Skip to main content

Isolation and Culture of Immature Rat Type A Spermatogonial Stem Cells

  • Conference paper
Signal Transduction in Testicular Cells

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 2/1996))

Abstract

Spermatogenesis is a complex process of cellular renewal and differentiation that begins with the divisions of the type A spermatogonial stem cells and ends as late spermatids are released into the seminiferous tubule lumen as spermatozoa (Dym 1983). In vivo spermatogonial stem cells can be directed to one of three fates: (1) renew themselves into other stem cells; (2) differentiate into type B spermatogonia and eventually spermatocytes and more mature germ cells; or (3) degenerate. Despite abundant studies on the morphology and kinetics of spermatogonial cell renewal and differentiation (Clermont 1966, 1969; Dym and Clermont 1970; Huckins 1971; Oakberg 1971), very little is known about the regulation of spermatogonial cell proliferation or degeneration in mammals. Attempts to study spermatogonial proliferation in organ cultures have been made by several investigators (Martinovitch 1937, 1939; Steinberger et al. 1964; Ghatnekar et al. 1974; Aizawa and Nishimune 1979; Curtis 1981; Boitani et al. 1993). In all these studies, differentiation stopped at the pachytene spermatocyte stage. Similarly, spermatogonial proliferation and differentiation up to pachytene spermatocytes have been observed in cocultures of spermatogenic cells with Sertoli cells in serum-free defined medium supplemented with hormone and growth factors (Tres and Kierszenbaum 1983; Hadley et al. 1985). However, differentiation beyond pachytene spermatocytes into young spermatids was observed in seminiferous tubule segments cultured for 4–6 days (Parvinen et al. 1983). Thus, it is likely that cellular interactions are important for spermatogonial proliferation and differentiation. However, the Sertoli cell factors which are responsible for regulating this process are not known. It has been observed that up to 75% of spermatogonia undergo spontaneous degeneration before maturation (Abe 1987; Huckins 1978). Although the withdrawal of gonadotropins by hypophysectomy or immunoneutralization enhances the degeneration of germ cells (Raj and Dym 1976; Russell and Clermont 1977), other factors promoting degeneration of germ cells in intact animals have not been identified. In order to examine the regulation of spermatogonial renewal, differentiation, and degeneration under controlled culture conditions, it is important to develop an in vitro model system. In this direction, we have isolated rat type A spermatogonial cells from 9-day-old rats (Dym et al. 1995) and purified them to greater than 95% purity by sedimentation velocity at unit gravity followed by differential plating in fetal bovine serum (FBS)-supplemented medium. The present study was undertaken to standardize culture conditions which would allow the type A spermatogonia to survive for longer periods of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe SI (1987) Differentiation of spermatogenic cells from vertebrates in vitro. Int Rev Cytol 109:159–209.

    Article  PubMed  CAS  Google Scholar 

  • Aizawa S, Nishimime Y (1979) In-vitro differentiation of type A spermatogonia in mouse cryporchid testis. J Reprod Fertil 56:99–104.

    Article  PubMed  CAS  Google Scholar 

  • Allan DJ, Harmon BV, Roberts SA (1992) Spermatogonial apoptosis has three morphologically recognizable phases and shows no circadian rhythm during normal spermatogenesis in the rat. Cell Prolif 25:241–250.

    Article  PubMed  CAS  Google Scholar 

  • Bellvé AR, Cavicchia JC, Millette CF, O’Brien DA, Bhatnagar YM, Dym M (1977) Spermatogenic cells of the prepuberal mouse: isolation and morphological characterization. J Cell Biol 74:68–85.

    Article  PubMed  Google Scholar 

  • Boitani C, Politi MG, Menna T (1993) Spermatogonial cell proliferation in organ culture of immature rat testis. Biol Reprod 48:761–767.

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254.

    Article  PubMed  CAS  Google Scholar 

  • Clermont Y (1966) Renewal of spermatogonia in man. Am J Anat 118:509–524.

    Article  PubMed  CAS  Google Scholar 

  • Clermont Y (1969) Two classes of spermatogonial stem cells in the monkey (Cercopithecus aethiops). Am J Anat 126:57–72.

    Article  PubMed  CAS  Google Scholar 

  • Compton MM (1992) A biochemical hallmark of apoptosis: internucleosomal degradation of the genome. Cancer Metastasis Rev 11:105–119.

    Article  PubMed  CAS  Google Scholar 

  • Curtis D (1981) In-vitro differentiation of diakinesis figures in human testis. Hum Genet 59:406–411.

    Article  PubMed  CAS  Google Scholar 

  • Dirami G, Ravindranath N, Kleinman HK, Dym M (1995) Evidence that basement membrane prevents apoptosis of Sertoli cells in vitro in the absence of known regulators of Sertoli cell function. Endocrinology 136:4439–4447.

    Article  PubMed  CAS  Google Scholar 

  • Dolci S, Williams DE, Ernst MK, Resnick JL, Brannan CI, Lock LF, Lyman SD, Boswell HS, Donovan PJ (1991) Requirement for mast cell growth factor for primordial germ cell survival in culture. Nature 352:809–811.

    Article  PubMed  CAS  Google Scholar 

  • Dym M (1983) The male reproductive system. In: Weiss L (ed) Histology: cell and tissue biology. Elsevier Biomedical, New York, pp 1000–1053.

    Google Scholar 

  • Dym M (1994) Spermatogonial stem cells of the testis. Proc Natl Acad Sci USA 91:11287–11289.

    Article  PubMed  CAS  Google Scholar 

  • Dym M, Clermont Y (1970) Role of spermatogonia in the repair of the seminiferous epithelium following X-irradiation of the rat testis. Am J Anat 128:265–282.

    Article  PubMed  CAS  Google Scholar 

  • Dym M, Fawcett DW (1970) The blood-testis barrier in the rat and the physiological compartmentation of the seminiferous epithelium. Biol Reprod 3:308–326.

    PubMed  CAS  Google Scholar 

  • Dym M, Jia MC, Dirami G, Price JM, Rabin SJ, Mocchetti I, Ravindranath N (1995) Expression of c-kit receptor and its phosphorylation in immature rat type A spermatogonia. Biol Reprod 52:8–19.

    Article  PubMed  CAS  Google Scholar 

  • Ghatnekar R, Lima-De-Faria A, Rubin S, Menander K (1974) Development of human male meiosis in vitro. Hereditas 78:265–272.

    Article  PubMed  CAS  Google Scholar 

  • Hadley MA, Byers SW, Suarez-Quian CA, Kleinman HK, Dym M (1985) Extracellular matrix regulates Sertoli cell differentiation, testicular cord formation, and germ cell development in vitro. J Cell Biol 101:1511–1522.

    Article  PubMed  CAS  Google Scholar 

  • Huang E, Nocka K, Beier DR, Chu T-Y, Buck J, Lahm H-W, Wellner D, Leder P, Besmer P (1990) The hematopoietic growth factor KL is encoded by the S1 locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell 63:225–233.

    Article  PubMed  CAS  Google Scholar 

  • Huckins C (1971) The spermatogonial stem cell population in adult rats. 1. Their morphology, proliferation and maturation. Anat Rec 169:533–558.

    Article  PubMed  CAS  Google Scholar 

  • Huckins C (1978) The morphology and kinetics of spermatogonial degeneration in normal adult rats: an analysis using a simplified classification of the germinal epithelium. Anat Rec 190:905–926.

    Article  PubMed  CAS  Google Scholar 

  • Lam D, Furrer R, Bruce WR (1970) The separation, physical characterization, and differentiation kinetics of spermatogonial cells of the mouse. Proc Natl Acad Sci USA 65:192–199.

    Article  PubMed  CAS  Google Scholar 

  • Leigh BR, Khan W, Hancock SL, Knox SJ (1995) Stem cell factor enhances the survival of murine intestinal stem cells after photon irradiation. Radiat Res 142:12–15.

    Article  PubMed  CAS  Google Scholar 

  • Manova K, Nocka K, Besmer P, Bachvarova RF (1990) Gonadal expression of c-kit encoded at the W locus of the mouse. Development 110:1057–1069.

    PubMed  CAS  Google Scholar 

  • Martinovitch PN (1937) Development in-vitro of mamalian gonad. Nature 139:413–415.

    Article  Google Scholar 

  • Martinovitch PN (1939) Development in-vitro of mamalian gonad. Arch Exp Zellforsch 22:74–76.

    Google Scholar 

  • McNiece IK, Briddell RA (1995) Stem cell factor. J Leukoc Biol 57:14–22.

    Google Scholar 

  • Meistrich ML (1972) Separation of mouse spermatogenic cells by velocity sedimentation. J Cell Physiol 80:299–312.

    Article  PubMed  CAS  Google Scholar 

  • Mosman TR, Fong TAT (1989) Specific assays for cytokine production by T cells. J Immunol Methods 116:151–158.

    Article  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival. J Immunol Methods 65:55–63.

    Article  PubMed  CAS  Google Scholar 

  • Oakberg EF (1971) Spermatogonial stem-cell renewal in the mouse. Am J Anat 169:515–532.

    CAS  Google Scholar 

  • Ohno M, Abe T (1995) Rapid colonmetric assay for the quantification of leukemia inhibility factor (LIF) and interleukin-6 (IL-6). J Immunol Methods 145:199–203.

    Article  Google Scholar 

  • Parvinen M, Wright WW, Phillips DM, Mather JP, Musto NA, Bardin CW (1983) Spermatogenesis in vitro: completion of meiosis and early sper-miogenesis. Endocrinology 112:1150–1152.

    Article  PubMed  CAS  Google Scholar 

  • Pesce M, Farrace MG, Piacentini M, Dolci S, De Felici M (1993) Stem cell factor and leukemia inhibitory factor promote primordial germ cell survival by suppressing programmed cell death. Development 118:1089–1094.

    PubMed  CAS  Google Scholar 

  • Raj HGM, Dym M (1976) The effects of selective withdrawal of FSH or LH on spermatogenesis in the immature rat. Biol Reprod 14:489–494.

    CAS  Google Scholar 

  • Romrell LJ, Bellve AR, Fawcett DW (1976) Separation of mouse sperma-togenic cells by sedimentation velocity. A morphological characterization. Dev Biol 49:119–131.

    Article  PubMed  CAS  Google Scholar 

  • Rossi P, Albanesi C, Grimaldi P, Geremia R (1991) Expression of the mRNA for the ligand of c-kit in mouse Sertoli cells. Biochem Biophys Res Commun 176:910–914.

    Article  PubMed  CAS  Google Scholar 

  • Rossi P, Dolci S, Albanesi C, Grimaldi P, Ricca R, Geremia R (1993) Follicle-stimulating hormone induction of steel factor (SLF) mRNA in mouse Sertoli cells and stimulation of DNA synthesis in spermatogonia by soluble SLF. Dev Biol 155:68–74.

    Article  PubMed  CAS  Google Scholar 

  • Russell LD (1980) Sertoli-germ cell interrelations: a review. Gamete Res 3:179–302.

    Article  Google Scholar 

  • Russell LD (1995) Morphological and functional evidence for Sertoli-germ cell relationships. In: Russell LD, Griswold MD (eds) The Sertoli cell. Cache River Press, Clearwater, pp 365–390.

    Google Scholar 

  • Russell LD, Clermont Y (1977) Degeneration of germ cells in normal, hypo-physectomized, and hormone treated hypophysectomized rats. Anat Rec 187:347–366.

    Article  PubMed  CAS  Google Scholar 

  • Skinner MK (1993) Secretion of growth factors and other regulator factors. In: Rüssel LD, Griswold MD (eds) The Sertoli cells. Cache River Press, Clearwater, pp 237–248.

    Google Scholar 

  • Sorrentino V, Giorgi M, Geremia R, Besmer P, Rossi P (1991) Expression of the c-kit proto-oncogene in the murine male germ cells. Oncogene 6:149–151.

    PubMed  CAS  Google Scholar 

  • Steinberger A, Steinberger E (1966) In-vitro culture of rat testicular cells. Exp Cell Res 44:443–452.

    Article  PubMed  CAS  Google Scholar 

  • Steinberger A, Steinberger E, Perloff WH (1964) Mammalian testes in organ culture. Exp Cell Res 36:19–27.

    Article  PubMed  CAS  Google Scholar 

  • Telford WG, King LE, Franker PJ (1992) Comparative evaluation of several DNA binding dyes in the detection of apoptosis-associated chromatin degradation by flow cytometry. Cytometry 13:137–143.

    Article  PubMed  CAS  Google Scholar 

  • Tres LL, Kierszenbaum AL (1983) Viability of rat spermatogenic cells is facilitated by their coculture with Sertoli cells in serum-free hormone supplemented medium. Proc Natl Acad Sci USA 80:3377–3381.

    Article  PubMed  CAS  Google Scholar 

  • Tres LL, Smith EP, VanWyk JJ, Kierszenbaum AL (1986) Immunoreactive sites and accumulation of somatomedin-C in rat Sertoli-spermatogenic cell co-cultures. Exp Cell Res 162:33–50.

    Article  PubMed  CAS  Google Scholar 

  • Vistica DT, Skehan P, Scudiero D, Monks A, Pittman A, Boyd MR (1991) Te-trazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res 51:2515–2520.

    PubMed  CAS  Google Scholar 

  • Williams DE, Eisenman J, Baird A, Rauch C, VanNess K, March CJ, Park LS, Martin U, Mochizuki DY, Boswell HS, Burgess GS, Cosman D, Lyman SD (1990) Identification of a ligand for the c-kit proto-oncogene. Cell 63:167–174.

    Article  PubMed  CAS  Google Scholar 

  • Yee NS, Paek I, Besmer P (1994) Role of kit-ligand in proliferation and suppression of apoptosis in mast cells: basis for radiosurvivability of white spotting and steel mutant mice. J Exp Med 179:1777–1787.

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga K, Nishikawa S, Ogawa M, Hayashi S, Kunisada T, Fujimoto T (1991) Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function. Development 113:689–699.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dirami, G., Ravindranath, N., Jia, M.C., Dym, M. (1996). Isolation and Culture of Immature Rat Type A Spermatogonial Stem Cells. In: Hansson, V., Levy, F.O., Taskén, K. (eds) Signal Transduction in Testicular Cells. Ernst Schering Research Foundation Workshop, vol 2/1996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03230-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03230-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03232-9

  • Online ISBN: 978-3-662-03230-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics