Lidar Measurements: Atmospheric Constituents, Clouds, and Ground Reflectance

  • Claus Weitkamp
Part of the Nato ASI Series book series (volume 45)


Vision is a capability developed to a high degree of perfection in many zoological species including man. In addition to shape, color, texture and movement, distance can also be inferred. Distance measurement schemes, however, tend to get increasingly inaccurate as soon as objects are farther away than 102 to 104 m, depending on circumstances. As with very few exceptions, vision is a passive process that relies on external sources of illumination, the straightforward and accurate time-of-flight determination of distance is not available to us naturally.


Differential Absorption Lidar Measurement Backscatter Coefficient Atmospheric Constituent Aerosol Extinction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. For abbreviations (ILRC, ISTP, ORSA, SPIE) see Section “Additional Reading” Ansmann A (1984) Diplomarbeit, Universität HamburgGoogle Scholar
  2. Ansmann A (1989) Bodengebundene DIAL-Wasserdampfmnessung: Berücksichtigung der Dopplerverbreiterung der Laserlinie durch Rayleighrückstreuung. Dissertation, Universität Hamburg. Hamburger Geophysikalische Einzelschriften, Reihe A, Heft 89: 69 pGoogle Scholar
  3. Ansmann A , Bösenberg J (1987) Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water vapor in the troposphere. Applied Optics 26: 3026–3032CrossRefGoogle Scholar
  4. Ansmann A , Riebesell M, Weitkamp C (1990) Measurement of atmospheric aerosol extinction profiles with a Raman lidar. Optics Letters 15: 746–748CrossRefGoogle Scholar
  5. Ansmann A , Bösenberg J, Brogniez G, Elouragini S, Flamant PH, Klapheck K, Linn H, Menenger L, Michaelis W, Riebesell M, Senff Ch, Thro P-Y, Wandinger U, Weitkamp C (1993) Lidar Network Observations of Cirrus Morphological and Scattering Properties during the International Cirrus Experiment 1989: The 18 October 1989 Case Study and Statistical Analysis. Journal of Applied Meteorology 32: 1608–1622CrossRefGoogle Scholar
  6. Ansmann A , Riebesell M, Wandinger U, Weitkamp C, Michaelis W (1991a) Combined Raman elastic-backscatter lidar for the independent measurement of aerosol backscatter and extinction profiles. Report GKSS 91/E/42: 8 pGoogle Scholar
  7. Ansmann A , Riebesell M, Wandinger U, Weitkamp C, Michaelis W (1991b) Klett forward-backward integration for model-independent determination of the aerosol extinctionto-backscatter ratio. GKSS 91/E/43: 8pGoogle Scholar
  8. Ansmann A , Riebesell M, Wandinger U, Weitkamp C, Voss E, Lahmann W, Michaelis W (1992) Combined Raman Elastic-Backscatter LIDAR for Vertical Profiling of Moisture, Aerosol Extinction, Backscatter, and LIDAR Ratio. Applied Physics B 55: 18–28CrossRefGoogle Scholar
  9. Ansmann A , Wandinger U, Riebesell M, Weitkamp C, Michaelis W (1992) Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. Applied Optics 31: 7113–7131CrossRefGoogle Scholar
  10. Ansmann A , Wandinger U, Weitkamp C (1993) One-Year Observations of MountPinatubo Aerosol with an Advanced Raman Lidar over Germany at 53.5°N. Geophysical Research Letters 20: 711–714CrossRefGoogle Scholar
  11. Baker PW (1983) Atmospheric water vapor differential absorption measurements on vertical paths with a CO2 lidar. Applied Optics 22: 2257–2264CrossRefGoogle Scholar
  12. Barbini R , Colao F, Palucci A, Ribezzo S, Orlando S (1990) Remote Sounding of Atmospheric Water Vapour from the ENEA DIAL Station. 15ILRC II: 156–159Google Scholar
  13. Bisson SE , Goldsmith JEM (1993) Daytime Tropospheric Water Vapor Profile Measurements with a Raman Lidar. 5ORSA: 19–22Google Scholar
  14. Boscher J , Englisch W, Wiesemann W (1980) Differentielle Absorptions-Spektroskopie mit dem Fernanalysesystem Dialex. Laser + Elektro Optik 12 (3): 17–22Google Scholar
  15. Bösenberg J (1985) Measurements of the pressure shift of water vapor absorption lines by simultaneous photoacoustic spectroscopy. Applied Optics 24: 3531–3534CrossRefGoogle Scholar
  16. Bösenberg J , Senff C, Thro PY (1990) DIAL Measurements of Water Vapor in the Troposphere: Assessment of Accuracy. 15ILRC II:170–172Google Scholar
  17. Braun WC (1985) Simplified calculations for accuracy of a lidar dial system to measure atmospheric H2O vapor and temperature. Applied Optics 24: 109–117CrossRefGoogle Scholar
  18. Bristow M , Bundy D, Wright A (1994) Photomultipliers and Gating Circuits Suitable for Differential Absorption Lidars. 17ILRC: 191–193Google Scholar
  19. Browell EV , Wilkerson TD, Mclllrath TJ (1979) Water vapor differential absorption lidar development and evaluation. Applied Optics 18: 3474–3483CrossRefGoogle Scholar
  20. Browell EV , Carter AF, Wilkerson TD (1981) Airborne differential absorption lidar system for water vapor investigations. Optical Engineering 20 (1): 084–090Google Scholar
  21. Bukin OA , Stolyarchuk YuS, Tyapkin VA (1985) Measurement of Moisture-Content Profiles in the Bottom Layer of the Atmosphere by the Method of Spontaneous Light-Scattering Spectroscopy. JAS Bulg 43: 631–636Google Scholar
  22. Cahen C , Mégie G, Flamant P (1982) Lidar Monitoring of the Water Vapor Cycle in the Troposphere. Journal of Applied Meteorology 21: 1506–1515CrossRefGoogle Scholar
  23. Cooney J , Petri K, Salik A (1985) Measurements of high resolution atmospheric water-vapor profiles by use of a solar blind Raman lidar. Applied Optics 24: 104–108CrossRefGoogle Scholar
  24. Dautet H , Deschamps P, Dion B, McGregor AD, McSween D, McIntyre RJ, Trottier C, Webb PP (1993) Photon counting technique with silicon avalanche photodiodes. Applied Optics 32: 3894–3900Google Scholar
  25. Ehret G , Renger W (1988) Airborne Water Vapor DIAL. 14ILRC: 190–191Google Scholar
  26. Ehret G , Kiemle C, Renger W, Simmet G (1993) Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system. Applied Optics 32: 4534–4551CrossRefGoogle Scholar
  27. Eichinger WE , Cooper DI, Archuletta FL, Hof D, Holtkanmp DB, Karl RR, Quick CR, Tiee J (1994) Development of a scanning, solar-blind, water Raman lidar. Applied Optics 33: 3923–3932CrossRefGoogle Scholar
  28. Fernald FG (1984) Analysis of atmospheric lidar observations. Some comments. Applied Optics 23: 652–653CrossRefGoogle Scholar
  29. Ghibaudo J-B , Krawczyk R (1992) Water vapor, temperature and wind velocity measurements from space using 2 Tm:Ho;YAG. SPIE 1714: 258–269CrossRefGoogle Scholar
  30. Goers U-B (1994) Laserfernmessung von Schwefeldioxid und Ozon in der unteren Troposphäre mit Hilfe der differentiellen Absorption und Streuung unter den Bedingungen des mobilen Einsatzes und der besonderen Berücksichtigung des Einflusses von Grenzschichtaerosolen. Dissertation, Universität Hamburg, 1994. Report GKSS 94/E/52: 147pGoogle Scholar
  31. Grant WB , Margolis JS, Brothers AM, Tratt DM (1987) CO2 DIAL measurements of water vapor. Applied Optics 26: 3033–3042CrossRefGoogle Scholar
  32. Hardesty RM (1984) Coherent DIAL measurement of range-resolved water vapor concentration. Applied Optics 23: 2545–2553CrossRefGoogle Scholar
  33. Hauchecorne A , Chanin M-L (1980) Planetary waves-mean flow interaction in the middle atmosphere: Numerical modeling and lidar observations. Annales Geophysicae 6: 409–416Google Scholar
  34. Heinrich H-J , Eck I, Weitkamp C (1986) The distribution of hydrogen chloride in plumes of incineration vessels: remote measurement of concentration distributions and determination of dilution and degradation parameters. Report GKSS 86/E/44: 162pGoogle Scholar
  35. Killinger DK , Vaidyanathan M, He C, Taczak T (1994) High-Resolution Spectral Studies of Ho Lasers for Lidar/DIAL Applications. 17ILRC: 298–300Google Scholar
  36. Killinger DK , Mooradian A, eds. (1983) Optical and Laser Remote Sensing. Springer, Berlin Heidelberg New York, 383pGoogle Scholar
  37. Klein V , Werner C(1993) Fernmessung von Luftverunreinigungen. Springer, Berlin Heidelberg New York London Paris Tokyo Hongkong Barcelona Budapest, 254pCrossRefGoogle Scholar
  38. Klett JD (1981) Stable analytical inversion solution for processing lidar returns. Applied Optics 20: 211–220CrossRefGoogle Scholar
  39. Kobayashi T (1987) Techniques for Laser Remote Sensing of the Environment. Remote Sensing Reviews 3: 1–56CrossRefGoogle Scholar
  40. Kunz GJ (1987) Lidar and missing clouds. Applied Optics 26: 1161CrossRefGoogle Scholar
  41. Kyle TG , Barr S, Clements WE (1982) Fluorescent particle lidar. Applied Optics 21:14–15CrossRefGoogle Scholar
  42. Langford AO , O’Leary TJ, Proffitt MH (1994) Extending the Dynamic Range of Differential Absorption Lidar Measurements through Large-Scale Dithering. 17ILRC: 173–174Google Scholar
  43. Lasarev VV , Matvienko GG , Ponomarev YN, Rybalko VS, Tyryshkin IS (1994) The Design of Eye Safety YAG: TmCrHo Pulsed Laser and Study the Energy Losses of its Radiation in Air and Gas-Aerosol Media. 17ILRC: 275–276Google Scholar
  44. Lehmann S , Wulfmeyer V, Bösenberg J (1994) A Time Dependent Attenuation for Dynamic Range Reduction of Lidar-Signals. 17ILRC: 289–290Google Scholar
  45. Linow S , Theopold F, Weitkamp C, Michaelis W (1994) Properties of a Double-Cavity Etalon. 3ISTP: 366–369Google Scholar
  46. McGee TJ , Gross M, Ferrare R, Heaps W, Singh U (1993) Raman Dial measurements of stratospheric ozone in the presence of volcanic aerosols. Geophysical Research Letters 20: 955–958CrossRefGoogle Scholar
  47. Measures RM (1977) Lidar equation analysis allowing for target lifetime, laser pulse duration, and detector integration period. Applied Optics 16:1092–1103CrossRefGoogle Scholar
  48. Measures RM (1984) Laser Remote Sensing. Wiley-Interscience, New York Chichester Brisbane Toronto Singapore: 510 pGoogle Scholar
  49. Melendrez DE , Johnson JR, Larson SM, Singer RB (1994) Remote sensing of potential lunar resources 2. High spatial resolution mapping of spectral reflectance ratios and implications for nearside mare TiO2 content. Journal of Geophysical Research 99 (E3): 5601–5619CrossRefGoogle Scholar
  50. Melfi SH , Lawrence JD, McCormick MP (1969) Observation of Raman Scattering by Water in the Atmosphere. Applied Physics Letters 15: 295–297CrossRefGoogle Scholar
  51. Melfi SH , Whitemann D (1985) Observation of Lower-Atmospheric Moisture Structure and Its Evolution using a Raman Lidar. Bulletin of the American Meteorological Society 66: 1288–1292CrossRefGoogle Scholar
  52. Molina LT , Molina MJ (1986) Absolute Absorption Cross Sections of Ozone in the 185- to 350-nm Wavelength Range. Journal of Geophysical Research 91: 14501–14508CrossRefGoogle Scholar
  53. Murray ER , Hake RD, van der Laan JE, Hawley JG (1976) Atmospheric water vapor measurements with an infrared (10-μm) differential-absorption lidar system. Applied Physics Letters 28: 542–543CrossRefGoogle Scholar
  54. Murray ER , Powell DD, van der Laan JE (1980) Measurement of average atmospheric temperature using a CO2 laser radar. Applied Optics 19: 1794–1797CrossRefGoogle Scholar
  55. Papen GC , Murphy GM, Koch GJ, Dejule RY, Kaliski RW (1994) Tunable Multiple Wavelength External Cavity Diode Lasers for Remote Sensing Applications. 17ILRC: 194–195Google Scholar
  56. Raschke E , Schmetz J, Heintzenberg J, Kandel R, Saunders R (1990) The International Cirrus Experiment (ICE) — A joint European Effort. ESA Journal14: 192–199Google Scholar
  57. Renaut D , Pourny JC, Capitini R (1980) Daytime Raman-lidar measurements of water vapor. Optics Letters 5: 233–235CrossRefGoogle Scholar
  58. Schlüssel G , Dickinson RE, Privette JL, Emery WJ, Kokaly R (1994) Modeling the bidirectional reflectance distribution function of mixed finite plant canopies and soil. Journal of Geophysical Research 99: 10577–10600CrossRefGoogle Scholar
  59. Schotland RM (1974) Errors in the Lidar Measurement of Atmospheric Gases by Differential Absorption. Journal of Applied Meteorology 13: 71–77CrossRefGoogle Scholar
  60. Takeuchi N , Sugimoto N, Baba H, Sakurai K (1983) Random modulation cw lidar. Applied Optics 22: 1382–1386CrossRefGoogle Scholar
  61. Tanaka M , Sakurai S, Kobayashi F, Saito Y, Kano T, Nomura A (1994) Possibility of Photon Counting in Near-Infrared (0.8 – 1.5 μm) Region by Ge-APD. 17ILRC: 291–294Google Scholar
  62. Theopold F , Weitkamp C, Michaelis W (1993) Double-cavity étalon in the near infrared. Optics Letters 18: 253–254. Report GKSS 93/E/15CrossRefGoogle Scholar
  63. Uthe EE , Viezee W, Morley BM, Ching JKS (1985) Airborne Lidar Tracking of Fluorescent Tracers for Atmospheric Transport and Diffusion Studies. Bulletin of the American Meteorological Society 66: 1255–1262CrossRefGoogle Scholar
  64. Vaughan G , Wareing D P, Thomas L, Mitev V (1988) Humidity measurements in the free troposphere using Raman backscatter. Quarterly Journal of the Royal Meteorological Society 114: 1471–1484CrossRefGoogle Scholar
  65. Vaughan G , Wareing DP, Peper SJ, Thomas L , Mitev V(1993) Atmospheric temperature measurements made by Rotational Raman scattering. Applied Optics 32: 2758–2764CrossRefGoogle Scholar
  66. Weitkamp C (1988) Infrared lidar measurement of the diffusion of hydrogen chloride from seaborne waste incineration. In: R Kesselring, FK Kneubühl eds: Fourth International Conference on Infrared Physics, ETH Zürich, Switzerland, 22–26 August 1988. Proceedings, Zürich 1988: 218–226Google Scholar
  67. Weitkamp C , Thomsen O, Bisling P (1992) Mess- und Vergleichswellenlängen zur Elimination von SO2-Querempfindlichkeiten bei der Lidar-Fernmessung troposphärischen Ozons. Laser und Optoelektronik 24 (2): 46–52Google Scholar
  68. Werner Ch , Murphy E, Schwiesow R (1992) Analysis of Optical Amplifiers applied to Short-Wavelength Doppler Lidars using Direct Detection. SPIE 1714: 284–290CrossRefGoogle Scholar
  69. Wiesemann W , Beck R, Englisch W, Gürs K (1978) In-Flight Test of a Continuous Laser Remote Sensing System. Applied Physics 15: 257–260CrossRefGoogle Scholar
  70. Wulfmeyer V , Bösenberg J, Lehmann S, Senff C, Schmitz S t (1994) Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar. Optics Letters 20: 638–640CrossRefGoogle Scholar
  71. Zeyn J , Voss E, Lahmann W, Weitkamp C, Michaelis W (1994) Daytime temperature lidar based on rotational Raman scattering. 3ISTP 2: 262–265Google Scholar
  72. Zuev VV (1983) Lidar differential absorption and scattering technique: theory. Applied Optics 22: 3733–3741CrossRefGoogle Scholar
  73. Zuev VV , Ponomarev Yu N, Solodow AM, Tikhomirov BA, Romanovsky OA (1985) Influence of the shift of H20 absorption lines with air pressure on the accuracy of the atmospheric humidity profiles measured by the differential-absorption method. Optics Letters 10: 318–320CrossRefGoogle Scholar

Additional Reading

  1. Becherer RJ , Werner C editors (1992). Lidar for Remote Sensing. SPIE Volume 1714. Bellingham, WA, USA: SPIE — The International Society for Optical Engineering, 336 pGoogle Scholar
  2. Killinger DK , Mooradian A, eds. (1983) Optical and Laser Remote Sensing. Springer, Berlin Heidelberg New York, 383 pGoogle Scholar
  3. Kobayashi T (1987) Techniques for Laser Remote Sensing of the Environment. Remote Sensing Reviews 3: 1–56CrossRefGoogle Scholar
  4. Klein V , Werner C (1993) Fernmessung von Luftverunreinigungen. Springer, Berlin Heidelberg New York London Paris Tokyo Hongkong Barcelona Budapest, 254 pCrossRefGoogle Scholar
  5. Measures RM (1984) Laser Remote Sensing. Wiley-Interscience, New York Chichester Brisbane Toronto Singapore: 510 pGoogle Scholar
  6. Weitkamp C (1990) Lidar. In Ruck B ed. (1990) Lasermethoden in der Strömungsmeßtechnik, Stuttgart AT-Fachverlag, 151–208Google Scholar
  7. A prolific source of information is also the proceedings of several series of conferences such as the Topical Meetings on Optical Remote Sensing of the Atmosphere (ORSA), the International Symposia on Tropospheric Profiling: Needs and Technologies (ISTP) and the International Laser Radar Conferences (ILRC): 3ORSA 1990. 12–15 February 1990, Incline Village, NV, USA, Optical Society of America, 1990 Technical Digest Series Volume 4, 650 pGoogle Scholar
  8. 4ORSA 1991, 18–21 Novemberr 1991, Williamsburg, VA, USA, OSA, 1991 Technical Digest Series Volume 18, 332 pGoogle Scholar
  9. 5ORSA 1993, 8–12 March 1993, Salt Lake City, UT, USA, OSA, 1993 Technical Digest Series Volume 5, 468 pGoogle Scholar
  10. 6ORSA 1995, 6–10 February 1995, Salt Lake City, UT, USA, OSA, 1995 Technical Digest Series Volume 2, 236 pGoogle Scholar
  11. 1ISTP, 31 May to 3 June 1988, Boulder, CO, USA, National Center for Atmospheric Research, 260, 10 pGoogle Scholar
  12. 2ISTP, 10 to 13 September 1991, Boulder, CO, USA, National Center for Atmospheric Research, 214 pGoogle Scholar
  13. 3ISTP, 30 August to 2 September 1994, Hamburg, Germany, Max-Planck-Gesellschaft zur Förderung der Wissenschaften, Volume 1 p. 1–200, Volume 2 p. 201–462Google Scholar
  14. 12ILRC, 13 to 17 August 1984, Aix-en-Provence, France, 451 pGoogle Scholar
  15. 13ILRC, 11 to 16 August 1986, Toronto, ON, Canada, National Aeronautics and Space Administration, NASA Conference Publication 2431, 321 pGoogle Scholar
  16. 14ILRC, 20–23 June 1988, Innichen-San Candido, Italy, 512 pGoogle Scholar
  17. 15ILRC, 23–27 July 1990, Tomsk, USSR, Institute of Atmospheric Optics, Volume 1, 404 p., Volume 2, 430 pGoogle Scholar
  18. 16ILRC, 20–24 July 1992, Cambridge, MA, USA, National Aeronautics and Space Administration, NASA Conference Publication 3158, Volume 1 p. 1–380, Volume 2 p. 381–732Google Scholar
  19. 17ILRC, 25–29 July 1994, Sendai, Japan, Laser Radar Society of Japan, 592 pGoogle Scholar
  20. 18ILRC, Summer 1996, to be held in Berlin, GermanyGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Claus Weitkamp
    • 1
  1. 1.Institut für Physikalische und Chemische AnalytikGKSS-Forschungszentrum Geesthacht GmbHGeesthachtGermany

Personalised recommendations