Advertisement

Electromagnetic Processes and Interactions

  • F. Scheck
Part of the Electroweak and Strong Interactions book series (GTP)

Abstract

The electron, the muon, and their neutrinos are important tools in testing the structure of the fundamental electromagnetic and weak interactions. On the other hand, if these interactions are known, they serve as ideal probes for the internal structure of complex hadronic targets such as nucleons and nuclei. Although electroweak interactions should in fact be discussed as a whole and on the same footing, purely electromagnetic interactions play a distinctive role, for obvious experimental reasons: At low and intermediate energies the effective electromagnetic coupling is larger by many orders of magnitude than the weak couplings, so that electromagnetic processes are measurable to much higher accuracy than purely weak processes.

Keywords

Form Factor Elastic Scattering Partial Wave Born Approximation Feynman Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alder, K., A. Bohr, T. Huus, B. Mottelson and A. Winther, 1956, Rev. Mod. Phys. 28, 432.MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. Alder, K. and T.H. Schucan, 1963, Nucl. Phys. 42, 498.CrossRefGoogle Scholar
  3. Bailey, J, K. Borer, F. Combley, H. Drumm, C. Eck, FJ.M. Farley, J.H. Field, W. Flegel, P.M. Hattersley, F. Krienen, F. Lange, G. Lebée, E. McMillan, G. Petrucci, E. Picasso, O. Runolfsson, W. von Rüden, R.W. Williams and S. Wojcicki, 1979, Nucl. Phys. B150, 1.ADSCrossRefGoogle Scholar
  4. Blomqvist, J., 1972, Nucl. Phys. B48, 95.ADSCrossRefGoogle Scholar
  5. Borie, E.F. and G.A. Rinker, 1982, Rev. Mod. Phys. 54,67.ADSCrossRefGoogle Scholar
  6. Borkowski, F., G.G. Simon, V.H. Walther and R.D. Wendling, 1975, Nucl. Phys. B93, 461.ADSCrossRefGoogle Scholar
  7. Borkowski, F., G. Höhler, E. Pietarinen, I. Sabba-Stefanescu, G.G. Simon, V.H. Walther and R.D. Wendling, 1976, Nucl. Phys. B114, 505.ADSGoogle Scholar
  8. De Forest, T. and J.D. Walecka, 1975, Adv. in Phys. 15, 1.CrossRefGoogle Scholar
  9. Donnelly, T.W. and J.D. Walecka, 1975, Ann. Rev. Nucl. Sci. 25, 329.ADSCrossRefGoogle Scholar
  10. Elton, L.R.B., 1953, Proc. Roy. Soc. (London) A66, 806.ADSGoogle Scholar
  11. Engfer, R., H. Schneuwly, J.L. Vuilleumier, H.K. Walter and A. Zehnder, 1974, Atomic and Nuclear Data Tables 14, 509.ADSCrossRefGoogle Scholar
  12. Friedrich, J. and F. Lenz, 1972, Nucl. Phys. A183, 523.ADSGoogle Scholar
  13. Friar, J.L. and J.W. Negele, 1973, Nucl. Phys. A212, 93.ADSGoogle Scholar
  14. Frois, B. and C.N. Papanicolas, 1987, Ann. Rev. Nucl. Part. Sci. 37, 133.ADSCrossRefGoogle Scholar
  15. Griffy, T.A, D.S. Onley, J.T. Reynolds and L.C. Biedenharn, 1963, Phys. Rev. 128, 833 and 129,1698.ADSCrossRefGoogle Scholar
  16. Lenz, F., 1969, Zeit. Physik 222, 491.CrossRefGoogle Scholar
  17. Mott, N.F., 1929, Proc. Roy. Soc. (London) A124, 429.ADSGoogle Scholar
  18. Ravenhall, D.G., D.R. Yennie and R.N. Wilson, 1954, Phys. Rev. 95, 500.ADSzbMATHCrossRefGoogle Scholar
  19. Reynolds, J.T., D.S. Onley and L.C. Biedenharn, 1964, J. Math. Phys. 5, 411.MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. Rosenbluth, M.N., 1950, Phys. Rev. 79, 615.ADSzbMATHCrossRefGoogle Scholar
  21. Scheck, F., 1978, Phys. Reports 44, 187.ADSCrossRefGoogle Scholar
  22. Scheck, F., 1966, Nucl. Phys. 77, 577.CrossRefGoogle Scholar
  23. Sick, I., 1974, Nucl. Phys. A218, 509 and Phys. Lett. 53B, 15.Google Scholar
  24. Simon, G.G., Ch. Schmitt, F. Borkowski and V.H. Walther, 1980, Nucl. Phys. A333, 381.ADSGoogle Scholar
  25. Uehling, E.A., 1935, Phys. Rev. 48, 55.ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • F. Scheck
    • 1
  1. 1.Institut für PhysikJohannes Gutenberg-UniversitätMainzGermany

Personalised recommendations