Skip to main content

Photoelectron Diffraction

  • Chapter
Photoelectron Spectroscopy

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 82))

  • 713 Accesses

Abstract

So far in this volume, we have neglected a seemingly obvious effect in PES, namely the scattering of the photoexcited electron on its way through the crystal to the surface, by the crystal potential. This is a straightforward scattering problem leading to intensity modulations as a function of electron wavelength and/or crystal orientation. Such intensity modulations have indeed been observed and the method of measuring PES in order to bring out most clearly the scattering features of the final-state electron intensity is called PhotoElectron Diffraction (PED).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.M. Hayers, J.B. Boyce: Solid State Physics 37, 173 (Academic, New York 1982)

    Google Scholar 

  2. D.C. Koningsberger, R. Prins (eds.): Principles, Applications, Techniques of EXAFS, SEXAFS and XANES (Wiley, New York 1988) For a recent comprehensive treatment of NEXAFS spectroscopy see J. Stöhr: NEXAFS Spectroscopy, Springer Ser. Surf. Sci., Vol.25 (Springer, Berlin, Heidelberg 1992); NEXAFS means that the EXAFS experiment is performed only near the absorption threshold

    Google Scholar 

  3. J.J. Rehr, J. Mustre de Leon, S.I. Zabinsky, R.C. Albers: J. Am. Chem. Soc. 113, 5135 (1991)

    Article  CAS  Google Scholar 

  4. L. Tröger, T. Yokoyama, D. Arvanitis, T. Lederer, M. Tischer, K. Baberschke: Phys. Rev. B 49, 888 (1994)

    Article  Google Scholar 

  5. C.S. Fadley: Progress in Surf. Sci. 16, 275 (1984)

    Article  CAS  Google Scholar 

  6. J.J. Barton, S.W. Rohey, D.A. Shirley: Phys. Rev. B 34, 778 (1986)

    Article  CAS  Google Scholar 

  7. C.S. Fadley: Phys. Scr. T 17, 39 (1987)

    Article  Google Scholar 

  8. C.S. Fadley: In Synchrotron Radiation Research: Advances in Surface Science, ed. by R.C. Bachrach (Plenum, New York 1989)

    Google Scholar 

  9. W.F. Egelhoff Jr.: Crit. Rev. Solid State Mat. Sci. 16, 213 (1990);

    Article  CAS  Google Scholar 

  10. W.F. Egelhoff Jr.: Solid State Materials Sciences 16, 213 (1990)

    Article  CAS  Google Scholar 

  11. L. Fonda: Phys. Stat. Sol. (b) 182, 9 (1994)

    Article  CAS  Google Scholar 

  12. S.A. Chambers: In Advances in Physics ed. by S. Doniach (Taylor and Francis, London 1991)

    Google Scholar 

  13. W.L. Schaich: Phys. Rev. B8, 4028 (1973)

    Google Scholar 

  14. B. Lengeier: In Elektronenspektroskopische Methoden an Festkörpern und Oberflächen, Vols.I and II (Kernforschungsanlage, Jülich 1980)

    Google Scholar 

  15. J. Stöhr, R. Jäger, S. Brennan: Surf. Sci. 117, 503 (1982)

    Article  Google Scholar 

  16. D.v.d. Marel, G.A. Sawatzky, R. Zeller, F.U. Hillebrecht, J.C. Fuggle: Solid State Commun. 50, 47 (1984)

    Article  Google Scholar 

  17. W. Speier, T.M. Hayes, J.W. Allen, J.B. Boyce, J.C. Fuggle, M. Campagna: Phys. Rev. Lett. 55, 1693 (1985)

    Article  CAS  Google Scholar 

  18. S. Anderson: Surf. Sci. 15, 231 (1969)

    Article  Google Scholar 

  19. D.W. Jepson, P.M. Marcus, F. Jona: Phys. Rev. B 5, 3933 (1972)

    Article  Google Scholar 

  20. Y. Jugnet, G. Grenet, N.S. Prakash, Tran Minh Due, H.C. Poon: Phys. Rev. B 38, 5281 (1988)

    Article  CAS  Google Scholar 

  21. M.L. Xu, J.J. Barton, M.A. van Hove: Phys. Rev. B 39, 8275 (1989)

    Article  Google Scholar 

  22. W.F. Egelhoff, Jr.: Phys. Rev. Lett. 59, 559 (1987)

    Article  CAS  Google Scholar 

  23. J. Osterwalder, T. Greber, S. Hüfner, L. Schlapbach: Phys. Rev. B 41, 12495 (1990)

    Article  CAS  Google Scholar 

  24. S. Hüfner, J. Osterwalder, T. Greber, L. Schlapbach: Phys. Rev. B 42, 7350 (1990)

    Article  Google Scholar 

  25. J. Osterwalder, A. Stuck, Th. Greber, L. Schlapbach, S. Hüfner: Unpublished (Université de Fribourg) D.P. Woodruff, A.M. Bradshaw: Rep. Prog. Phys. 57, 1029 (1994)

    Article  CAS  Google Scholar 

  26. M. Zharnikov, M. Weinelt, P. Zelisch, M. Stichler, H.P. Steinrück: Phys. Rev. Lett. 73, 3548(1994)

    Article  CAS  Google Scholar 

  27. R. Davis, D.P. Woodruff, O. Schaff, V. Fernandez, K.M. Schindler, Ph. Hofmann, K.U. Weiss, R. Dippel, V. Fritzsche, A.M. Bradshaw: Phys. Rev. Lett. 74, 1621 (1995)

    Article  CAS  Google Scholar 

  28. Ph. Hofmann, K.M. Schindler Phys. Rev. B 47, 13941 (1993) All these publications deal with the structure determination of adsorbates by photoelectron diffraction The paper by Hofmann and Schindler above describes a new method for the transformation of scanned energy-mode PED spectra from adsorbates into real-space images. The considerations start from the suggestion [

    Article  CAS  Google Scholar 

  29. J.J. Barton: Phys. Rev. Lett. 61, 1356 (1988)] that PED data can be viewed as a hologram of the surface structure. Adsorbate PED spectra taken in the backscattering (180°) geometry will exhibit large oscillations (if the experiment is performed in the energy dispersion, fixed geometry mode) which are mainly caused by one scatterer. This fact can be utilized to determine the position of the nearest-neighbour substrate atom [

    Article  CAS  Google Scholar 

  30. V. Fritsche, P.D. Woodruff: Phys. Rev. B 46, 16128 (1992)]. In an actual experiment the modulation function χexp(k) is measured at various emission angles and subsequently Fourier transformed yielding MATH The object of the method is to identify the directions of the main (substrate) backscattering nearest-neighbour atoms relative to the emitter. This method, however, leads to inaccuracies because the scattering phase shifts are neglected. Hofmann and Schindler have improved this procedure by replacing the Fourier transform with the projection of the experimentally determined modulation function χexp(k) onto the calculated modulation function χth(k,r) expected for all possible different substrate atom locations relative to the emitter. This can be considered as replacing the pure harmonic phase function of the Fourier transform by χth(k,r) leading to MATH The c(r) functions for several experimental modulation functions taken in different emission directions are then combined to give a coefficient C(r) derived from the whole data set. These C(r) functions give some measure of the probability of finding a substrate atom at the position r on the grid of possible substrate atom locations. In particular, one can expect pronounced maxima in C(r) at the location of the nearest-neighbour surface atoms, thus allowing the adsorption site to be determined

    Article  Google Scholar 

  31. R.S. Saiki, G.S. Herman, M. Jamada, J. Osterwalder, C.S. Fadley: Phys. Rev. Lett. 63, 283 (1989)

    Article  CAS  Google Scholar 

  32. K.U. Weiss, R. Dippel, K.M. Schindler, P. Gardner, V. Fritzsche, A.M. Bradshaw, A.L.D. Kilcoyne, D.P. Woodruff: Phys. Rev. Lett. 69, 3196 (1992) 11.

    Google Scholar 

  33. A. Locatelli, B. Brena, S. Lizzit, G. Comelli, G. Cantero, G. Paolucci, R. Rosei: Phys. Rev. Lett. 73, 90 (1994)

    Article  CAS  Google Scholar 

  34. E.L. Bullock, R. Gunnella, L. Pathey, T. Abukawa, S. Kono, C.R. Natoli, L.S.O. Johansson: Phys. Rev. Lett. 74, 2756 (1995)

    Article  CAS  Google Scholar 

  35. M. Zkarnikov, D. Mehl, M. Weinel, D. Zebisch, H.P. Steinrück: Surf. Sci. 312, 82 (1994). Reporting on the holographic reconstruction of the Pt(110) surface by using multiple wave-number photoelectron diffraction patterns

    Article  Google Scholar 

  36. A. Santoni, L.J. Terminello, F.J. Himpsel, T. Takahashi: Applied Physics A 52, 299 (1991)

    Article  Google Scholar 

  37. J. Osterwalder, A. Stuck, T. Greber, P. Aebi, L. Schlapbach, S. Hufner: Proc. 10th VUV Conf., ed. by F.J. Wullenmier, Y. Petroff, N. Nenner (World Scientific, Singapore 1993) p.475

    Google Scholar 

  38. P. Aebi, J. Osterwalder, R. Fasel, D. Naumovic, L. Schlapbach: Surf. Sci. 307–309, 917 (1994); the Fermi surface of Bi2Sr2Ca1Cu2O8 has been determined by this method by

    Article  Google Scholar 

  39. P. Aebi, J. Osterwalder, P. Schwaller, L. Schlapbach, M. Shimoda, T. Mochiku, K. Kadowaki: Phys. Rev. Lett. 72, 2757 (1994)

    Article  CAS  Google Scholar 

  40. T.J. Kreutz, P. Aebi, J. Osterwalder Solid State Commun. 96, 339 (1995).

    Article  CAS  Google Scholar 

  41. J. Osterwalder, P. Aebi, D. Schwaller, L. Schlapbach, M. Shimoda, T. Mochiku, K. Kadowaki: Appl. Phys. A 60, 247 (1995). Giving examples for the determination of Fermi surfaces with the photoelectron-diffraction technique

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hüfner, S. (1996). Photoelectron Diffraction. In: Photoelectron Spectroscopy. Springer Series in Solid-State Sciences, vol 82. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03209-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03209-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03211-4

  • Online ISBN: 978-3-662-03209-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics