Definition, Analysis and Classification of Scheduling Problems

  • Jacek Błażewicz
  • Klaus H. Ecker
  • Erwin Pesch
  • Günter Schmidt
  • Jan Węglarz


Throughout this book we are concerned with scheduling computer and manufacturing processes. Despite the fact that we deal with two different areas of applications, the same model could be applied. This is because the above processes consist of complex activities to be scheduled, which can be modeled by means of tasks (or jobs), relations among them, processors, sometimes additional resources (and their operational functions), and parameters describing all these items in greater detail. The purpose of the modeling is to find optimal or suboptimal schedules in the sense of a given criterion, by applying best suited algorithms. These schedules are then used for the original setting to carry out the various activities. In this chapter we introduce basic notions used for such a modeling of computer and manufacturing processes.


Schedule Problem Flow Shop Precedence Constraint Open Shop Schedule Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ACM70.
    ACM Record of the project MAC conference on concurrent system and parallel computation, Wood’s Hole, Mass, 1970.Google Scholar
  2. AHU74.
    A. V. Aho, J. E. Hopcroft, J. D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.Google Scholar
  3. Bae74.
    J. L. Baer, Optimal scheduling on two processors of different speeds, in: E. Gelenbe, R. Mahl (eds.), Computer Architecture and Networks, North Holland, Amsterdam, 1974.Google Scholar
  4. BCSW86.
    J. Błazewicz, W. Cellary, R. Słowiński, J. Weglarz, Scheduling under Resource Constraints: Deterministic Models, J. C. Baltzer, Basel, 1986.Google Scholar
  5. Ber66.
    A. J. Bernstein, Analysis of programs for parallel programming, IEEE Trans. Comput. EC-15, 1966, 757–762.CrossRefGoogle Scholar
  6. BLRK83.
    J. Błazewicz, J. K. Lenstra, A. H. G. Rinnooy Kan, Scheduling subject to resource constraints: classification and complexity, Discrete Appl. Math. 5, 1983, 11–24.CrossRefGoogle Scholar
  7. CD73.
    E. G. Coffman Jr., P. J. Denning, Operating Systems Theory, Prentice-Hall, Englewood Cliffs, N.J., 1973.Google Scholar
  8. Coo71.
    S. A. Cook, The complexity of theorem proving procedures, Proc. 3rd ACM Symposium on Theory of Computing, 1971, 151–158.Google Scholar
  9. GJ79.
    M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, San Francisco, 1979.Google Scholar
  10. GLLRK79.
    R. L. Graham, E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, Optimization and approximation in deterministic sequencing and scheduling theory: a survey, Ann. Discrete Math. 5, 1979, 287–326.CrossRefGoogle Scholar
  11. Kar72.
    R. M. Karp, Reducibility among combinatorial problems, in: R. E. Miller, J. W. Thatcher (eds.), Complexity of Computer Computations, Plenum Press, New York, 1972, 85–104.CrossRefGoogle Scholar
  12. RG69.
    C. V. Ramamoorthy, M. J. Gonzalez, A survey of techniques for recognizing parallel processable streams in computer programs, AFIPS Conference Proceedings, Fall Joint Computer Conference, 1969, 1–15.Google Scholar
  13. Rus69.
    E. C. Russel, Automatic program analysis, Ph.D. thesis, Dept. of Engineering, University of California, Los Angeles, 1969.Google Scholar
  14. Vol70.
    S. Volansky, Graph model analysis and implementation of computational sequences, Ph.D. thesis, Rep. No. UCLA-ENG-7048, School of Engineering Applied Sciences, University of California, Los Angeles, 1970.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Jacek Błażewicz
    • 1
  • Klaus H. Ecker
    • 2
  • Erwin Pesch
    • 3
  • Günter Schmidt
    • 4
  • Jan Węglarz
    • 1
  1. 1.Instytut InformatykiPolitechnika PoznanskaPoznańPoland
  2. 2.Institut für InformatikTechnische Universität ClausthalClausthal-ZellerfeldGermany
  3. 3.Institut für Gesellschafts- und WirtschaftswissenschaftenUniversität BonnBonnGermany
  4. 4.Betriebswirtschaftslehre, insbesondere Informations- und TechnologiemanagementUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations