Skip to main content

Lidar Measurements: Atmospheric Constituents, Clouds, and Ground Reflectance

  • Conference paper
Radiation and Water in the Climate System

Part of the book series: Nato ASI Series ((ASII,volume 45))

Abstract

Vision is a capability developed to a high degree of perfection in many zoological species including man. In addition to shape, color, texture and movement, distance can also be inferred. Distance measurement schemes, however, tend to get increasingly inaccurate as soon as objects are farther away than 102 to 104 m, depending on circumstances. As with very few exceptions, vision is a passive process that relies on external sources of illumination, the straightforward and accurate time-of-flight determination of distance is not available to us naturally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • For abbreviations (ILRC, ISTP, ORSA, SPIE) see Section “Additional Reading” Ansmann A (1984) Diplomarbeit, Universität Hamburg

    Google Scholar 

  • Ansmann A (1989) Bodengebundene DIAL-Wasserdampfmnessung: Berücksichtigung der Dopplerverbreiterung der Laserlinie durch Rayleighrückstreuung. Dissertation, Universität Hamburg. Hamburger Geophysikalische Einzelschriften, Reihe A, Heft 89: 69 p

    Google Scholar 

  • Ansmann A , Bösenberg J (1987) Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water vapor in the troposphere. Applied Optics 26: 3026–3032

    Article  Google Scholar 

  • Ansmann A , Riebesell M, Weitkamp C (1990) Measurement of atmospheric aerosol extinction profiles with a Raman lidar. Optics Letters 15: 746–748

    Article  Google Scholar 

  • Ansmann A , Bösenberg J, Brogniez G, Elouragini S, Flamant PH, Klapheck K, Linn H, Menenger L, Michaelis W, Riebesell M, Senff Ch, Thro P-Y, Wandinger U, Weitkamp C (1993) Lidar Network Observations of Cirrus Morphological and Scattering Properties during the International Cirrus Experiment 1989: The 18 October 1989 Case Study and Statistical Analysis. Journal of Applied Meteorology 32: 1608–1622

    Article  Google Scholar 

  • Ansmann A , Riebesell M, Wandinger U, Weitkamp C, Michaelis W (1991a) Combined Raman elastic-backscatter lidar for the independent measurement of aerosol backscatter and extinction profiles. Report GKSS 91/E/42: 8 p

    Google Scholar 

  • Ansmann A , Riebesell M, Wandinger U, Weitkamp C, Michaelis W (1991b) Klett forward-backward integration for model-independent determination of the aerosol extinctionto-backscatter ratio. GKSS 91/E/43: 8p

    Google Scholar 

  • Ansmann A , Riebesell M, Wandinger U, Weitkamp C, Voss E, Lahmann W, Michaelis W (1992) Combined Raman Elastic-Backscatter LIDAR for Vertical Profiling of Moisture, Aerosol Extinction, Backscatter, and LIDAR Ratio. Applied Physics B 55: 18–28

    Article  Google Scholar 

  • Ansmann A , Wandinger U, Riebesell M, Weitkamp C, Michaelis W (1992) Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. Applied Optics 31: 7113–7131

    Article  Google Scholar 

  • Ansmann A , Wandinger U, Weitkamp C (1993) One-Year Observations of MountPinatubo Aerosol with an Advanced Raman Lidar over Germany at 53.5°N. Geophysical Research Letters 20: 711–714

    Article  Google Scholar 

  • Baker PW (1983) Atmospheric water vapor differential absorption measurements on vertical paths with a CO2 lidar. Applied Optics 22: 2257–2264

    Article  Google Scholar 

  • Barbini R , Colao F, Palucci A, Ribezzo S, Orlando S (1990) Remote Sounding of Atmospheric Water Vapour from the ENEA DIAL Station. 15ILRC II: 156–159

    Google Scholar 

  • Bisson SE , Goldsmith JEM (1993) Daytime Tropospheric Water Vapor Profile Measurements with a Raman Lidar. 5ORSA: 19–22

    Google Scholar 

  • Boscher J , Englisch W, Wiesemann W (1980) Differentielle Absorptions-Spektroskopie mit dem Fernanalysesystem Dialex. Laser + Elektro Optik 12 (3): 17–22

    Google Scholar 

  • Bösenberg J (1985) Measurements of the pressure shift of water vapor absorption lines by simultaneous photoacoustic spectroscopy. Applied Optics 24: 3531–3534

    Article  Google Scholar 

  • Bösenberg J , Senff C, Thro PY (1990) DIAL Measurements of Water Vapor in the Troposphere: Assessment of Accuracy. 15ILRC II:170–172

    Google Scholar 

  • Braun WC (1985) Simplified calculations for accuracy of a lidar dial system to measure atmospheric H2O vapor and temperature. Applied Optics 24: 109–117

    Article  Google Scholar 

  • Bristow M , Bundy D, Wright A (1994) Photomultipliers and Gating Circuits Suitable for Differential Absorption Lidars. 17ILRC: 191–193

    Google Scholar 

  • Browell EV , Wilkerson TD, Mclllrath TJ (1979) Water vapor differential absorption lidar development and evaluation. Applied Optics 18: 3474–3483

    Article  Google Scholar 

  • Browell EV , Carter AF, Wilkerson TD (1981) Airborne differential absorption lidar system for water vapor investigations. Optical Engineering 20 (1): 084–090

    Google Scholar 

  • Bukin OA , Stolyarchuk YuS, Tyapkin VA (1985) Measurement of Moisture-Content Profiles in the Bottom Layer of the Atmosphere by the Method of Spontaneous Light-Scattering Spectroscopy. JAS Bulg 43: 631–636

    Google Scholar 

  • Cahen C , Mégie G, Flamant P (1982) Lidar Monitoring of the Water Vapor Cycle in the Troposphere. Journal of Applied Meteorology 21: 1506–1515

    Article  Google Scholar 

  • Cooney J , Petri K, Salik A (1985) Measurements of high resolution atmospheric water-vapor profiles by use of a solar blind Raman lidar. Applied Optics 24: 104–108

    Article  Google Scholar 

  • Dautet H , Deschamps P, Dion B, McGregor AD, McSween D, McIntyre RJ, Trottier C, Webb PP (1993) Photon counting technique with silicon avalanche photodiodes. Applied Optics 32: 3894–3900

    Google Scholar 

  • Ehret G , Renger W (1988) Airborne Water Vapor DIAL. 14ILRC: 190–191

    Google Scholar 

  • Ehret G , Kiemle C, Renger W, Simmet G (1993) Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system. Applied Optics 32: 4534–4551

    Article  Google Scholar 

  • Eichinger WE , Cooper DI, Archuletta FL, Hof D, Holtkanmp DB, Karl RR, Quick CR, Tiee J (1994) Development of a scanning, solar-blind, water Raman lidar. Applied Optics 33: 3923–3932

    Article  Google Scholar 

  • Fernald FG (1984) Analysis of atmospheric lidar observations. Some comments. Applied Optics 23: 652–653

    Article  Google Scholar 

  • Ghibaudo J-B , Krawczyk R (1992) Water vapor, temperature and wind velocity measurements from space using 2 Tm:Ho;YAG. SPIE 1714: 258–269

    Article  Google Scholar 

  • Goers U-B (1994) Laserfernmessung von Schwefeldioxid und Ozon in der unteren Troposphäre mit Hilfe der differentiellen Absorption und Streuung unter den Bedingungen des mobilen Einsatzes und der besonderen Berücksichtigung des Einflusses von Grenzschichtaerosolen. Dissertation, Universität Hamburg, 1994. Report GKSS 94/E/52: 147p

    Google Scholar 

  • Grant WB , Margolis JS, Brothers AM, Tratt DM (1987) CO2 DIAL measurements of water vapor. Applied Optics 26: 3033–3042

    Article  Google Scholar 

  • Hardesty RM (1984) Coherent DIAL measurement of range-resolved water vapor concentration. Applied Optics 23: 2545–2553

    Article  Google Scholar 

  • Hauchecorne A , Chanin M-L (1980) Planetary waves-mean flow interaction in the middle atmosphere: Numerical modeling and lidar observations. Annales Geophysicae 6: 409–416

    Google Scholar 

  • Heinrich H-J , Eck I, Weitkamp C (1986) The distribution of hydrogen chloride in plumes of incineration vessels: remote measurement of concentration distributions and determination of dilution and degradation parameters. Report GKSS 86/E/44: 162p

    Google Scholar 

  • Killinger DK , Vaidyanathan M, He C, Taczak T (1994) High-Resolution Spectral Studies of Ho Lasers for Lidar/DIAL Applications. 17ILRC: 298–300

    Google Scholar 

  • Killinger DK , Mooradian A, eds. (1983) Optical and Laser Remote Sensing. Springer, Berlin Heidelberg New York, 383p

    Google Scholar 

  • Klein V , Werner C(1993) Fernmessung von Luftverunreinigungen. Springer, Berlin Heidelberg New York London Paris Tokyo Hongkong Barcelona Budapest, 254p

    Book  Google Scholar 

  • Klett JD (1981) Stable analytical inversion solution for processing lidar returns. Applied Optics 20: 211–220

    Article  Google Scholar 

  • Kobayashi T (1987) Techniques for Laser Remote Sensing of the Environment. Remote Sensing Reviews 3: 1–56

    Article  Google Scholar 

  • Kunz GJ (1987) Lidar and missing clouds. Applied Optics 26: 1161

    Article  Google Scholar 

  • Kyle TG , Barr S, Clements WE (1982) Fluorescent particle lidar. Applied Optics 21:14–15

    Article  Google Scholar 

  • Langford AO , O’Leary TJ, Proffitt MH (1994) Extending the Dynamic Range of Differential Absorption Lidar Measurements through Large-Scale Dithering. 17ILRC: 173–174

    Google Scholar 

  • Lasarev VV , Matvienko GG , Ponomarev YN, Rybalko VS, Tyryshkin IS (1994) The Design of Eye Safety YAG: TmCrHo Pulsed Laser and Study the Energy Losses of its Radiation in Air and Gas-Aerosol Media. 17ILRC: 275–276

    Google Scholar 

  • Lehmann S , Wulfmeyer V, Bösenberg J (1994) A Time Dependent Attenuation for Dynamic Range Reduction of Lidar-Signals. 17ILRC: 289–290

    Google Scholar 

  • Linow S , Theopold F, Weitkamp C, Michaelis W (1994) Properties of a Double-Cavity Etalon. 3ISTP: 366–369

    Google Scholar 

  • McGee TJ , Gross M, Ferrare R, Heaps W, Singh U (1993) Raman Dial measurements of stratospheric ozone in the presence of volcanic aerosols. Geophysical Research Letters 20: 955–958

    Article  Google Scholar 

  • Measures RM (1977) Lidar equation analysis allowing for target lifetime, laser pulse duration, and detector integration period. Applied Optics 16:1092–1103

    Article  Google Scholar 

  • Measures RM (1984) Laser Remote Sensing. Wiley-Interscience, New York Chichester Brisbane Toronto Singapore: 510 p

    Google Scholar 

  • Melendrez DE , Johnson JR, Larson SM, Singer RB (1994) Remote sensing of potential lunar resources 2. High spatial resolution mapping of spectral reflectance ratios and implications for nearside mare TiO2 content. Journal of Geophysical Research 99 (E3): 5601–5619

    Article  Google Scholar 

  • Melfi SH , Lawrence JD, McCormick MP (1969) Observation of Raman Scattering by Water in the Atmosphere. Applied Physics Letters 15: 295–297

    Article  Google Scholar 

  • Melfi SH , Whitemann D (1985) Observation of Lower-Atmospheric Moisture Structure and Its Evolution using a Raman Lidar. Bulletin of the American Meteorological Society 66: 1288–1292

    Article  Google Scholar 

  • Molina LT , Molina MJ (1986) Absolute Absorption Cross Sections of Ozone in the 185- to 350-nm Wavelength Range. Journal of Geophysical Research 91: 14501–14508

    Article  Google Scholar 

  • Murray ER , Hake RD, van der Laan JE, Hawley JG (1976) Atmospheric water vapor measurements with an infrared (10-μm) differential-absorption lidar system. Applied Physics Letters 28: 542–543

    Article  Google Scholar 

  • Murray ER , Powell DD, van der Laan JE (1980) Measurement of average atmospheric temperature using a CO2 laser radar. Applied Optics 19: 1794–1797

    Article  Google Scholar 

  • Papen GC , Murphy GM, Koch GJ, Dejule RY, Kaliski RW (1994) Tunable Multiple Wavelength External Cavity Diode Lasers for Remote Sensing Applications. 17ILRC: 194–195

    Google Scholar 

  • Raschke E , Schmetz J, Heintzenberg J, Kandel R, Saunders R (1990) The International Cirrus Experiment (ICE) — A joint European Effort. ESA Journal14: 192–199

    Google Scholar 

  • Renaut D , Pourny JC, Capitini R (1980) Daytime Raman-lidar measurements of water vapor. Optics Letters 5: 233–235

    Article  Google Scholar 

  • Schlüssel G , Dickinson RE, Privette JL, Emery WJ, Kokaly R (1994) Modeling the bidirectional reflectance distribution function of mixed finite plant canopies and soil. Journal of Geophysical Research 99: 10577–10600

    Article  Google Scholar 

  • Schotland RM (1974) Errors in the Lidar Measurement of Atmospheric Gases by Differential Absorption. Journal of Applied Meteorology 13: 71–77

    Article  Google Scholar 

  • Takeuchi N , Sugimoto N, Baba H, Sakurai K (1983) Random modulation cw lidar. Applied Optics 22: 1382–1386

    Article  Google Scholar 

  • Tanaka M , Sakurai S, Kobayashi F, Saito Y, Kano T, Nomura A (1994) Possibility of Photon Counting in Near-Infrared (0.8 – 1.5 μm) Region by Ge-APD. 17ILRC: 291–294

    Google Scholar 

  • Theopold F , Weitkamp C, Michaelis W (1993) Double-cavity étalon in the near infrared. Optics Letters 18: 253–254. Report GKSS 93/E/15

    Article  Google Scholar 

  • Uthe EE , Viezee W, Morley BM, Ching JKS (1985) Airborne Lidar Tracking of Fluorescent Tracers for Atmospheric Transport and Diffusion Studies. Bulletin of the American Meteorological Society 66: 1255–1262

    Article  Google Scholar 

  • Vaughan G , Wareing D P, Thomas L, Mitev V (1988) Humidity measurements in the free troposphere using Raman backscatter. Quarterly Journal of the Royal Meteorological Society 114: 1471–1484

    Article  Google Scholar 

  • Vaughan G , Wareing DP, Peper SJ, Thomas L , Mitev V(1993) Atmospheric temperature measurements made by Rotational Raman scattering. Applied Optics 32: 2758–2764

    Article  Google Scholar 

  • Weitkamp C (1988) Infrared lidar measurement of the diffusion of hydrogen chloride from seaborne waste incineration. In: R Kesselring, FK Kneubühl eds: Fourth International Conference on Infrared Physics, ETH Zürich, Switzerland, 22–26 August 1988. Proceedings, Zürich 1988: 218–226

    Google Scholar 

  • Weitkamp C , Thomsen O, Bisling P (1992) Mess- und Vergleichswellenlängen zur Elimination von SO2-Querempfindlichkeiten bei der Lidar-Fernmessung troposphärischen Ozons. Laser und Optoelektronik 24 (2): 46–52

    Google Scholar 

  • Werner Ch , Murphy E, Schwiesow R (1992) Analysis of Optical Amplifiers applied to Short-Wavelength Doppler Lidars using Direct Detection. SPIE 1714: 284–290

    Article  Google Scholar 

  • Wiesemann W , Beck R, Englisch W, Gürs K (1978) In-Flight Test of a Continuous Laser Remote Sensing System. Applied Physics 15: 257–260

    Article  Google Scholar 

  • Wulfmeyer V , Bösenberg J, Lehmann S, Senff C, Schmitz S t (1994) Injection-seeded alexandrite ring laser: performance and application in a water-vapor differential absorption lidar. Optics Letters 20: 638–640

    Article  Google Scholar 

  • Zeyn J , Voss E, Lahmann W, Weitkamp C, Michaelis W (1994) Daytime temperature lidar based on rotational Raman scattering. 3ISTP 2: 262–265

    Google Scholar 

  • Zuev VV (1983) Lidar differential absorption and scattering technique: theory. Applied Optics 22: 3733–3741

    Article  Google Scholar 

  • Zuev VV , Ponomarev Yu N, Solodow AM, Tikhomirov BA, Romanovsky OA (1985) Influence of the shift of H20 absorption lines with air pressure on the accuracy of the atmospheric humidity profiles measured by the differential-absorption method. Optics Letters 10: 318–320

    Article  Google Scholar 

Additional Reading

  • Becherer RJ , Werner C editors (1992). Lidar for Remote Sensing. SPIE Volume 1714. Bellingham, WA, USA: SPIE — The International Society for Optical Engineering, 336 p

    Google Scholar 

  • Killinger DK , Mooradian A, eds. (1983) Optical and Laser Remote Sensing. Springer, Berlin Heidelberg New York, 383 p

    Google Scholar 

  • Kobayashi T (1987) Techniques for Laser Remote Sensing of the Environment. Remote Sensing Reviews 3: 1–56

    Article  Google Scholar 

  • Klein V , Werner C (1993) Fernmessung von Luftverunreinigungen. Springer, Berlin Heidelberg New York London Paris Tokyo Hongkong Barcelona Budapest, 254 p

    Book  Google Scholar 

  • Measures RM (1984) Laser Remote Sensing. Wiley-Interscience, New York Chichester Brisbane Toronto Singapore: 510 p

    Google Scholar 

  • Weitkamp C (1990) Lidar. In Ruck B ed. (1990) Lasermethoden in der Strömungsmeßtechnik, Stuttgart AT-Fachverlag, 151–208

    Google Scholar 

  • A prolific source of information is also the proceedings of several series of conferences such as the Topical Meetings on Optical Remote Sensing of the Atmosphere (ORSA), the International Symposia on Tropospheric Profiling: Needs and Technologies (ISTP) and the International Laser Radar Conferences (ILRC): 3ORSA 1990. 12–15 February 1990, Incline Village, NV, USA, Optical Society of America, 1990 Technical Digest Series Volume 4, 650 p

    Google Scholar 

  • 4ORSA 1991, 18–21 Novemberr 1991, Williamsburg, VA, USA, OSA, 1991 Technical Digest Series Volume 18, 332 p

    Google Scholar 

  • 5ORSA 1993, 8–12 March 1993, Salt Lake City, UT, USA, OSA, 1993 Technical Digest Series Volume 5, 468 p

    Google Scholar 

  • 6ORSA 1995, 6–10 February 1995, Salt Lake City, UT, USA, OSA, 1995 Technical Digest Series Volume 2, 236 p

    Google Scholar 

  • 1ISTP, 31 May to 3 June 1988, Boulder, CO, USA, National Center for Atmospheric Research, 260, 10 p

    Google Scholar 

  • 2ISTP, 10 to 13 September 1991, Boulder, CO, USA, National Center for Atmospheric Research, 214 p

    Google Scholar 

  • 3ISTP, 30 August to 2 September 1994, Hamburg, Germany, Max-Planck-Gesellschaft zur Förderung der Wissenschaften, Volume 1 p. 1–200, Volume 2 p. 201–462

    Google Scholar 

  • 12ILRC, 13 to 17 August 1984, Aix-en-Provence, France, 451 p

    Google Scholar 

  • 13ILRC, 11 to 16 August 1986, Toronto, ON, Canada, National Aeronautics and Space Administration, NASA Conference Publication 2431, 321 p

    Google Scholar 

  • 14ILRC, 20–23 June 1988, Innichen-San Candido, Italy, 512 p

    Google Scholar 

  • 15ILRC, 23–27 July 1990, Tomsk, USSR, Institute of Atmospheric Optics, Volume 1, 404 p., Volume 2, 430 p

    Google Scholar 

  • 16ILRC, 20–24 July 1992, Cambridge, MA, USA, National Aeronautics and Space Administration, NASA Conference Publication 3158, Volume 1 p. 1–380, Volume 2 p. 381–732

    Google Scholar 

  • 17ILRC, 25–29 July 1994, Sendai, Japan, Laser Radar Society of Japan, 592 p

    Google Scholar 

  • 18ILRC, Summer 1996, to be held in Berlin, Germany

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weitkamp, C. (1996). Lidar Measurements: Atmospheric Constituents, Clouds, and Ground Reflectance. In: Raschke, E. (eds) Radiation and Water in the Climate System. Nato ASI Series, vol 45. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03289-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03289-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08261-0

  • Online ISBN: 978-3-662-03289-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics