tanner W, Swift C, Griffis A (1990) Initial results in the development of a synthetic aperture microwave radiometer. IEEE Transactions on Geoscience and Remote Sensing 28: 614–619

    Article  Google Scholar 

  • Mkrtchjan F, Reutov E, Shutko A, Kostov K, Michalev M, Nedeltchev N, Spasov A, Vichev B (1988) Experiments in Bulgaria for determination of soil moisture in the top one-meter layer using microwave radiometry and a priori information. International Geoscience and Remote Sensing Symposium. Moving Towards the 21st Century, edited by T.D. Guyenne and J.J. Hunt (European Space Agency, Paris), SP — 284, 665–666

    Chapter  Google Scholar 

  • Musiake K, Oki T, Nakaegawa T, Wakasa K (1995) Verification experiment of extraction of soil moisture information using SAR mounted on JERS-1/ERS-1. Final report of JERS1/ERS-1 System Verification Program, MITI-NASDA, vol. II, 617–624

    Google Scholar 

  • Oh Y, Sarabandi K, Ulaby F (1992) An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Transactions on Geoscience and Remote Sensing 30: 370–381

    Article  Google Scholar 

  • Paloscia S, Pampaloni P (1988) Microwave Polarization Index for Monitoring Vegetation Growth. IEEE Transactions on Geoscience and Remote Sensing 26: 617–621

    Article  Google Scholar 

  • Paloscia S, Pampaloni P, Chiarantini L, Coppo P, Gagliani S, Luzi G (1990) Multifrequency microwave radiometric measurements of soil moisture. International Geoscience and Remote Sensing Symposium. Remote Sensing Science for the Nineties, edited by R. Mills (IGARSS, Washington D.C.), 90CH2825–8, 1837–1840

    Chapter  Google Scholar 

  • Paloscia S, Pampaloni P (1992) “Microwave Vegetation Indexes for detecting biomass and water conditions of agricultural crops”. Remote Sensing of the Envnronment 40: 15–26

    Article  Google Scholar 

  • Paloscia S, Pampaloni P, Chiarantini L, Coppo P, Gagliani S, Luzi G (1993) “Multifrequency passive microwave remote sensing of soil moisture and roughness”. International Journal of Remote Sensing vol. 14, n.3, pp. 467–483

    Article  Google Scholar 

  • Pampaloni P (1981) Microwave Radiometry for Remote Sensing in agriculture. Proceedings of 9th Conference of the Remote Sensing Society. Matching Remote Sensing Technologies and Their Applications, edited by D. Lynn and J. Allan, (R.S.S., Londor), 273–283

    Google Scholar 

  • Pampaloni P, Paloscia S (1985) Experimental relationships between microwave emission and vegetation features. International Journal of Remote Sensing 6: 315–323

    Article  Google Scholar 

  • Pampaloni P, Paloscia S (1986) Microwave emission and plant water content: a comparison between field measurement and theory. IEEE Transactions on Geos cience and Remote Sensing 24: 900–905

    Article  Google Scholar 

  • Pampaloni P, Chiarantini L, Coppo P, Gagliani G, Luzi G, Paloscia S (1990) Sampling Depth of Soil Moisture Content by Radiometric Measurements at 21 cm wavelength: Some Experimental Results. International Journal of Remote Sensing 11: 1085–1092

    Article  Google Scholar 

  • Reutov E, Shutko A (1986) Prior knowledge-based soil moisture determination by microwave radiometry. Soviet Journal of Remote Sensing 100–125

    Google Scholar 

  • Rosema A, Bijleveld J, Reiniger P, Tassone G, Blyth K, Gurney R (1978) “Tellus”, a combined surface temperature, soil moisture and evaporation mapping approach. 12th International Symposium on Remote sensing of Environment, Environmental Research Institute of Michigan, Manila

    Google Scholar 

  • Schmugge T (1980) Effect of soil texture on the microwave emission from soils. IEEE Transactions on Geoscience and Remote Sensing 18: 353–361

