A Microsimulation Tool for Social Force Models

  • Péter Molnár
Conference paper


The prediction of pedestrian flows in buildings and pedestrian areas is an important concern during the planning phase of pedestrian facilities. In the last two decades several macroscopic [Henderson 1971; Helbing 1992] and microscopic [Gibbs and Marksjö 1985; Helbing 1991; Ebihara et al. 1992; Løvås 1994] models of the behavior of pedestrians have been developed for this purpose.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ebihara, M., Ohtsuki, A. and Iwaki, H. (1992) A model for simulating human behavior during emergency evacuation based on classificatory reasoning and certainty value handling. Microcomputers in Civil Engineering 7, pp. 63–71.CrossRefGoogle Scholar
  2. Gibbs, P.G. and Marksjö, B. (1985) A micro-simulation model for pedestrian flows. Mathematics and Computers in Simulation 27, pp. 95–105.CrossRefGoogle Scholar
  3. Hegselmann, R. (1994) Zur Selbstorganisation von Solidarnetzwerken. In: Homann, K., ed. Wirtschaftliche Perspekiven I, Duncker Humblot, Berlin.Google Scholar
  4. Helbing, D. (1991) A mathematical model for the behavior of pedestrians. Behavioral Science 36, pp. 298–310.CrossRefGoogle Scholar
  5. Helbing, D. (1992) A fluid-dynamic model for the movement of pedestrians. Complex Systems 6, pp. 391–415.Google Scholar
  6. Helbing, D. (1993) A mathematical model for the behavior of individuals in a social field. Physica A 196, pp. 546.CrossRefGoogle Scholar
  7. Helbing, D. and Molnar, P. (1995) Social force model for pedestrian dynamics. Physical Review E 51, pp. 4282–4286.CrossRefGoogle Scholar
  8. Helbing, D., Molnar, P., and Schweitzer, F. (1994) Computer simulations of pedestrian dynamics and trail formation. In: Evolution of Natural Structures (Sonderforschungsbereich 230, Stuttgart), pp. 229–234.Google Scholar
  9. Henderson, L.F. (1971) The statistics of crowd fluids. Nature, 229 (5), pp. 381–383.CrossRefGoogle Scholar
  10. Latané, B. (in press) The emergence of clustering and correlation from social interaction. In: Hegselmann, R., and Peitgen, H.O. eds., Order and chaos in nature and society,Hölder-Pichler, Vienna.Google Scholar
  11. Lewin, K. (1951) Field Theory in Social Science, Harper, New York.Google Scholar
  12. LOvâs, G. G. (1994) Modelling and simulation of pedestrian traffic flow. Transportation Research B 28B, pp. 429–443.CrossRefGoogle Scholar
  13. Michalewicz, Z. (1994) Genetic Algorithms + Data Structures = Evolution Programs, 2nd ed., Springer, Berlin Heidelberg New York.CrossRefGoogle Scholar
  14. Möhring, M., Strotmann, V. and Flache, A. (1994) MIMOSE— Einführung in die Modellierung, Sprachbeschreibung,Universität Koblenz-Landau.Google Scholar
  15. Molnar, P. and Helbing, D. (1994) Sociology*Express,P.O. Box 4327, Burlingame, CA 940114327.Google Scholar
  16. Rechenberg, I. (1973) Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution, Frommann-Holzboog, Stuttgart.Google Scholar
  17. Schelling, Th.C. (1971) Dynamic models of segregation. Journal of Mathematical Sociology 1, pp. 143–186.CrossRefGoogle Scholar
  18. Schmidt, B. (1995) Object-Oriented Specification of Simulation Models, In: Modelling and Simulation European Simulation Multiconference, Prague, SCS Publication, San Diego.Google Scholar
  19. Schwefel, H.-P. (1977) Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrategie, Birkhäuser, Basel Stuttgart.Google Scholar
  20. Stroustrup, B. (1993) The C++ Programming language,2nd ed., Addison Wesley.Google Scholar
  21. Weidmann, U. (1993) Transporttechnik der Fußgänger, Schriftenreihe des Instituts für Verkehrs- planung, Transporttechnik, Straßen-und Eisenbahnbau Nr. 90, ETH Zürich, pp. 87–88.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Péter Molnár
    • 1
  1. 1.II. Institut für theoretische PhysikUniversiät StuttgartStuttgartGermany

Personalised recommendations