Algebra IX pp 1-120 | Cite as

On the Representation Theory of the Finite Groups of Lie Type over an Algebraically Closed Field of Characteristic 0

  • R. W. Carter
Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 77)

Abstract

In this article we shall be describing the representation theory of a certain class of finite groups. In order to make clear the significance of this class of groups we recall the classification of the finite simple groups. In 1981 it was finally proved, after intensive effort by many workers over several decades, that every finite simple group must be one of the following:

a cyclic group of prime order

an alternating group of order 1/2n! for n ≥5

a group of Lie type over a finite field

one of 26 sporadic simple groups

The finite groups of Lie type are analogues over a finite field of the simple Lie groups over ℂ or ℝ.

Keywords

Convolution Stein Tate Topo Bala 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Adams, J. and Moy, A.: Unipotent representations and reductive dual pairs over finite fields. Trans. Am. Math. Soc. 340 (1993), 309–321MathSciNetMATHGoogle Scholar
  2. 1.
    Agarwal, A.K. and Andrews, G.E.: On Asai’s polynomials related to the twisting operators of finite classical groups. J. Ramanujan Math. Soc. 1 (1986), 16–45 Zb1.676.05008MathSciNetMATHGoogle Scholar
  3. 1.
    Alekseevskij, A.V.: Component groups of centralizers of unipotent elements in semisimple algebraic groups. Tr. Tbilis. Mat. Inst. Razmadze 62 (1979), 5–27 Zb1.455.20033MATHGoogle Scholar
  4. 1.
    Alvis, D.: The duality operation in the character ring of a finite Chevalley group. Bull. Am. Math. Soc., New Ser. 1 (1979), 907–911 Zb1.485.20029MathSciNetMATHCrossRefGoogle Scholar
  5. 2.
    Alvis, D.: Duality in the character ring of a finite Chevalley group. Proc. Symp. Pure Math. 37 (1980), 353–357 Zb1.452.20005MathSciNetGoogle Scholar
  6. 3.
    Alvis, D.: Duality and character values of finite groups of Lie type. J. Algebra 74 (1982), 211–222 Zb1.485.20030MathSciNetMATHCrossRefGoogle Scholar
  7. 4.
    Alvis, D.: Families of irreducible characters of Weyl groups. Proc. Symp. Pure Math. 47 (1987), 13–22 Zb1.649.20039MathSciNetGoogle Scholar
  8. 1.
    Artin, M., Grothendieck, A. and Verdier, J.L.: SGA 4. Théorie des topos et cohomologie étale des schémas. Lect. Notes Mathematics 269, 270–305 (1973) Zb1.234.00007, Zb1.237.00012, Zb1.245.00002Google Scholar
  9. 1.
    Asai, T.: Unipotent class functions of split special orthogonal groups SOL over finite fields. Commun. Algebra 12 (1984), 517–615 Zb1.545.20028MathSciNetMATHCrossRefGoogle Scholar
  10. 2.
    Asai, T.: The unipotent class functions on the symplectic groups and the odd orthogonal groups over finite fields. Commun. Algebra 12 (1984), 617–645 Zb1.559.20024MathSciNetMATHCrossRefGoogle Scholar
  11. 3.
    Asai, T.: The unipotent class functions of exceptional groups over finite fields. Common. Algebra 12 (1984), 2729–2857 Zb1.547.20037MathSciNetMATHCrossRefGoogle Scholar
  12. 4.
    Asai, T.: The unipotent class functions of nonsplit finite special orthogonal groups. Commun. Algebra 13 (1985), 845–924 Zb1.574.20031MathSciNetMATHCrossRefGoogle Scholar
  13. 5.
    Asai, T.: Twisting operators on the space of class functions of finite special linear groups. Proc. Symp. Pure Math. 47 (1987), 99–148 Zb1.657.20033MathSciNetGoogle Scholar
  14. 1.
    Aubert, A.-M.: Foncteurs de Mackey et dualité de Curtis généralisés. C.R. Acad. Sci., Paris, Sér. I 315 (1992), 663–668 Zb1.793.20029MathSciNetGoogle Scholar
  15. 1.
    Bala, P. and Carter, R.W.: The classification of unipotent and nilpotent elements. Indag. Math. 36 (1974), 94–97 Zb1.292.20046MathSciNetGoogle Scholar
  16. 2.
    Bala, P. and Carter, R.W.: Classes of unipotent elements in simple algebraic groups I. Math. Proc. Camb. Philos. Soc. 79 (1976), 401–425 Zb1.364.22006MathSciNetMATHCrossRefGoogle Scholar
  17. 3.
    Bala, P. and Carter, R.W.: Classes of unipotent elements in simple algebraic groups II. Math. Proc. Camb. Philos. Soc. 80 (1976), 1–18 Zb1.364.22007MathSciNetMATHCrossRefGoogle Scholar
  18. 1.
    Bannai, E., Kawanaka, N. and Song, S.-Y.: The character table of the Hecke algebra. (GL2„(F9), Sp2n(F9)). J. Algebra 129 (1990), 320–366 Zb1.761.20013MathSciNetMATHCrossRefGoogle Scholar
  19. 1.
    Barbasch, D. and Vogan, D.: Primitive ideals and orbital integrals in complex classical groups. Math. Ann. 259 (1982), 153199 Zb1.489.22010Google Scholar
  20. 2.
    Barbasch, D. and Vogan, D.: Primitive ideals and orbital integrals in complex exceptional groups. J. Algebra 80 (1983), 350382 Zb1.513.22009Google Scholar
  21. 1.
    Barry, M.J.J.: Schur indices and 3 D 4 (g 3 ), q odd. J. Algebra 117 (1988), 522–524 Zb1.648.20013MathSciNetMATHCrossRefGoogle Scholar
  22. 1.
    Beilinson, A.A., Bernstein, J.N. and Deligne, P.: Faisceaux pervers. Astérisque 100 (1982). 172 pp Zb1.536.14011MathSciNetGoogle Scholar
  23. 1.
    Benson, C.T. and Curtis, C.W.: On the degrees and rationality of certain characters of finite Chevalley groups. Trans. Am. Math. Soc. 165 (1972), 251–273 Zb1.246.20008MathSciNetMATHCrossRefGoogle Scholar
  24. 1.
    Beynon, W.M. and Spaltenstein, J.N.: The computation of Green functions of finite Chevalley groups of type E„ (n = 6, 7, 8). University of Warwick Computer Centre Report 23 (1982) Beynon, W.M. and Spaltenstein, J.N.: J. Algebra 88 (1984), 584–614 Zb1.539.20025MathSciNetMATHCrossRefGoogle Scholar
  25. 1.
    Borel, A.: Linear Algebraic Groups. Benjamin, New York 1969 Zb1.186,332MATHGoogle Scholar
  26. 1.
    Borel, A. et al.: Seminar on algebraic groups and related finite groups. Lect. Notes Mathematics 131 (1970). Zb1.192,362Google Scholar
  27. 1.
    Borel, A. and Springer, T.A.: Rationality properties of linear algebraic groups I. Proc. Symp. Pure Math. 9 (1966), 26–32 Zb1.199,68MathSciNetGoogle Scholar
  28. 2.
    Borel, A. and Springer, T.A.: Rationality properties of linear algebraic groups II. Tôhoku Math. J., II. Ser. 20 (1968), 443–497. Zb1.211,533MathSciNetMATHGoogle Scholar
  29. 1.
    Borel, A. and Tits, J.: Groupes réductifs. Inst. Hautes Etud. Sci., Publ. Math. 27 (1965), 55–150. Zb1.145,174MathSciNetCrossRefGoogle Scholar
  30. 1.
    Borho, W.: Über Schichten halbeinfacher Lie-Algebren. Invent. Math. 65 (1981), 283–317 Zb1.484.17004MathSciNetMATHGoogle Scholar
  31. 1.
    Broué, M.: Blocs, isométries parfaites, catégories dérivées. C.R. Acad. Sci., Paris, Sér. I 307 (1988), 13–18 Zb1.642.20007Google Scholar
  32. 1.
    Broué, M. and Malle, G.: Théorèmes de Sylow génériques pour les groupes réductifs sur les corps finis. Math. Ann. 292 (1992), 241–262MathSciNetMATHCrossRefGoogle Scholar
  33. 1.
    Broué, M. and Michel, J.: Blocs et séries de Lusztig dans un groupe réductif fini. C.R. Acad. Sci., Paris, Sér I 306 (1988), 21–24 Zb1.659.20032Google Scholar
  34. 2.
    Broué, M. and Michel, J.: Blocs et séries de Lusztig dans un groupe réductif fini. J. Reine Angew. Math. 395 (1989), 56–67 Zb1.654.20048MathSciNetMATHGoogle Scholar
  35. 1.
    Carter, R.W.: Simple Groups of Lie Type. John Wiley, London 1972 Zb1.248.20015MATHGoogle Scholar
  36. 2.
    Carter, R.W.: Finite Groups of Lie Type: Conjugacy Classes and Complex Characters. John Wiley, London 1985 Zb1.567.20023MATHGoogle Scholar
  37. 3.
    Carter, R.W.: On the structure and complex representation theory of finite groups of Lie type. Vorlesungen Fachbereich Math. Universität Essen 16 (1987), 90 pp. Zb1.632.20025Google Scholar
  38. 4.
    Carter, R.W.: The relation between irreducible characters and conjugacy classes in finite groups of Lie type. Suppl., Rend. Circ. Mat. Palermo, II. Ser. 19 (1988), 61–69 5. Carter, R.W.: Deligne-Lusztig theory and block theory. Proc. Hyderabad Conf. Algebraic Groups (1991), 59–80Google Scholar
  39. 1.
    Cartier, P: Détermination des caractères des groupes finis simples: travaux de Lusztig. Astérisque 145–146 (1987), 137–161 Zb1.618.20034Google Scholar
  40. 1.
    Chang, B. and Ree, R.: The characters of G 2 (q). Symp. Math. 13 (1972), Academic Press, London (1974), 395–413 Zb1.314.20034Google Scholar
  41. 1.
    Chevalley, C.: Séminaire Chevalley Vols. I, II: Classification des groupes de Lie algébriques. Paris (1956–8). Zb1.92,263Google Scholar
  42. 2.
    Chevalley, C.: Sur certains groupes simples. Tôhoku Math. J., II. Ser. 7 (1955), 14–66 Zb1.66,15MathSciNetMATHGoogle Scholar
  43. 3.
    Chevalley, C.: Invariants of finite groups generated by reflections. Am. J. Math. 77 (1955), 778–782 Zb1.65,261MathSciNetMATHCrossRefGoogle Scholar
  44. Conway, J.H. et al.: 1. Atlas of Finite Groups. Clarendon Press, Oxford 1985 Zb1.568.20001MATHGoogle Scholar
  45. 1.
    Curtis, C.W.: Representations of finite groups of Lie type. Bull. Am. Math. Soc. 1 (1979), 721–757 Zb1.421.20002MathSciNetMATHCrossRefGoogle Scholar
  46. 2.
    Curtis, C.W.: Truncation and duality in the character ring of a finite group of Lie type. J. Algebra 62 (1980), 320–332 Zb1.426.20006MathSciNetMATHCrossRefGoogle Scholar
  47. 3.
    Curtis, C.W.: Algèbres de Hecke et représentations des groupes finis de type de Lie. Publ. Math. Univ. Paris VII 25 (1986), 1–59 Zb1.654.20049MathSciNetGoogle Scholar
  48. 4.
    Curtis, C.W.: Topics in the theory of representations of finite groups. Lect. Notes Mathematics 1185 (1986), 58–87 Zb1.588.20005MathSciNetCrossRefGoogle Scholar
  49. 5.
    Curtis, C.W.: The Hecke algebra of a finite Coxeter group. Proc. Symp. Pure Math. 47 (1987), 51–60 Zb1.653.20037MathSciNetGoogle Scholar
  50. 6.
    Curtis, C.W.: Representation theory of Hecke algebras. Vorlesungen Fachbereich Math. Universität Essen 15 (1987), 86 pp Zb1.659.20036MathSciNetGoogle Scholar
  51. 1.
    Curtis, C.W., Iwahori, N. and Kilmoyer, R.W.: Hecke algebras and characters of parabolic type of finite groups with BN-pairs. Inst. Hautes Etud. Sci., Publ. Math. 40 (1972), 81–116 Zb1.254.20004Google Scholar
  52. 1.
    Deligne, P.: SGA 41. Cohomologie étale, Lect. Notes Mathematics 569 (1977) Zb1.345.00010Google Scholar
  53. 2.
    Deligne, P.: La conjecture de Weil I. Inst. Hautes Etud. Sci. Publ. Math., 43 (1973), 273–307 Zb1.287.14001Google Scholar
  54. 3.
    Deligne, P.: La conjecture de Weil II. Inst. Hautes Etud. Sci., Publ. Math. 52 (1980), 137–252 Zb1.456.14014MathSciNetMATHCrossRefGoogle Scholar
  55. 1.
    Deligne, P. and Lusztig, G.: Representations of reductive groups over finite fields. Ann. Math., II. Ser. 103 (1976), 103–161 Zb1.336.20029MathSciNetMATHCrossRefGoogle Scholar
  56. 2.
    Deligne, P. and Lusztig, G.: Duality for representations of a reductive group over a finite field. J. Algebra 74 (1982), 284–291. Zb1.482.20027Google Scholar
  57. 3.
    Deligne, P. and Lusztig, G.: Duality for representations of a reductive group over a finite field II. J. Algebra 81 (1983), 540–545 Zb1.545.20020MathSciNetMATHCrossRefGoogle Scholar
  58. 1.
    Deodhar, V.V.: A combinatorial setting for questions in Kazhdan-Lusztig theory. Geom. Dedicata 36 (1990), 95–119 Zb1.716.17015MathSciNetMATHGoogle Scholar
  59. 2.
    Deodhar, V.V.: Duality in parabolic set up for questions in Kazhdan-Lusztig theory. J. Algebra 142 (1991), 201–209 Zb1.751.20035MathSciNetMATHCrossRefGoogle Scholar
  60. 1.
    Deriziotis, D.I.: The Brauer complex of a Chevalley group. J. Algebra 70 (1981), 261–269 Zb1.475.20034MathSciNetMATHCrossRefGoogle Scholar
  61. 2.
    Deriziotis, D.I.: Centralizers of semisimple elements in a Chevalley group. Commun. Algebra 9 (1981), 19972014 Zb1.473.20036Google Scholar
  62. 1.
    Deriziotis, D.I. and Michler, G.: Character table and blocks of finite simple triality groups 3 Trans. Am. Math. Soc. 303 (1987), 39–70 Zb1.628.20014MathSciNetMATHGoogle Scholar
  63. 1.
    Digne, F.: Résolution des conjectures de Macdonald par Deligne et Lusztig. Publ. Math. Univ. Paris VII 17 (1984), 95–115 Zb1.598.20048MathSciNetGoogle Scholar
  64. 2.
    Digne, F.: Descente du corps de base et blocs, d’après N. Kawanaka. Publ. Math. Univ. Paris VII 25 (1986), 61–81 Zb1.653.20043MathSciNetGoogle Scholar
  65. 3.
    Digne, F.: Shintani descent and L functions on Deligne-Lusztig varieties. Proc. Symp. Pure Math. 47 (1987), 61–68. Zb1.657.20036MathSciNetGoogle Scholar
  66. 1.
    Digne, F. and Michel, J.: Nombre de points rationnels des variétés de Deligne-Lusztig et caractères de l’algèbre de Hecke. C.R. Acad. Sci., Paris, Sér. A 287 (1978), 811–814 Zb1.425.20039MathSciNetMATHGoogle Scholar
  67. 2.
    Digne, F. and Michel, J.: Descente de Shintani des caractères d’un groupe de Chevalley fini. C.R. Acad. Sci., Paris, Sér. A 291 (1980), 571–574 Zb1.456.20021Google Scholar
  68. 3.
    Digne, F. and Michel, J.: Descente de Shintani des caractères de Deligne-Lusztig. C.R. Acad. Sci., Paris, Sér. A 291 (1980), 651–653 Zb1.456.20020Google Scholar
  69. 4.
    Digne, F. and Michel, J.: Remarques sur la dualité de Curtis. J. Algebra 79 (1982), 151–160 Zb1.493.20026MathSciNetMATHCrossRefGoogle Scholar
  70. 5.
    Digne, F. and Michel, J.: Décomposition des descentes de Shintani. Publ. Math. Univ. Paris VII 17 (1984), 127–147, 149–159 Zb1.598.20048MathSciNetGoogle Scholar
  71. 6.
    Digne, F. and Michel, J.: Fonctions L des variétés de Deligne-Lusztig et descente de Shintani. Mém. Soc. Math. Fr. Nouv. Sér. 20 (1985). 144 pp Zb1.608.20027MathSciNetGoogle Scholar
  72. 7.
    Digne, F. and Michel, J.: Foncteurs de Lusztig et caractères des groupes linéaires et unitaires sur un corps fini. J. Algebra 107 (1987), 217–255 Zb1.622 20034MathSciNetMATHCrossRefGoogle Scholar
  73. 8.
    Digne, F. and Michel, J.: On Lusztig’s parametrisation of characters of finite groups of Lie type. Astérisque 181–182 (1990), 113–156 Zb1.711.20024Google Scholar
  74. 9.
    Digne, F. and Michel, J.: Representations of finite groups of Lie type. Lond. Math. Soc. Student Texts 21 (1991). Cambridge Univ. PressGoogle Scholar
  75. 1.
    Digne, F., Lehrer, G.I. and Michel, J.: The characters of the group of rational points of a reductive group with non-connected centre. J. Reine Angew. Math. 425 (1992), 155–192 Zb1.739.20018MathSciNetMATHGoogle Scholar
  76. 1.
    Dynkin, E.B.: Semisimple subalgebras of semisimple Lie algebras. Mat. Sb., Nov. Ser. 30 (72), 349–462 (1952) Zb1.48,17MathSciNetGoogle Scholar
  77. Dynkin, E.B.: English transi.: Am. Math. Soc. Transi., II Ser. 6 (1957), 111–243MATHGoogle Scholar
  78. 1.
    Enomoto, H.: The characters of the finite symplectic group Sp(4, q), q = 2f. Osaka J. Math. 9 (1972), 75–94 Zb1.254.20005MathSciNetMATHGoogle Scholar
  79. 2.
    Enomoto, H.: The characters of the finite Chevalley group G 2 (q), q = 3f. Jap. J. Math., New Ser. 2 (1976), 191–248 Zb1.384.20007MathSciNetMATHGoogle Scholar
  80. 1.
    Enomoto, H. and Yamada, H.: The characters of G2(2“). Jap. J. Math., New Ser. 12 (1986), 325–377 Zb1.614.20028Google Scholar
  81. 1.
    Fong, P. and Srinivasan, B.: Generalised Harish-Chandra theory for unipotent characters of finite classical groups. J. Algebra 104 (1986), 301–309 Zb1.606.20035MathSciNetMATHCrossRefGoogle Scholar
  82. 2.
    Fong, P. and Srinivasan, B.: The blocks of finite classical groups. J. Reine Angew. Math. 396 (1989), 122–191 Zb1.656.20039MathSciNetMATHGoogle Scholar
  83. 1.
    Frobenius, G.: Über die Charaktere der symmetrischen Gruppe. Sitz. Ber. Preuss. Akad. Berlin (1900), 516–534. Jbuch 31,129Google Scholar
  84. 1.
    Geck, M.: Generalised Gelfand-Graev characters for Steinberg’s triality groups and their applications. Commun. Algebra 19 (1991), 3249–3269 Zb1.756.20001MathSciNetMATHCrossRefGoogle Scholar
  85. 2.
    Geck, M.: On the decomposition numbers of the finite unitary groups in nondefining characteristic. Math. Z. 207 (1991), 83–89 Zb1.727.20012MathSciNetMATHCrossRefGoogle Scholar
  86. 3.
    Geck, M.: On the classification of 1-blocks of finite groups of Lie type. J. Algebra 151 (1992), 180–191 Zb1.771.20007MathSciNetMATHCrossRefGoogle Scholar
  87. 4.
    Geck, M.: Basic sets of Brauer characters of finite groups of Lie type II. J. Lond. Math. Soc., II. Ser. 47 (1993), 255–268 Zb1.797.20013MathSciNetMATHCrossRefGoogle Scholar
  88. 1.
    Geck, M. and Hiss, G.: Basic sets of Brauer characters of finite groups of Lie type. J. Reine Angew. Math. 418 (1991), 173–188 Zb1.771.20008MathSciNetMATHGoogle Scholar
  89. 1.
    Geck, M. and Pfeiffer, G.: Unipotent characters of the Chevalley groups D 4 (q), q odd. Manuscripta Math. 76 (1992), 281–304MathSciNetMATHCrossRefGoogle Scholar
  90. 1.
    Gel’fand, I.M. and Graev, M.I.: Construction of irreducible representations of simple algebraic groups over a finite field, Dokl. Akad. Nauk. SSSR 147 (1962), 529–532MathSciNetMATHGoogle Scholar
  91. Gel’fand, I.M. and Graev, M.I.: English transl.: Soy. Math., Dokl. 3 (1963), 1646–1649.Zb1.119,269Google Scholar
  92. 1.
    Gluck, D.: Character value estimates for groups of Lie type. Pac. J. Math. 150 (1991), 279–307 Zb1.756.20002MathSciNetMATHGoogle Scholar
  93. 2.
    Gluck, D.: Character value estimates for non semisimple elements. J. Algebra 155 (1993), 221–237 Zb1.771.20009MathSciNetMATHCrossRefGoogle Scholar
  94. 1.
    Gorenstein, D.: Finite Simple Groups: An Introduction to their Classification. Plenum Press, New York 1982 Zb1.483.20008MATHGoogle Scholar
  95. 1.
    Goresky, R.M. and MacPherson, R.: Intersection homology theory. Topology 19 (1980), 135–165 Zb1.448.55004MathSciNetMATHCrossRefGoogle Scholar
  96. 2.
    Goresky, R.M. and MacPherson, R.: Intersection homology II. Invent. Math. 72 (1983), 77–129 Zb1.529.55007MathSciNetMATHGoogle Scholar
  97. 1.
    Green, J.A.: The characters of the finite general linear groups. Trans. Am. Math. Soc. 80 (1955), 402–447 Zb1.68,256MATHCrossRefGoogle Scholar
  98. 1.
    Green, J.A., Lehrer, G.I. and Lusztig, G.: On the degrees of certain group characters. Q. J. Math., Oxf. II. Ser. 27 (1976), 1–4. Zb1.353.20030MathSciNetMATHCrossRefGoogle Scholar
  99. 1.
    Haastert, B.: Die Quasiaffinität der Deligne-Lusztig Varietäten. J. Algebra 102 (1986), 186–193 Zb1.615.20021MathSciNetMATHCrossRefGoogle Scholar
  100. 1.
    Harish-Chandra: On a lemma of F. Bruhat. J. Math. Pures Appl., IX. Sér. 35 (1956), 207–210 Zb1.70,260MathSciNetGoogle Scholar
  101. 2.
    Harish-Chandra: Automorphic forms on semisimple Lie groups. Lect. Notes Mathematics 62 (1968). Zb1.186,47Google Scholar
  102. 3.
    Harish-Chandra: Eisenstein series over finite fields. Functional Analysis and Related Fields. Conf. Chicago 1968 Springer, New York (1970), 76–88 Zb1.229.20049Google Scholar
  103. 1.
    Hiss, G.: Regular and semisimple blocks of finite reductive groups. J. Lond. Math. Soc., II. Ser. 41 (1990), 63–68. Zb1.702.20028MathSciNetMATHCrossRefGoogle Scholar
  104. 1.
    Howlett, R.B. and Lehrer, G.I.: Induced cuspidal representations and generalized Hecke rings. Invent. Math. 58 (1980), 37–64 Zb1.435.20023MathSciNetMATHCrossRefGoogle Scholar
  105. 1.
    Humphreys, J.E.: Linear Algebraic Groups. Graduate Texts in Mathematics 21 (1975), Springer, New York Berlin Heidelberg Zb1.325.20039CrossRefGoogle Scholar
  106. 2.
    Humphreys, J.E.: Ordinary and modular representations of Chevalley groups, Lect. Notes Mathematics 528 (1976). Zb1.341.20037Google Scholar
  107. 3.
    Humphreys, J.E.: The Steinberg representation. Bull. Am. Math. Soc., New Ser. 16 (1987), 247–263 Zb1.627.20024MathSciNetMATHCrossRefGoogle Scholar
  108. 1.
    Inglis, N.F.J. and Saxl, J.: An explicit model for the complex representations of the finite general linear groups. Arch. Math. 57 (1991), 424–431MathSciNetMATHGoogle Scholar
  109. 1.
    Jacobson, N.: A note on three dimensional simple Lie algebras. J. Math. Mech. 7 (1958), 823–831 Zb1.198,54MathSciNetMATHGoogle Scholar
  110. 2.
    Jacobson, N.: Lie Algebras. Interscience Publishers, New York 1962 Zb1.121,275Google Scholar
  111. 1.
    Joseph, A.: Goldie rank in the enveloping algebra of a semisimple Lie algebra I, II. J. Algebra 65 (1980), 269–283 Zb1.441.17004MathSciNetMATHCrossRefGoogle Scholar
  112. 1.
    Kawanaka, N.: A theorem on finite Chevalley groups. Osaka J. Math. 10 (1973), 1–13 Zb1.277.20036MathSciNetMATHGoogle Scholar
  113. 2.
    Kawanaka, N.: Unipotent elements and characters of finite Chevalley groups. Osaka J. Math. 12 (1975), 523–554 Zb1.314.20031MathSciNetMATHGoogle Scholar
  114. 34.
    Kawanaka, N.: On the irreducible characters of finite Chevalley groups. Sûgaku 28 (1976), 348–357 . Kawanaka, N.: Fourier transforms of nilpotently supported invariant functions on a simple Lie algebra over a finite field. Invent. Math. 69 (1982), 411–435 Zb1.495.22004Google Scholar
  115. 5.
    Kawanaka, N.: Shintani lifting and Gelfand-Graev representations. Arcata 1986. Proc. Symp. Pure Math. 47 (1987), 147–163 Zb1.654.20046MathSciNetGoogle Scholar
  116. 6.
    Kawanaka, N.: Generalized Gelfand-Graev representations and Ennola duality. Adv. Stud. Pure Math. 6 (1985), 175–206. Zb1.573.20038MathSciNetGoogle Scholar
  117. 7.
    Kawanaka, N.: Generalized Gelfand-Graev representations of exceptional simple algebraic groups over a finite field, I. Invent. Math. 84 (1986), 575–616 Zb1.596.20028MathSciNetMATHGoogle Scholar
  118. 81.
    Kawanaka, N.: On subfield symmetric spaces over a finite field. Osaka J. Math. 28 (1991), 759–791. Zb1.789.20040 Kazhdan, D. and Laumon, G . Gluing of perverse sheaves and discrete series representations. J. Geom. Phys. 5 (1988), 63–120 Zb1.693.14008MathSciNetCrossRefGoogle Scholar
  119. 1.
    Kazhdan, D. and Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53 (1979), 165–184 Zb1.499.20035MathSciNetMATHGoogle Scholar
  120. 2.
    Kazhdan, D. and Lusztig, G.: Schubert varieties and Poincaré duality. Proc. Symp. Pure Math. 36 (1980), 185–203 Zb1.461.14015MathSciNetCrossRefGoogle Scholar
  121. 1.
    Kilmoyer, R.W.: Principal series components of the Gelfand characters of a finite group with a split BN-pair of characteristic p. Commun. Algebra 17 (1989), 2269–2302 Zb1.733.20020MathSciNetMATHCrossRefGoogle Scholar
  122. 1.
    Kostant, B.: The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group. Am. J. Math. 81 (1959), 973–1032 Zb1.99,256MathSciNetMATHCrossRefGoogle Scholar
  123. 2.
    Kostant, B.: Lie group representations on polynomial rings. Bull. Am. Math. Soc. 69 (1963), 518–526 Zb1.248.20056MathSciNetMATHCrossRefGoogle Scholar
  124. 3.
    Kostant, B.: Lie group representations on polynomial rings. Am. J. Math. 85 (1963), 327–404 Zb1.124,368MathSciNetMATHCrossRefGoogle Scholar
  125. 1.
    Lambe, L. and Srinivasan, B.: A computation of Green functions for some classical groups. Commun. Algebra 18 (1990), 3507–3545 Zb1.770.20021MathSciNetMATHCrossRefGoogle Scholar
  126. 1.
    Lang, S.: Algebraic groups over finite fields. Am. J. Math. 78 (1956), 555–563 Zb1.73,356MATHCrossRefGoogle Scholar
  127. 1.
    Laumon, G.: Faisceaux caractères (d’après Lusztig). Astérisque 177 (1989), 231–260 Zb1.731.20026Google Scholar
  128. 11.
    Lawther, R.: Some (almost) multiplicity-free coset actions. Lond. Math. Soc. Lect. Note Ser. 165 (1992), 292–310 . Lawther, R. and Saxl, J.: On the actions of finite groups of Lie type on the cosets of subfield subgroups and their twisted analogues. Bull. Lond. Math. Soc. 21 (1989), 449–455 Zb1.691.20032Google Scholar
  129. 1.
    Lee, I.-S.: On the lifting theory of. J. Algebra 133 (1990), 111–124 Zb1.770.20009MathSciNetMATHCrossRefGoogle Scholar
  130. 1.
    Lehrer, G.I.: Group representations, geometry and topology. Lect. Notes Mathematics 1456 (1990), 14–31 Zb1.761.20016MathSciNetCrossRefGoogle Scholar
  131. 1.
    Lehrer, G.I. and Shoji, T.: On flag varieties, hyperplane complements and Springer representations of Weyl groups. J. Aust. Math. Soc., Ser. A 49 (1990), 449–485 Zb1.729.20017MathSciNetMATHCrossRefGoogle Scholar
  132. 1.
    Lusztig, G.: Sur la conjecture de Macdonald. C.R. Acad. Sci., Paris, Sér. A 280 (1975), 317–320 Zb1.306.20046Google Scholar
  133. 2.
    Lusztig, G.: Irreducible representations of finite classical groups. Invent. Math. 43 (1977), 125–175 Zb1.372.20033MathSciNetMATHGoogle Scholar
  134. 3.
    Lusztig, G.: Representations of finite Chevalley groups. CBMS Reg. Conf. Ser. Math. 39 (1977) Zb1.418.20037Google Scholar
  135. 4.
    Lusztig, G.: Unipotent representations of a finite Chevalley group of type E8. Q. J. Math., Oxf. II. Ser. 30 (1979), 315–338 Zb1.418.20038MathSciNetMATHCrossRefGoogle Scholar
  136. 5.
    Lusztig, G.: A class of irreducible representations of a Weyl group. Indag. Math. 41 (1979), 323–335 Zb1.435.20021MathSciNetMATHGoogle Scholar
  137. 6.
    Lusztig, G.: Some problems in the representation theory of finite Chevalley groups. Proc. Symp. Pure Math. 37 (1980), 313–317 Zb1.453.10005MathSciNetGoogle Scholar
  138. 7.
    Lusztig, G.: On the unipotent characters of the exceptional groups over finite fields. Invent. Math. 60 (1980), 173–192 Zb1.443.20036MathSciNetMATHGoogle Scholar
  139. 8.
    Lusztig, G.: Green polynomials and singularities of unipotent classes. Adv. Math. 42 (1981), 169–178 Zb1.473.20029MathSciNetMATHGoogle Scholar
  140. 9.
    Lusztig, G.: Unipotent characters of the symplectic and odd orthogonal groups over a finite field. Invent. Math. 64 (1981), 263–296 Zb1.477.20023MathSciNetMATHGoogle Scholar
  141. 10.
    Lusztig, G.: A class of irreducible representations of a Weyl group II. Indag. Math. 44 (1982), 219–226. Zb1.511.20034MathSciNetMATHGoogle Scholar
  142. 11.
    Lusztig, G.: Unipotent characters of the even orthogonal groups over a finite field. Trans. Am. Math. Soc. 272 (1982), 733–751 Zb1.491.20034MathSciNetMATHCrossRefGoogle Scholar
  143. 12.
    Lusztig, G.: Characters of Reductive Groups over a Finite Field. Ann. Math. Stud. 107 (1984). Princeton University Press Zb1.556.20033Google Scholar
  144. 13.
    Lusztig, G.: Intersection cohomology complexes on a reductive group. Invent. Math. 75 (1984), 205–272 Zb1.547.20032MathSciNetMATHGoogle Scholar
  145. 14.
    Lusztig, G.: Left cells in Weyl groups. Lect. Notes Mathematics 1024 (1983), 99–111 Zb1.537.20019MathSciNetCrossRefGoogle Scholar
  146. 15.
    Lusztig, G.: Characters of reductive groups over finite fields. Proc. Int. Congr. Math., Warsaw (1983), 877–880 Zb1.572.20026Google Scholar
  147. 16.
    Lusztig, G.: Character sheaves I—V. Adv. Math. 56 (1985), 193–237; 57 (1985), 226–265; 57 (1985), 266–315; 59 (1986), 1–63; 61 (1986), 103–155. Zb1.586.20018, Zb1.586.20019, Zb1.594.20031, Zb1.602.20035, Zb1.602.20036Google Scholar
  148. 17.
    Lusztig, G.: On the character values of finite Chevalley groups at unipotent elements. J. Algebra 104 (1986), 146–194 Zb1.603.20037MathSciNetMATHCrossRefGoogle Scholar
  149. 18.
    Lusztig, G.: Leading coefficients of character values of Hecke algebras. Arcata 1986, Proc. Symp. Pure Math. 47 (1986), 235–262 Zb1.657.20037MathSciNetGoogle Scholar
  150. 19.
    Lusztig, G.: Introduction to character sheaves. Proc. Symp. Pure Math. 47 (1987), 165–179 Zb1.649.20038MathSciNetGoogle Scholar
  151. 20.
    Lusztig, G.: On the representations of reductive groups with disconnected centre. Astérisque 168 (1988), 157–166. Zb1.703.20036MathSciNetGoogle Scholar
  152. 21.
    Lusztig, G.: Green functions and character sheaves. Ann. Math., II. Ser. 131 (1990), 355–408 Zb1.695.20024MathSciNetMATHCrossRefGoogle Scholar
  153. 22.
    Lusztig, G.: Symmetric spaces over a finite field. Prog. Math. 88 (1990), 57–81 Zb1.773.20013MathSciNetGoogle Scholar
  154. 23.
    Lusztig, G.: Intersection cohomology methods in representation theory. Proc. Int. Congr. Math., Kyoto (1990), 155–174 Zb1.749.14010Google Scholar
  155. 24.
    Lusztig, G.: Remarks on computing irreducible characters. J. Am. Math. Soc. 5 (1992), 971–986 Zb1.773.20011MathSciNetMATHCrossRefGoogle Scholar
  156. 25.
    Lusztig, G.: A unipotent support for irreducible representations. Adv. Math. 94 (1992), 139–179 Zb1.789.20042MathSciNetMATHGoogle Scholar
  157. 1.
    Lusztig, G. and Spaltenstein, N.: On the generalized Springer correspondence for classical groups. Adv. Stud. Pure Math. 6 (1985), 289–316 Zbl.579.20035MathSciNetGoogle Scholar
  158. 1.
    Malle, G.: Die unipotent Charaktere von 2F4(g2). Commun. Algebra 18 (1990), 2361–2381 Zb1.721.20008MathSciNetMATHCrossRefGoogle Scholar
  159. 2.
    Malle, G.: Green functions for groups of types E6 and F 4 in characteristic 2. Commun. Algebra 21 (1993), 747–798MathSciNetMATHCrossRefGoogle Scholar
  160. 1.
    Mars, J.G.M. and Springer, T.A.: Character sheaves. Astérisque 173 (1989), 111–198 Zb1.706.20032MathSciNetGoogle Scholar
  161. 1.
    Michel, J.: Décomposition des caractères de Deligne-Lusztig. Publ. Math. Univ. Paris VII 17 (1984), 117–125 Zb1.598.20047Google Scholar
  162. 1.
    Ohmori, Z.: On the Schur indices of certain irreducible characters of reductive groups over finite fields. Osaka J. Math. 25 (1988), 149–159 Zb1.659.20033MathSciNetMATHGoogle Scholar
  163. 2.
    Ohmori, Z.: On the Schur indices of certain irreducible characters of simple algebraic groups over finite fields. Proc. Japan Acad., Ser. A 64 (1988), 253–255 Zb1.667.20034MathSciNetMATHCrossRefGoogle Scholar
  164. 1.
    Olsson, J.B.: Remarks on symbols, hooks and degrees of unipotent characters. J. Comb. Theory, Ser. A 42 (1986), 223–238 Zb1.659.20010MathSciNetMATHCrossRefGoogle Scholar
  165. 1.
    Pommerening, K.: Über die unipotenten Klassen reduktiver Gruppen. J. Algebra 49 (1977), 525–536 Zb1.367.20046MathSciNetMATHCrossRefGoogle Scholar
  166. 2.
    Pommerening, K.: Über die unipotenten Klassen reduktiver Gruppen II. J. Algebra 65 (1980), 373–398 Zb1.437.20034MathSciNetMATHCrossRefGoogle Scholar
  167. 1.
    Ree, R.: A family of simple groups associated with the simple Lie algebra of type (F4). Am. J. Math. 83 (1961), 401–420 Zb1.104,247MathSciNetMATHCrossRefGoogle Scholar
  168. 2.
    Ree, R.: A family of simple groups associated with the simple Lie algebra of type (G2). Am. J. Math. 83 (1961), 432–462 Zb1.104,247MathSciNetMATHCrossRefGoogle Scholar
  169. 1.
    Richardson, R.W.: Conjugacy classes in parabolic subgroups of semisimple algebraic groups. Bull. Lond. Math. Soc. 6 (1974), 21–24 Zb1.287.20036MATHCrossRefGoogle Scholar
  170. 1.
    Saunders, C.: The reflection representations of some Chevalley groups. J. Algebra 137 (1991), 145–165. Zb1.742.20016MathSciNetMATHCrossRefGoogle Scholar
  171. 1.
    Schensted, C.: Longest increasing and decreasing subsequences. Can. J. Math. 13 (1961), 179–191 Zb1.97,252MathSciNetMATHCrossRefGoogle Scholar
  172. 1.
    Schewe, K.-D.: Blöcke exzeptioneller Chevalley-Gruppen. Bonn. Math. Schr. 165 (1985). 196 pp Zb1.644.20027MathSciNetGoogle Scholar
  173. 1.
    Shi, J.Y.: The Kazhdan-Lusztig cells in certain affine Weyl groups. Lect. Notes Mathematics 1179 (1985) Zb1.582.20030Google Scholar
  174. 1.
    Shinoda, K.: The characters of the finite conformal symplectic group CSp(4, q). Commun. Algebra 10 (1982), 1369–1419 Zbl.492.20024MathSciNetMATHCrossRefGoogle Scholar
  175. 1.
    Shoji, T.: On the Green polynomials of a Chevalley group of type F4. Commun. Algebra 10 (1982), 505–543 Zb1.485.20031MathSciNetMATHCrossRefGoogle Scholar
  176. 2.
    Shoji, T.: On the Green polynomials of a classical group. Invent. Math. 74 (1983), 239–267 Zb1.525.20027MathSciNetMATHGoogle Scholar
  177. 3.
    Shoji, T.: The determination of Green functions. Arcata 1986. Proc. Symp. Pure Math. 47 (1987), 289–301 Zb1.648.20047MathSciNetGoogle Scholar
  178. 4.
    Shoji, T.: Some generalisation of Asai’s result for classical groups. Adv. Stud. Pure Math. 6 (1985), 207229. Zb1.572.20027Google Scholar
  179. 5.
    Shoji, T.: Shintani descent for exceptional groups over a finite field. Proc. Symp. Pure Math. 47 (1987), 297–303 Zbl.653.2O044MathSciNetGoogle Scholar
  180. 6.
    Shoji, T.: Green functions of reductive groups over a finite field. Proc. Symp. Pure Math. 47 (1987), 289–301 Zb1.648.20047MathSciNetGoogle Scholar
  181. 7.
    Shoji, T.: Shintani descent for exceptional groups over a finite field. J. Fac. Sci., Univ. Tokyo, Sect. IA 34 (1987), 599–653 Zb1.643.20019MathSciNetMATHGoogle Scholar
  182. 8.
    Shoji, T.: Geometry of orbits and Springer correspondence. Astérisque 168 (1988), 61–140 Zb1.769.20018MathSciNetGoogle Scholar
  183. 9.
    Shoji, T.: Shintani descent for algebraic groups over a finite field I. J. Algebra 145 (1992), 468–524 Zb1.744.20039MathSciNetMATHCrossRefGoogle Scholar
  184. 1.
    Spaltenstein, N.: On Springer’s representations of Weyl groups containing -1. Arch. Math. 44 (1985), 26–28 Zb1.548.20026MathSciNetMATHGoogle Scholar
  185. 2.
    Spaltenstein, N.: On the generalized Springer correspondence for exceptional groups. Adv. Stud. Pure Math. 6 (1985), 317–338 Zb1.574.20029MathSciNetGoogle Scholar
  186. 3.
    Spaltenstein, N.: Polynomials over local fields, nilpotent orbits and conjugacy classes in Weyl groups. Astérisque 168 (1988), 191–217 Zb1.702.17006Google Scholar
  187. 41.
    Spaltenstein, N.: On the reflection representation in Springer’s theory. Comment. Math. HeIv. 66 (1991), 618–636 . Springer, T.A.: The unipotent variety of a semisimple group. Proc. Colloq. Algebraic Geometry, Bombay 1968 (Tata Institute) 1969, 373–391 Zb1.195,508Google Scholar
  188. 2.
    Springer, T.A.: Trigonometric sums. Green functions of finite groups and representations of Weyl groups. Invent. Math. 36 (1976), 173–207 Zbl.374.20054MathSciNetMATHGoogle Scholar
  189. 3.
    Springer, T.A.: A construction of representations of Weyl groups. Invent. Math. 44 (1978), 279–293 Zb1.376.17002MathSciNetMATHGoogle Scholar
  190. 4.
    Springer, T.A.: Reductive groups. Proc. Symp. Pure Math. 33 (1979), 3–27 Zb1.416.20034MathSciNetGoogle Scholar
  191. 5.
    Springer, T.A.: Linear Algebraic Groups. Birkhäuser, Boston 1981 Zb1.453.14022Google Scholar
  192. 6.
    Springer, T.A.: Perverse sheaves and representation theory. Proc. Symp. Pure Math. 47 (1986), 315–322 Zb1.654.20045MathSciNetCrossRefGoogle Scholar
  193. 7.
    Springer, T.A.: A remark on the orthogonality relations for Green functions. J. Algebra 104 (1986), 370–376 Zbl.656.20046Google Scholar
  194. 8.
    Springer, T.A.: On representations of Weyl groups. Proc. Hyderabad Conf. Algebraic Groups (1991), 517–536Google Scholar
  195. 1.
    Srinivasan, B.: The characters of the finite symplectic group Sp(4, q). Trans. Am. Math. Soc. 131 (1968), 488–525. Zb1.213,304MATHGoogle Scholar
  196. 2.
    Srinivasan, B.: Representations of finite Chevalley groups. Lect. Notes Mathematics 764 (1979) Zb1.434.20022Google Scholar
  197. 3.
    Srinivasan, B.: Towards Lusztig’s classification of characters. Proc. Symp. Pure Math. 47 (1987), 323–329 Zb1.657.20035Google Scholar
  198. 4.
    Srinivasan, B.: Representations of finite groups of Lie type. Proc. Hyderabad Conf. Algebraic Groups (1991), 537–546 Z61.805.20013Google Scholar
  199. 1.
    Steinberg, R.: Prime power representations of finite linear groups I, II. Can. J. Math. 8 (1956), 580–591; 9 (1957), 347–351 Zb1.73,15, Zb1.79,256Google Scholar
  200. 2.
    Steinberg, R.: Variations on a theme of Chevalley. Pac. J. Math. 9 (1959), 875–891 Zb1.92,25MATHGoogle Scholar
  201. 3.
    Steinberg, R.: Lectures on Chevalley groups. Yale University 1967. Zbl.307.22001Google Scholar
  202. 4.
    Steinberg, R.: Endomorphisms of linear algebraic groups. Mem. Am. Math. Soc. 80 (1968) Zb1.164,29Google Scholar
  203. 1.
    Suzuki, M.: On a class of doubly transitive groups. Ann. Math., II. Ser. 75 (1962), 105–145 Zb1.106,247MATHCrossRefGoogle Scholar
  204. 1.
    Tinberg, N.B.: The Steinberg component of a finite group with a split (B, N) pair. J. Algebra 104 (1986), 126–134 Zb1.633,20028MathSciNetMATHCrossRefGoogle Scholar
  205. 1.
    Tits, J.: Les `formes réelles’ des groupes de type E6. Séminaire Bourbaki (1958), Exposé 162 Zb1.84,258Google Scholar
  206. 23.
    Tits, J.: Sur la trialité et certains groupes qui s’en déduisent. Inst. Hautes Etud. Sci., Publ. Math. 2 (1959), 14–60 Zb1.88,372 . Tits, J.: Les groupes simples de Suzuki et de Ree. Séminaire Bourbaki 13 (1960), 210 Zb1.267.20041Google Scholar
  207. 1.
    Verdier, J.L.: Dualité dans la cohomologie des espaces localement compacts. Séminaire Bourbaki (1965), Exposé 300 Zbl. 268.55006Google Scholar
  208. 1.
    Xi, N.H.: Some results on Green functions on finite groups of Lie type. Northeast. Math. J. 3 (1987), 199–209. (In Chinese) Zb1.671.20034Google Scholar
  209. 1.
    Yokonuma, T.: Sur la commutant d’une répresentation d’un groupe de Chevalley fini. J. Fac. Sci. Univ. Tokyo, Sect. I 15 (1968), 115–129 Zb1.239.20050MathSciNetGoogle Scholar
  210. 1.
    Young, A.: On quantitative substitutional analysis I—VIII. Proc. Lond. Math. Soc. 1901–1934. [33 (1901), 97–146; 34 (1902), 361–397; II. Ser. 28 (1928), 255–292; 31(1930), 253–288 (parts IV, V); 34 (1932), 196–230; 36 (1933), 304–368; 37 (1934), 441–495] Jbuch 32,157, Jbuch 33,158, Jbuch 54,150, Jbuch 56,135, Zb1.5,97, Zb1.8,49, Zb1.9,301Google Scholar
  211. 1.
    Zalesskii, A.E.: The spectra of elements of order p in complex representations of finite Chevalley groups of characteristic p. Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk 1986, No. 6 (1986), 20–25 Zb1.698.20028MathSciNetGoogle Scholar
  212. 2.
    Zalesskii, A.E.: Fixed points of elements of order p in complex representations of finite Chevalley groups of characteristic p. Dokl. Akad. Nauk. BSSR 31 (1987). 104–107 Zb1.698.20029MathSciNetGoogle Scholar
  213. 3.
    Zalesskii, A.E.: Eigenvalues of matrices of complex representations of finite groups of Lie type. Lect. Notes Mathematics 1352 (1988), 206–218 Zb1.661.20032MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • R. W. Carter

There are no affiliations available

Personalised recommendations