    Article  Google Scholar 

  • Schmugge T, O’Neill P, Wang J (1986) Passive microwave soil moisture research. IEEE Transactions on Geoscience and Remote Sensing 24: 12–22

    Article  Google Scholar 

  • Schmugge T, Choudhury BJ A comparison of radiative transfer models for predicting the microwave emission fron soils. Radio Science 16, 5, 927–938

    Google Scholar 

  • Schmugge T, Becker F (1991) Remote Sensing observations for the monitoring of LandSurface fluxes and water budget, in Land Surface Evaporation — Measurement and Parametrization, Springer-Verlag, New York Inc., Ch.20, 337–348

    Chapter  Google Scholar 

  • Seguin B, Itier B (1983) Using midday surface temperature to estimate daily evaporation from satellite thermal IR data. International Journal of Remote sensing 4: 371–383

    Article  Google Scholar 

  • Shivola A (1989) Properties of dielectric mixtures with layered spherical inclusions. In Microwave Radiometry and Remote Sensing Applications, edited by P. Pampaloni, (Utrecht, VSP), 115–123

    Google Scholar 

  • Shutko A (1982) Microwave radiometry of lands under natural and artificial moistening. IEEE Transactions on Geoscience and Remote Sensing 20: 18–26

    Article  Google Scholar 

  • Shutko A, Reutov E (1982) Mixture formulas applied in estimation of dielectric and radiative characteristics of soils and grounds at microwave frequencies. IEEE Transactions on Geoscience and Remote Sensing 20: 29–32

    Article  Google Scholar 

  • Soares J, Bernard R, Vidal-Madjar D (1987) Spatial and temporal behaviour of a large agricultural area as observed from airborne C-band scatterometer and thermal infrared radiometer. International Journal of Remote Sensing 8: 981–996

    Article  Google Scholar 

  • Simonett DS Ed. Manual of Remote Sensing, vol. I: Theory, Instruments and Techniques, American Society of Photogrammetry, Falls Church, Virginia, 1983

    Google Scholar 

  • Stotzer E, Wegmüller U, Huppi R, Maetzler C (1986) Dielectric and surface parameters related to microwave scatter and emission properties. International Geoscience and Remote Sensing Symposium. Today’s Solutions for Tomorrow’s Information Needs, edited by T.D. Guyenne (European Space Agency, Nordwijk), SP — 254, 599–603

    Google Scholar 

  • Tsang L, Kong J (1979) Wave theory for microwave remote sensing of a half- space random medium with three dimensional variations. Radio Science 14: 359–369

    Article  Google Scholar 

  • Ulaby F, Moore R, Fung A Microwave Remote Sensing: Active and Passive, AddisonWesley Publication Co.. Advanced Book Program/World Science Division, Readings, Massachusetts, 1981

    Google Scholar 

  • Ulaby F, Aslam A, Dobson C (1982) Effects of vegetation cover on the radar sensitivity to soil moisture. IEEE Transactions on Geoscience and Remote Sensing 20, 4, 476–481

    Article  Google Scholar 

  • Ulaby F, Razani M, Dobson C (1983) Effects of vegetation cover on the microwave radiometric sensitivity to soil moisture. IEEE Transactions on Geoscience and Remote Sensing 21: 51–61

    Article  Google Scholar 

  • Ulaby F, Sarabandi K, McDonald K, Whitt M, Dobson C (1990) Michigan microwave canopy scattering model. Int Journal of Remote Sensing 11, 7, 1223–1253

    Article  Google Scholar 

  • Wang J, Schmugge T (1980) An empirical model for the complex dielectric permittivity of soils as a function of water content. IEEE Transactions on Geoscience and Remote Sensing 18: 288–295

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paloscia, S. (1996). Remote Sensing of Soil Moisture. In: Raschke, E. (eds) Radiation and Water in the Climate System. Nato ASI Series, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03289-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03289-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08261-0

  • Online ISBN: 978-3-662-03289-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics