Computer Integrated Production Scheduling

  • Jacek Błażewicz
  • Klaus H. Ecker
  • Erwin Pesch
  • Günter Schmidt
  • Jan Węglarz

Abstract

Within all activities of production management, production scheduling is a major part covering planning and control functions. By production management we mean all activities which are necessary to carry out production. The two main decisions to be taken in this field are production planning and production control. Production scheduling is a common activity of these two areas because scheduling is needed not only on the planning level as mainly treated in the preceding chapters but also on the control level. From the different aspects of production scheduling problems we can distinguish predictive production scheduling or offline-planning (OFP) and reactive production scheduling or online-control (ONC). Predictive production scheduling serves to provide guidance in achieving global coherence in the process of local decision making. Reactive production scheduling is concerned with revising predictive schedules when unexpected events force changes. OFP generates the requirements for ONC, and ONC creates feedback to OFP.

Keywords

Transportation Coherence Assure Dispatch Verse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ata91.
    H. Atabakhsh, A survey for constraint based scheduling systems using an artificial intelligence approach, Artif. Intell. Eng. 6, 1991, 58–73.CrossRefGoogle Scholar
  2. BPH82.
    J. H. Blackstone, D. T. Phillips, G. L. Hogg, A state-of-the-art survey of dispatching rules for manufacturing job shop operations, Int. J. Prod. Res. 20, 1982, 27–45.CrossRefGoogle Scholar
  3. Bul82.
    W. Bulgren, Discrete System Simulation, Prentice-Hall, 1982.Google Scholar
  4. BY86.
    J. A. Buzacott, D. D. Yao, FMS: a review of analytical models, Management Sci. 32, 1986, 890–905.CrossRefGoogle Scholar
  5. Ca86.
    A. S. Carrie, The role of simulation in FMS, in: A. Kusiak (ed.), Flexible Manufacturing Systems: Methods and Studies, Elsevier, 1986, 191–208.Google Scholar
  6. CPP88.
    A. Collinot, C. Le Pape, G. Pinoteau, SONIA: a knowledge-based scheduling system, Artif. Intell. Eng. 3, 1988, 86–94.CrossRefGoogle Scholar
  7. CY91.
    P. Coad, E. Yourdon, Object-Oriented Analysis, Prentice-Hall, 1991.Google Scholar
  8. DP88.
    R. Dechter, J. Pearl, Network-based heuristics for constraint-satisfaction problems, Artif. Intell. 34, 1988, 1–38.CrossRefGoogle Scholar
  9. DTLZ93.
    J. Drake, W. T. Tsai, H. J. Lee, Object-oriented analysis: criteria and case study, Int. J. of Software Engineering and Knowledge Engineering 3, 1993, 319–350.CrossRefGoogle Scholar
  10. ES93.
    K. Ecker, G. Schmidt, Conflict resolution algorithms for scheduling problems, in: K. Ecker, R. Hirschberg (eds.), Workshop on Parallel Processing, TU Clausthal, 1993, 81–90.Google Scholar
  11. Fox87.
    M. S. Fox, Constraint Directed Search: A Case Study of Job-Shop Scheduling, Morgan Kaufmann, 1987.Google Scholar
  12. Fox90.
    M. S. Fox, Constraint-guided scheduling — a short history of research at CMU, Computers in Industry 14, 1990, 79–88CrossRefGoogle Scholar
  13. Fre78.
    E. C. Freuder, Synthesizing constraint expressions, Comm. ACM 11, 1978, 958–966.CrossRefGoogle Scholar
  14. FS84.
    M. S. Fox, S. F. Smith, ISIS — a knowledge-based system for factory scheduling, Expert Systems 1, 1984, 25–49.CrossRefGoogle Scholar
  15. FS90.
    M. S. Fox, K. Sycara, Overview of CORTES: a constraint based approach to production planning, scheduling and control, Proc. 4th Int. Conf. Expert systems in Production and Operations Management, 1990, 1–15Google Scholar
  16. GJ79.
    M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.Google Scholar
  17. Har73.
    J. Harrington, Computer Integrated Manufacturing, Industrial Press, 1973.Google Scholar
  18. KA87.
    J. J. Kanet, H. H. Adelsberger, Expert systems in production scheduling, European J. Oper. Res. 29, 1987, 51–59.CrossRefGoogle Scholar
  19. Kan86.
    Kandel, A., Fuzzy Mathematical Techniques with Applications, Addison-Wesley, 1986.Google Scholar
  20. Kus86.
    A. Kusiak, Application of operational research models and techniques in flexible manufacturing systems, European J. Oper. Res. 24, 1986, 336–345.CrossRefGoogle Scholar
  21. KSW86.
    M. V. Kalkunte, S. C. Sarin, W. E. Wilhelm, Flexible Manufacturing Systems: A review of modelling approaches for design, justification and operation, in: A. Kusiak (ed.), Flexible Manufacturing Systems: Methods and Studies, Elsevier, 1986, 3–28.Google Scholar
  22. LGW86.
    A. J. Van Looveren, L. F. Gelders, N. L. Van Wassenhove, A review of FMS planning models, in: A. Kusiak (ed.), Modelling and Design of Flexible Manufacturing Systems, Elsevier, 1986, 3–32.Google Scholar
  23. Mac77.
    A. K. Mackworth, Consistency in networks of relations, Artif. Intell. 8, 1977, 99–118.CrossRefGoogle Scholar
  24. McN59.
    R. McNaughton, Scheduling with deadlines and loss functions, Management Sci. 12, 1959, 1–12.CrossRefGoogle Scholar
  25. Mon74.
    U. Montanari, Networks of constraints: Fundamental properties and applications to picture processing, Inform. Sci.7, 1974, 95–132.CrossRefGoogle Scholar
  26. MS92a.
    K. Mertins, G. Schmidt (Hrsg.), Fertigungsleitsysteme92, IPK Eigenverlag, 1992Google Scholar
  27. W. Mai, G. Schmidt, Was Leitstandsysteme heute leisten, CM Management 3, 1992, 26–32.Google Scholar
  28. MS96.
    J. Meyer, G. Schmidt, Case-based reasoning in der Fertigungsplanung und -Steuerung, Wirtschaftsinformatik 38, 1996, 57–60.Google Scholar
  29. NS91.
    S. Noronha, V. Sarma, Knowledge-based approaches for scheduling problems, IEEE Trans. Knowledge and Data Engineering 3(2), 1991, 160–171.CrossRefGoogle Scholar
  30. PI77.
    S. S. Panwalkar, W. Iskander, A survey of scheduling rules, Oper. Res. 25, 1977, 45–61.CrossRefGoogle Scholar
  31. RM93.
    A. Ramudhin, P. Manier, An object-oriented logistic tool-kit for schedule modeling and representation, Int. Conf. on Ind. Eng. and Prod. Man., Mons, 1993, 707–714.Google Scholar
  32. Ran86.
    P. G. Ranky, Computer Integrated Manufacturing, Prentice-Hall, 1986.Google Scholar
  33. Sch89a.
    G. Schmidt, CAM: Algorithmen und Decision Support für die Fertigungssteuerung, Springer, 1989.CrossRefGoogle Scholar
  34. G. Schmidt, Constraint satisfaction problems in project scheduling, in: R. Słowiński, J. Węglarz (eds.), Advances in Project Scheduling, Elsevier, 1989, 135–150.Google Scholar
  35. Sch91.
    A.-W. Scheer, CIM — Towards the Factory of the Future, Springer, 1991.Google Scholar
  36. Sch92.
    G. Schmidt, A decision support system for production scheduling, J. Decision Syst. 1(2–3), 1992, 243–260.CrossRefGoogle Scholar
  37. Sch94.
    G. Schmidt, How to apply fuzzy logic to reactive scheduling, in: E. Szelke, R. Kerr (eds.), Knowledge Based Reactive Scheduling, North-Holland, 1994, 57–57.Google Scholar
  38. Sch96.
    G. Schmidt, Modelling Production Scheduling Systems, Int. J. Production Economics, to be published.Google Scholar
  39. SFO86.
    S. F. Smith, M. S. Fox, P. S: Ow, Constructing and maintaining detailed production plans: investigations into the development of knowledge-based factory scheduling systems, AI Magazine 7, 1986, 45–61.Google Scholar
  40. Smi92.
    S. F. Smith, Knowledge-based production management: approaches, results and prospects, Production Planning and Control 3(4), 1992, 350–380.CrossRefGoogle Scholar
  41. SPPMM90.
    S. F. Smith, S. O. Peng, J.-Y. Potvin, N. Muscettola, D. C. Matthys, An integrated framework for generating and revising factory schedules, J. Oper. Res. Soc. 41, 1990, 539–552Google Scholar
  42. SS90.
    S. C. Sarin, R. R. Salgame, Development of a knowledge-based system for dynamic scheduling, Int. J. Prod. Res. 28, 1990, 1499–1512.CrossRefGoogle Scholar
  43. Ste85.
    K. E. Stecke, Design, planning, scheduling and control problems of flexible manufacturing systems, Ann. Oper. Res. 3, 1985, 3–121.CrossRefGoogle Scholar
  44. WBJ90.
    J. R. Wilfs-Brock, R. E. Johnson, Surveying current research in object oriented design, Comm. ACM 33, 1990, 104–124.CrossRefGoogle Scholar
  45. Wir76.
    N. Wirth, Algorithms + Data Structures = Programs, Prentice-Hall, 1976.Google Scholar
  46. Zad65.
    L. A. Zadeh, Fuzzy sets, Information and Control 8, 1965, 338–353.CrossRefGoogle Scholar
  47. Zad73.
    L. A. Zadeh, The concept of linguistic variables and its application to approximate reasoning, Memorandum ERL-M411, UC Berkeley, 1973.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Jacek Błażewicz
    • 1
  • Klaus H. Ecker
    • 2
  • Erwin Pesch
    • 3
  • Günter Schmidt
    • 4
  • Jan Węglarz
    • 1
  1. 1.Instytut InformatykiPolitechnika PoznanskaPoznańPoland
  2. 2.Institut für InformatikTechnische Universität ClausthalClausthal-ZellerfeldGermany
  3. 3.Institut für Gesellschafts- und WirtschaftswissenschaftenUniversität BonnBonnGermany
  4. 4.Betriebswirtschaftslehre, insbesondere Informations- und TechnologiemanagementUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations