Skip to main content

Photoemission of Valence Electrons from Metallic Solids in the One-Electron Approximation

  • Chapter
Photoelectron Spectroscopy

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 82))

  • 713 Accesses

Abstract

Solids are characterized with respect to the size of the energy gap between valence and conduction band as insulators, semiconductors or metals. In PES and IPES experiments, only metals possess an experimentally accessible (and generally accepted) zero of energy, namely the Fermi energy. The Fermi energy generally shows up as a step in the EDC1 and therefore it is a very convenient experimental reference point. In insulators and semiconductors (although they of course also have a Fermi energy, it does not usually show up clearly in the PE data) the top of the valence band or the bottom of the conduction band are often taken as the experimental zero of energy. These energy points, however, are not very well defined in the experimental spectra. In order to treat only the simplest possible case, the discussion in this chapter will be restricted to metals. The generalisation to insulators or semiconductors is often straightforward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Dardel, D. Malterre, M. Grioni, P. Weibel, Y. Baer: Phys. Rev. Lett. 67, 3144 (1991)

    Article  CAS  Google Scholar 

  2. H. Raether: Springer Tracts Mod. Phys., 38, 84 (Springer, Berlin, Heidelberg 1965)

    Article  CAS  Google Scholar 

  3. C.S. Fadley: In Electron Spectroscopy, Theory, Techniques and Applications, Vol.11, ed. by C.R. Brundle, A.D. Baker (Academic, New York 1978) p.l

    Google Scholar 

  4. C.N. Berglund, W.E. Spicer: Phys. Rev. A 136, 1030 and 1044 (1964)

    CAS  Google Scholar 

  5. N.V. Smith: In Photoemission in Solids I, ed. by M. Cardona, L. Ley, Topics Appl. Phys., Vol.26 (Springer, Berlin, Heidelberg 1978) Chap.6

    Google Scholar 

  6. G.D. Mahan: Phys. Rev. 163, 612 (1967)

    Article  CAS  Google Scholar 

  7. G.D. Mahan: Phys. Rev. B 2, 4334 (1970)

    Article  Google Scholar 

  8. C. Caroli, B. Roulet, D. Saint-James: Theory of Photoemission, in Handbook of Surfaces and Interfaces, Vol.1, ed. by L. Dobrzynski (Garland, New York 1978)

    Google Scholar 

  9. W. Eberhardt, E.W. Plummer: Phys. Rev. B 21, 3245 (1978)

    Article  Google Scholar 

  10. W. Eberhardt, E.W. Plummer, K. Horn, J. Erskine: Phys. Rev. Lett. 45, 275 (1980)

    Article  Google Scholar 

  11. H.J. Levinson, E.W. Plummer, P.J. Feibelman: Phys. Rev. Lett. 43, 952 (1979)

    Article  CAS  Google Scholar 

  12. H.J. Levinson, E.W. Plummer, P.J. Feibelman: J. Vac. Sci. Technol. 17, 216 (1980)

    Article  CAS  Google Scholar 

  13. A. Liebsch: Ferienkurs 1980, Elektronenspektroskopische Methoden an Festkörpern und Oberflächen, Vols.I and II, Kernforschungsanlage Jülich GmbH (1980)

    Google Scholar 

  14. C. Kittel: Introduction to Solid State Physics, 5th edn. (Wiley, New York, 1974)

    Google Scholar 

  15. R.Y. Koyoama, N.V. Smith: Phys. Rev. B 2, 3049 (1970)

    Article  Google Scholar 

  16. J.C. Phillips: in Solid State Physics, Vol.18, ed. by F. Seitz, D. Turnbull (Academic, New York 1966) p.55

    Google Scholar 

  17. B. Feuerbacher, R.F. Willis: J. Phys. C 9, 169 (1976)

    Article  CAS  Google Scholar 

  18. D.J. Spanjaard, D.V. Jepsen, P.M. Marcus: Phys. Rev. B 15, 1728 (1977)

    Article  CAS  Google Scholar 

  19. I. Adawi: Phys. Rev. 134, A 788 (1964)

    Article  Google Scholar 

  20. W.I. Schaich, N.W. Ashcroft: Solid State Commun. 8, 1959 (1970)

    Article  CAS  Google Scholar 

  21. W.I. Schaich, N.W. Ashcroft: Phys. Rev. B 3, 2452 (1971)

    Article  Google Scholar 

  22. C. Caroli, D. Lederer-Rozenblatt, B. Roulet, D. Saint-James: Phys. Rev. B 8, 4552 (1973)

    Article  Google Scholar 

  23. P.J. Feibelman, D.E. Eastman: Phys. Rev. B 10, 4932 (1974)

    Article  CAS  Google Scholar 

  24. A. Liebsch: Phys. Rev. B 13, 544 (1976)

    Article  CAS  Google Scholar 

  25. J.B. Pendry: Surf. Sci. 57, 679 (1976);

    Article  CAS  Google Scholar 

  26. J.B. Pendry: and Solid State Phys. 8, 2413 (1975)

    Article  Google Scholar 

  27. W. Bardyszewski, L. Hedin: Physica Scripta 32, 439 (1985)

    Article  CAS  Google Scholar 

  28. W.L. Schaich: In Photoemission in Solids I, ed. by M. Cardona, L. Ley, Topics Appl. Phys., Vol.26 (Springer, Berlin, Heidelberg 1978) Chap.2

    Google Scholar 

  29. N.V. Smith: Crit. Rev. Solid State Sci. 2, 45 (1971);

    Article  CAS  Google Scholar 

  30. N.V. Smith: and Phys. Rev. B 3, 1862 (1971)

    Article  Google Scholar 

  31. M.J. Sayers, F.R. McFeely: Phys. Rev. B 17, 3867 (1978)

    Article  CAS  Google Scholar 

  32. L. Ley, M. Cardona, R.A. Pollak: In Photoemission in Solids II, ed. by L. Ley, M. Cardona, Topics Appl. Phys. Vol.27 (Springer, Berlin, Heidelberg 1979) Chap.l

    Chapter  Google Scholar 

  33. T. Grandke, L. Ley, M. Cardona: Solid State Commun. 23, 897 (1977)

    Article  CAS  Google Scholar 

  34. T. Grandke, L. Ley, M. Cardona: Phys. Rev. Lett. 38, 1033 (1977)

    Article  CAS  Google Scholar 

  35. E. Dietz, F.J. Himpsel: Solid State Commun. 30, 235 (1979)

    Article  CAS  Google Scholar 

  36. J.F. Janak, A.R. Williams, V.L. Moruzzi: Phys. Rev. B 11, 1522 (1975)

    Article  CAS  Google Scholar 

  37. J.B. Pendry, D.T. Titterington: Commun. Phys. 2, 31 (1977)

    CAS  Google Scholar 

  38. J.B. Pendry, J.F.L. Hopkinson: J. Phys. C 4, 142 (1978)

    Google Scholar 

  39. J.F.L. Hopkinson, J.B. Pendry, D.J. Titterington: Comput. Phys. Commun. 19, 69 (1980)

    Article  CAS  Google Scholar 

  40. C.G. Larsson, J.B. Pendry: J. Phys. C 14, 3089 (1981)

    Article  CAS  Google Scholar 

  41. For recent calculations of photocurrents by a one-step theory see, e.g., M.A. Hoyland, R.G. Jordan: J. Phys. C 3, 1337 (1991) and references therein

    CAS  Google Scholar 

  42. P.O. Nilsson, J. Kanski, C.G. Larsson: Solid State Commun. 36, 111 (1980)

    Article  CAS  Google Scholar 

  43. D. Westphal, D. Spanjaard, A. Goldmann: J. Phys. C 13, 1361 (1980)

    Article  CAS  Google Scholar 

  44. A. Goldmann, A. Rodriguez, R. Feder: Solid State Commun. 45, 449 (1983)

    Article  CAS  Google Scholar 

  45. P.H. Citrin, P. Eisenberger, D.R. Haman: Phys. Rev. Lett. 33, 965 (1974)

    Article  CAS  Google Scholar 

  46. For an analysis of the temperature dependence of the linewidth of a core level in a metal (Na) see D.M. Riffe, G.K. Wertheim, P.H. Citrin: Phys. Rev. Lett. 67, 116 (1991)

    Article  CAS  Google Scholar 

  47. N.J. Shevchik, D. Liebowitz: Phys. Rev. B 18, 1618 (1978)

    Article  CAS  Google Scholar 

  48. M. Sagurton, N.J. Shevchik: J. Phys. C 11, 2353 (1978)

    Article  Google Scholar 

  49. M. Sagurton, N.J. Shevchik: J. Phys. C 11, L353 (1978)

    Article  Google Scholar 

  50. M. Sagurton, N.J. Shevchik: Phys. Rev. B 17, 3859 (1978)

    Article  CAS  Google Scholar 

  51. N.J. Shevchik: Phys. Rev. B 16, 3428 (1977);

    Article  CAS  Google Scholar 

  52. N.J. Shevchik: and Phys. Rev. B 20, 3029 (1979)

    Article  Google Scholar 

  53. N.J. Shevchik, D. Liebowitz: Phys. Rev. B 18, 1618 (1978)

    Article  CAS  Google Scholar 

  54. R.C. White, C.S. Fadley, M. Sagurton, P. Roubin, D. Chandesris, J. Lecante, C. Guillot, Z. Hussani: Phys. Rev. B 35, 1147 (1987)

    Article  CAS  Google Scholar 

  55. J.M. Ziman: Principles of the Theory of Solids (Cambridge Univ., Cambridge 1972)

    Book  Google Scholar 

  56. H. Martensson, P.O. Nilsson, J. Kanski: Appl.Surf. Sci. 11, 652 (1982)

    Google Scholar 

  57. H. Martensson, C.G. Larsson, P.O. Nilsson: Surf. Sci. 126, 214 (1983)

    Article  Google Scholar 

  58. S.D. Kevan, D.A. Shirley: Phys. Rev. B 22, 542 (1980)

    Article  CAS  Google Scholar 

  59. R. Matzdorf, G. Meister, A. Goldmann: Surf. Sci. 286, 56 (1993)

    Article  CAS  Google Scholar 

  60. R. Matzdorf, G. Meister, A. Goldmann: Surf. Sci. 296, 241 (1993)

    Article  CAS  Google Scholar 

  61. A. Goldmann, R. Matzdorf: Prog. Surf. Sci. 42, 331 (1993)

    Article  CAS  Google Scholar 

  62. R. Matzdorf, A. Goldmann, J. Braun, G. Borstel: Solid State Commun. 91, 163 (1994). Bringing to light the importance of the angular resolution, for measuring the width in valence bands of metals, in addition to the energy resolution R. Matzdorf, R. Paniago, G. Meister, A. Goldmann: Solid State Commun. 92, 839 (1994). Showing that for Cu(100) the lifetime width of a valence hole state has an energy dependence of (EB-EF)2, thus fulfilling the prediction of Fermi-liquid theory, see (1.24b)

    Article  CAS  Google Scholar 

  63. R.S. Williams, P.S. Wehner, G. Apai, J. Stöhr, D.A. Shirley, S.P. Kowalczyk: J. Electron Spectrosc. Relat. Phenom. 12, 477 (1977)

    Article  CAS  Google Scholar 

  64. The width of a valence-band state is the combination of the width of the hole state Γh and the electron state Γe: What one is interested in, is the hole-state width and this is not easy to separate from the total measured width Γexp. The relation between the measured width Γexp, the hole-state width Γh and the electron-state width Γe is given by where vh, vh⊥, ve, ve:⊥ are the group velocities given by MATH, etc., and ϑ is the angle between the electron-detection direction and the surface normal. In the case of a normal emission experiment one has In the case where the dispersion of the initial (hole) state is small with respect to that of the final (electron) state the equation can be further simplified: Finally in the case where vh⊥ vanishes, i.e., where the dispersion of the band perpendicular to the surface is perfectly flat (which holds for surface states, or two- and one-dimensional electronic states) one can identify Γexp(ϑ=0) with Γh which is the imaginary part of the self energy; see N.V. Smith, P. Thiry, Y. Petroff: Phys. Rev. B 47, 15476 (1993)

    Google Scholar 

  65. T. Grandke, L. Ley, M. Cardona: Phys. Rev. B 18, 3847 (1978)

    Article  CAS  Google Scholar 

  66. P.B. Allen, M. Cardona: Phys. Rev. B 27, 4760 (1983)

    Article  CAS  Google Scholar 

  67. J. Fraxedas, H.J. Trodahl, S. Gopalan, L. Ley, M. Cardona: Phys. Rev. B 41, 10068(1990)

    Article  CAS  Google Scholar 

  68. M.A. Butler, G.K. Wertheim, D.L. Rousseau, S. Hüfner: Chem. Phys. Lett. 13, 473 (1972)

    Article  CAS  Google Scholar 

  69. J.A. Knapp, F.J. Himpsel, A.R. Williams, D.E. Eastman: Phys. Rev. B 19, 2844 (1979)

    Article  CAS  Google Scholar 

  70. R. Courths, S. Hüfner: Phys. Rep. 112, 53 (1984)

    Article  CAS  Google Scholar 

  71. J. Hermanson: Solid State Commun. 22, 9 (1977)

    Article  CAS  Google Scholar 

  72. W. Eberhardt, F.J. Himpsel: Phys. Rev. B 21, 5572 (1980)

    Article  CAS  Google Scholar 

  73. G. Borstel, W. Braun, M. Neumann, G. Seitz: Phys. Stat. Sol. (b) 95, 453 (1979)

    Article  CAS  Google Scholar 

  74. G. Borstel, M. Neumann, G. Wöhlecke: Phys. Rev. B 23, 3121 (1981)

    Article  CAS  Google Scholar 

  75. H. Wem, R. Courths: Surf. Sci. 162, 29 (1985)

    Article  Google Scholar 

  76. N.V. Smith, R.L. Benbow, Z. Hurych: Phys. Rev. B 21, 4331 (1980)

    Article  CAS  Google Scholar 

  77. H. Wern: Winkelaufgelöste ultraviolett Photoelektronenspektroskopie an Silber. Thesis, Universität des Saarlandes (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hüfner, S. (1996). Photoemission of Valence Electrons from Metallic Solids in the One-Electron Approximation. In: Photoelectron Spectroscopy. Springer Series in Solid-State Sciences, vol 82. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03209-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03209-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03211-4

  • Online ISBN: 978-3-662-03209-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics