Advertisement

Abstract

In this chapter I shall discuss properties of cryoliquids important for the design and performance of low-temperature experiments. Of course, cryoliquids are very important for low-temperature physics because they are the simplest means of achieving low temperatures. In particular, the properties of liquid helium are essential because all refrigeration methods to T < 10 K use liquid helium as a final or intermediate refrigeration stage. I shall not discuss the technology of liquefaction [2.1, 2]. For liquifaction the gas has to be isothermally compressed and then expanded to let it perform “external” work (for example, in an expansion engine), or perhaps using the well-known Joule-Thomson effect, which means letting the gas expand and perform “internal” work against the mutual attraction of its atoms or molecules. This latter effect leads to cooling if the starting temperature is below the inversion temperature Ti which is 6.75Tc, Tc being the critical temperature for a van der Waals gas. Various properties of cryoliquids are summarized in Table 2.1 and are compared there to the relevant properties of water. Of particular importance for refrigeration are the boiling point Tb (defining the accessible temperature range), the latent heat of evaporation L (defining the cooling power) and — last but by no means least important — the price (defining the availability).

Keywords

Liquid Helium Fermi Liquid Cooling Power Superfluid Helium Helium Isotope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2.1
    P.V.E. McClintock, D.J. Meredith, J.K. Wigmore: Matter at Low Temperatures ( Blackie, London 1984 )Google Scholar
  2. 2.2
    G.K. White: Experimental Techniques in Low Temperature Physics, 3rd edn. ( Clarendon, Oxford 1979 )Google Scholar
  3. 2.3
    R.C. Reid, J.M. Prausnitz, T.K. Sherwood: The Properties of Gases and Liquids ( McGraw-Hill, New York 1977 )Google Scholar
  4. 2.4
    J. van Krankendonk: Solid Hydrogen ( Plenum, New York 1983 )CrossRefGoogle Scholar
  5. 2.5
    K.Motizuki, T. Nagamiya: J. Phys. Soc. Jpn. 11, 93 (1956); ibid. 12, 163 (1957)Google Scholar
  6. 2.6
    A.J. Berlinsky, W.N. Hardy: Phys. Rev. B 8, 5013 (1973)ADSCrossRefGoogle Scholar
  7. 2.7
    P. Pedroni, H. Meyer, F. Weinhaus, D. Haase: Solid State Commun. 14, 279 (1974)ADSCrossRefGoogle Scholar
  8. 2.8
    N.S. Sullivan, D. Zhou, C.M. Edwards: Cryogenics 30, 734 (1990) 2.9 W.R. Wampler, T. Schober, B. Lengeler: Philos. Mag. 34, 129 (1976)Google Scholar
  9. 2.10
    M. Schwark, F. Pobell, W.P. Halperin, Ch. Buchal, J. Hanssen, M. Kubota, R.M. Mueller: J. Low Temp. Phys. 53, 685 (1983)ADSCrossRefGoogle Scholar
  10. 2.11
    M. Kolac, B.S. Neganov, S. Sahling: J. Low Temp. Phys. 59, 547 (1985); ibid. 63, 459 (1986)CrossRefGoogle Scholar
  11. 2.12
    J. Wilks: The Properties of Liquid and Solid Helium ( Clarendon, Oxford 1967 )Google Scholar
  12. 2.13
    R.J. Donnelly: Experimental Superfluidity (Univ. Chicago Press, Chicago 1967 )Google Scholar
  13. 2.14
    W.E. Keller: Helium-three and Helium four ( Plenum, New York 1969 )Google Scholar
  14. 2.15
    T. Tsuneto: In The Structure and Properties of Matter, ed. by T. Matsubara, Springer Ser. Solid-State Sci., Vol. 28 ( Springer, Berlin, Heidelberg 1982 )Google Scholar
  15. 2.16
    J. Wilks, D.S. Betts: An Introduction to Liquid Helium, 2nd edn. ( Clarendon, Oxford 1987 )Google Scholar
  16. 2.17
    D.R. Tilley, J. Tilley: Superfluidity and Superconductivity, 3rd edn. ( Nilger, Bristol 1990 )Google Scholar
  17. 2.18
    I.M. Khalatnikov: An Introduction to the Theory of Superfluidity (Benjamin, New York 1965 )Google Scholar
  18. 2.19
    K.H. Bennemann, J. B. Ketterson (eds.): The Physics of Liquid and Solid Helium, Vols.1,2 (Wiley, New York 1976, 1978 )Google Scholar
  19. 2.20
    D.S. Greywall: Phys. Rev. B 18, 2127 (1978); ibid. 21, 1329 (1979)Google Scholar
  20. 2.21
    D.S. Greywall: Phys. Rev. B 27, 2747 (1983); ibid. 33, 7520 (1986)Google Scholar
  21. 2.22
    M.J. Buckingham, W.M Fairbank: In Progress in Low Temperature Physics, Vol.3, ed. by C.J. Gorter ( North-Holland, Amsterdam 1961 ) p. 80Google Scholar
  22. 2.23
    J.A. Lipa, T.C.P. Chui: Phys. Rev. Leu. 51, 2291 (1983)ADSCrossRefGoogle Scholar
  23. 2.24
    G. Ahlers: In [Ref.2.19, Vol.1, p.85]Google Scholar
  24. 2.25
    D.M. Lee, H.A. Fairbank: Phys. Rev. 116, 1359 (1959)ADSCrossRefGoogle Scholar
  25. 2.26
    D.S. Greywall: Phys. Rev. B 23, 2152 (1981)ADSCrossRefGoogle Scholar
  26. 2.27
    D.F. Brewer: In [Ref.2.19, Vol.2, p.573]Google Scholar
  27. 2.28
    D.D. Osheroff, R.C. Richardson, D.M. Lee: Phys. Rev. Lett. 28, 885 (1972)ADSCrossRefGoogle Scholar
  28. 2.29
    D.D. Osheroff, W.J. Gully, R.C. Richardson, D.M. Lee: Phys. Rev. Lett. 29, 920 (1972)ADSCrossRefGoogle Scholar
  29. 2.30
    A.J. Leggett: Rev. Mod. Phys. 47, 331 (1975)ADSCrossRefGoogle Scholar
  30. 2.31
    J.C. Wheatley: Rev. Mod. Phys. 47, 415 (1975)ADSCrossRefGoogle Scholar
  31. 2.32
    J.C. Wheatley: Physica 69, 218 (1973)ADSCrossRefGoogle Scholar
  32. 2.33
    J.C. Wheatley: In Progress in Low Temperature Physics, Vol.7, ed. by D.F. Brewer ( North-Holland, Amsterdam 1978 ) p. 1Google Scholar
  33. 2.34
    W.F. Brinkman, M.C. Cross: In Progress in Low Temperture Physics, Vol.7, ed. by D.F. Brewer ( North-Holland, Amsterdam 1978 ) p. 105Google Scholar
  34. 2.35
    P. Wölfle: In Progress in Low Temperature Physics, Vol.7, ed. by D.F. Brewer ( North-Holland, Amsterdam 1978 ) p. 191Google Scholar
  35. 2.36
    P.W. Anderson, W.F. Brinkman: In [Ref.2.19, Vol.2, p.177]Google Scholar
  36. 2.37
    D.M. Lee, R.C. Richardson: In [Ref.2.19, Vol.2, p.287]Google Scholar
  37. 2.38
    D. Vollhard, P. Wölfle: The Superfluid Phases of Helium-3 ( Taylor and Francis, London 1990 )Google Scholar
  38. 2.39
    W.P. Halperin, L.P. Pitaevskii (eds.): Helium Three ( North-Holland, Amsterdam 1990 )Google Scholar
  39. 2.40
    L.D. Landau: Soy. Phys. JETP 3, 920 (1957); 5, 101 (1957); 8, 70 (1959)Google Scholar
  40. 2.41
    A.A. Abrikosov, I.M. Khalatnikov: Rep. Prog. Phys. 22, 329 (1959)ADSCrossRefGoogle Scholar
  41. 2.42
    J.C. Wheatley: In Progress in Low Temperature Physics, Vol.6, ed. by C.J. Goiter ( North-Holland, Amsterdam 1970 ) p. 77Google Scholar
  42. 2.43
    G. Baym, C. Pethick: In [Ref.2.19, Vol.2, p.1]Google Scholar
  43. 2.44
    D.S.Greywall: Phys. Rev. B 29, 4933 (1984)Google Scholar
  44. 2.45
    O.V.Lounasmaa: Experimental Principles and Methods Below IK ( Academic, London 1974 )Google Scholar
  45. 2.46
    R. König, F. Pobell: Phys. Rev. Lett. 71, 2761 (1993); J. Low Temp. Phys. 97, 287 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Frank Pobell
    • 1
  1. 1.Physikalisches InstitutUniversität BayreuthBayreuthGermany

Personalised recommendations