Advertisement

State and Measurement in Quantum Mechanics

  • Franz Schwabl
Chapter
  • 437 Downloads

Abstract

Here, “to understand” does not mean just the mastery of the mathematical formalism, but rather an understanding within the framework of our conceptual ideas acquired on the basis of classical and nonrelativistic phenomena. Indeed, one can understand (in this sense of the word) such consequences of special relativity as the Lorentz contraction or time dilation as soon as one has a clear notion of the relativity of simultaneity in coordinate systems which are in motion with respect to one another. Although the Newtonian equations are indeed modified in relativity theory, so that the resulting equations are covariant with respect to Lorentz transformations, the concept of a state — specification of position and velocity — is not altered.

Keywords

Quantum Mechanics Density Matrix Quantum Theory Wave Packet Pure State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Aspect, P. Grangier, G. Roger: Phys. Rev. Lett. 47, 460 (1981); Phys. Rev. Lett. 49, 91 (1982)ADSCrossRefGoogle Scholar
  2. A. Aspect, J. Dalibard, G. Roger: Phys. Rev. Lett. 49, 1804 (1982)MathSciNetADSCrossRefGoogle Scholar
  3. K. Baumann, R.U. Sexl: Die Deutungen der Quantentheorie ( Vieweg, Wiesbaden 1984 )Google Scholar
  4. J.S. Bell: “On the Einstein Podolsky Rosen Experiment”, Physics 1, 195 (1964)Google Scholar
  5. D. Bohm: “A Suggested Interpretation of the Quantum Theory in Terms of `Hidden’ Variables”, Phys. Rev. 85, 166 (1952)MathSciNetADSCrossRefzbMATHGoogle Scholar
  6. J.G. Cramer: “The Transactional Interpretation of Quantum Mechanics”, Rev. Mod Phys. 589, 647 (1986)MathSciNetADSCrossRefGoogle Scholar
  7. B. d’Espagnat: Scientific American, Nov. 1979, p. 128Google Scholar
  8. K. Gottfried: Quantum Mechanics (Benjamin, New York, Amsterdam 1966 ) Chap. IVGoogle Scholar
  9. W. Heisenberg: The Physical Principles of the Quantum Theory ( Dover, New York 1950 )Google Scholar
  10. M. Lamehi-Rachti, W. Mittig: Phys. Rev. D14, 2543 (1976)ADSGoogle Scholar
  11. N.D. Mermin: “Is the Moon There when Nobody Looks? Reality and the Quantum Theory”, Physics Today, April 1985, 38Google Scholar
  12. N.F. Mott: “The Wave Mechanics of a-Ray Tracks”, Roy. Soc. Proc. Al24, 375 (1929)Google Scholar
  13. J. von Neumann: Mathematical Foundations of Quantum Mechanics ( Princeton University Press, New Jersey 1964 )Google Scholar
  14. W. Pauli: “Die allgemeinen Prinzipien der Wellenmechanik”, in Handbuch der Physik, Encyclopedia of Physics V/1, Principles of Quantum Theory I (Springer, Berlin, Heidelberg 1958 )Google Scholar
  15. L I Schiff: Quantum Mechanics, 3rd ed. ( McGraw-Hill, New York 1968 ) p. 335Google Scholar
  16. E. Schrödinger: “Die gegenwärtige Situation der Quantenmechanik”, Die Naturwissenschaften 23, 807, 823, 844 (1935)CrossRefGoogle Scholar
  17. F. Selleri: Die Debatte um die Quantentheorie ( Vieweg, Wiesbaden 1983 )CrossRefGoogle Scholar
  18. F. Selleri (ed.): Quantum Mechanics versus Local Realism ( Plenum, New York 1988 )Google Scholar
  19. E. Wigner: “The Problem of Measurement”, Am. J. Phys. 31, 6 (1963)MathSciNetADSCrossRefzbMATHGoogle Scholar
  20. E. Wigner: “On Hidden Variables and Quantum Mechanical Probabilities”, Am. J. Physics 38, 1005 (1970)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Franz Schwabl
    • 1
  1. 1.Institut für Theoretische PhysikTechnische Universität MünchenGarchingGermany

Personalised recommendations