Advertisement

General: the Treatment of the Ecozones and Global Overviews of Selected Characteristics

  • Jürgen Schultz

Abstract

Only the terrestrial regions of the world are considered; marine ecozones are ignored. The land portion is divided into nine ecozones, although an even larger number of ecozones might be justified. For instance, the subdivisions within some of the ecozones could be elevated to the status of ecozones themselves.

Keywords

Animal Life Humid Tropic Soil Unit Boreal Zone Incoming Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

Chapter 2.2: Climate

  1. Blüthgen J, Weischet W (1980) Allgemeine Klimageographie, 3rd edn. De Gruyter, Berlin, 887 ppGoogle Scholar
  2. Budyko MI (1963a) Atlas of the heat balance of the globe. MoscowGoogle Scholar
  3. Budyko MI (1963b) Der Wärmehaushalt der Erdoberfläche. Porz-Wahn (mimeographed)Google Scholar
  4. Budyko MI (1968) Solar radiation and the use of it by plants. In: UNESCO: Agroclimatological methods. Paris, pp 39 - 53Google Scholar
  5. Budyko MI (1974) Climate and life. Int Geophys Ser 18. Academic Press, New York, 508 ppGoogle Scholar
  6. De Jong B (1973) Net radiation received by a horizontal surface at the earth. Delft University Press, DelftGoogle Scholar
  7. De Martonne E (1926) Une nouvelle fonction climatologique: lindice daridité. Météorologie 2: 449 - 459Google Scholar
  8. De Vries DA, Afgar NH (eds) (1975) Heat and mass transfer in the biosphere. John Wiley and Sons, New York, 594 ppGoogle Scholar
  9. Galoux A, Benecke P, Gietl G (1981) Radiation, heat, water and carbon dioxide balances. In: Reichle DE (ed), pp 87-204, see Chapter 2. 5Google Scholar
  10. Giese E (1974) Zuverlässigkeit von Indizes bei Ariditätsbestimmungen. Geogr Z 62: 179 - 203Google Scholar
  11. Häckel H (1990) Meteorologie, 3rd edn. Ulmer, Stuttgart, 402 ppGoogle Scholar
  12. Henning I, Henning D (1984) Die klimatologische Wasserbilanz der Kontinente. Münstersche Geogr Arb 19, PaderbornGoogle Scholar
  13. Heyer E (1979) Witterung and Klima, 5th edn. Teubner, Leipzig, 460 ppGoogle Scholar
  14. Jätzold R (1962) Die Dauer der ariden und humiden Zeiten des Jahres als Kriterium für Klimaklassifikationen. Tübinger Geogr St, Sonderband 1, pp 89 - 108Google Scholar
  15. Kessler A (1968) Globalbilanzen von Klimaelementen. Technische Universität Hannover, Hannover, 141 ppGoogle Scholar
  16. Klaus D (1979) Wärmemangel und Trockengrenzen der Vegetation in ihrer Beziehung zu den Luftmassengrenzen. Erdkunde 33: 258 - 266Google Scholar
  17. Landsberg HE (1963) Global distribution of solar and sky radiation. In: Landsberg HE et al. (eds) Weltkarten zur Klimakunde, Berlin, pp 1 - 4Google Scholar
  18. Lauer W (1952) see Chapter 2.5Google Scholar
  19. Lauer W (1993) Klimatologie. Westermann, Braunschweig (Das geographische Seminar), 267 ppGoogle Scholar
  20. Lauer W, Frankenberg P (1981) Untersuchungen zur Humidität und Aridität von Afrika - Das Konzept einer potentiellen Landschaftsverdunstung. Bonn Geogr Abh 66. Dümmlers, Bonn, 127 ppGoogle Scholar
  21. Lauer W, Frankenberg P (1985) Versuch einer geoökologischen Klassifikation der Klimate. Geogr Rundsch 37, 7: 359 - 365Google Scholar
  22. Liljequist GH, Cehak K (1979) Allgemeine Meteorologie, 2nd edn. Vieweg, Braunschweig, 385 ppGoogle Scholar
  23. Löf GOG, Duffle JA, Smith CO (1966) World distribution of solar radiation. Sol Energy 10, 1: 27 - 37Google Scholar
  24. Martyn D (1992) Climates of the world. Development in Atmospheric Science 18. Elsevier, Amsterdam, 435 ppGoogle Scholar
  25. Miller DH (1981) Energy at the surface of the earth. Int Geophys Ser 27. Academic Press, New York, 516 ppGoogle Scholar
  26. Nieuwolt S (1977) Tropical climatology. Wiley, London, 207 ppGoogle Scholar
  27. Papadakis J (1970) Climates of the world. Buenos Aires, 47 ppGoogle Scholar
  28. Riehl H (1979) Climate and weather in the tropics. Academic Press, London, 611 ppGoogle Scholar
  29. Ross J (1981) The radiation regime and architecture of plant stands. Dr W Junk, London, 391 ppGoogle Scholar
  30. Rouse WR (1981) see Chapter 3.5Google Scholar
  31. Schönwiese CD (1994) Klimatologie. Ulmer, Stuttgart, 400 ppGoogle Scholar
  32. Sellers PJ, Mintz Y, Sud YC, Dalcher A (1986) A simple biosphere model (SiB) for use within general circulation models. J Atmosph Sci 43, 6: 505 - 531Google Scholar
  33. Trewartha GT, Horn LH (1980) An introduction to climate. McGraw-Hill, New York, 402 ppGoogle Scholar
  34. Troll C, Paffen KH(1964) see Chapter 2.1Google Scholar
  35. Walter H (1955) Die Klima-Diagramme als Mittel zur Beurteilung der Klimaverhältnisse für ökologische, vegetationskundliche und landwirtschaftliche Zwecke. Ber Dtsch Bot Ges 68: 321 - 344Google Scholar
  36. Walter H, Lieth H (1960-1967) see Chapter 2.1Google Scholar
  37. Walter H, Hamickell E, Müller-Dombois D (1975) Klimadiagramm-Karten der einzelnen Kontinente und ökologische Klimagliederung der Erde. Fischer, Stuttgart, 36 ppGoogle Scholar
  38. Weischet W (1983, 1991) Einführung in die Allgemeine Klimatologie, 3rd (5th) edn. Teubner, Stuttgart, 260 pp (275 pp)Google Scholar
  39. Woodward FI (1987) Climate and plant distribution. Cambridge Studies in Ecology. Cambridge University Press, Cambridge, 174 ppGoogle Scholar

Chapter 2.3: Relief and Hydrology

  1. Ahnert F (1982) see Chapter 3.7Google Scholar
  2. Ahnert F (1987) An approach to the identification of morphoclimates. In: Gardiner V (ed) International Geomorphology 1986, part II. Wiley, Chichester, pp 159 - 188Google Scholar
  3. Baumgartner A, Liebscher HJ (1990) Allgemeine Hydrologie. Quantitative Hydrologie. Lehrbuch der Hydrologie, vol 1. Bomtraeger, Berlin, 673 ppGoogle Scholar
  4. Besler H (1992) Geomorphologie der ariden Gebiete. Erträge der Forschung 280. DarmstadtGoogle Scholar
  5. Büdel J (1971) Aufriß des natürlichen Systems der Geomorphologie. Würzburger Geogr Arb, Sonderheft 34a. Würzburg, 78 ppGoogle Scholar
  6. Büdel J (1981) Klima Geomorphologie, 2nd edn. Gebrüder Bornträger, Berlin, 304 ppGoogle Scholar
  7. Butzer KW (1976) Geomorphology from the Earth. Harper and Row, New York, 463 ppGoogle Scholar
  8. Chorley RJ, Schumm SA, Sudgen DE (1984) Geomorphology. Methuen, New York, 605 ppGoogle Scholar
  9. Colman SM, Dethier DP (eds) (1986) Rates of chemical weathering of rocks and minerals. Academic Press, Orlando, 603 ppGoogle Scholar
  10. Davies JL (1972) Landforms of cold climates. MIT Press, Cambridge, 200 ppGoogle Scholar
  11. Douglas I (1977) Humid landforms. MIT Press, Cambridge, 288 ppGoogle Scholar
  12. Douglas I, Spencer T (eds) (1985) Environmental change and tropical geomorphology. Allen and Unwin, London, 378 ppGoogle Scholar
  13. Goudie A (1973) Duricrusts in tropical and subtropical landscapes. Clarendon Press, Oxford, 174 ppGoogle Scholar
  14. Gregory KJ, Walling DE (1976) Drainage basin form and process. Edwald Arnold, London, 458 ppGoogle Scholar
  15. Gregory KJ, Walling DE (1981) Man and environmental processes. Butterworths, London, 276 ppGoogle Scholar
  16. Gumbel EJ (1958) Statistics of extremes. Columbia University Press, New York, 375 ppGoogle Scholar
  17. Hagedorn J, Poser H (1974) Räumliche Ordnung der rezenten geomorphologischen Prozesse und Prozeßkombinationen auf der Erde. In: Poser H (ed) Geomorphologische Prozesse und Prozeßkombinationen in der Gegenwart unter verschiedenen Klimabedingungen. Vandenhoeck & Ruprecht, Göttingen, pp 426 - 439Google Scholar
  18. Haines AT, Finlayson BL, McMahon TA (1988) A global classification of river regimes. Appl Geogr 8: 255 - 272Google Scholar
  19. Henning I, Henning D (1984) see Chapter 2.2Google Scholar
  20. Herrmann R (1977) Einführung in die Hydrologie. Teubner, Stuttgart, 151 ppGoogle Scholar
  21. Keller R (1961) Gewässer und Wasserhaushalt des Festlandes. Teubner, Berlin, 520 ppGoogle Scholar
  22. Louis H, Fischer K (1979) Allgemeine Geomorphologie, 4th edn. De Gruyter, Berlin, 814 ppGoogle Scholar
  23. McMohan TA, Finlayson BL, Haines AT, Srikanthan R (1991) Global runoff: continental comparison of annual flows and peak discharges. Catena, Cremlingen-Destedt, 166 ppGoogle Scholar
  24. Oilier CD (1984) Weathering, 2nd edn. Longman, London, 270 ppGoogle Scholar
  25. Peltier LC (1950) The geographic cycle in periglacial regions as it is related to climatic geomorphology. Ann Assoc Am Geogr 40: 214 - 236Google Scholar
  26. Rohdenburg H (1971) Einführung in die klimagenetische Geomorphologie. Lenz, Gießen, 350 ppGoogle Scholar
  27. Rohdenburg H (1983) Beiträge zur allgemeinen Geomorphologie der Tropen und Subtropen. Catena 10: 393 - 438Google Scholar
  28. Stoddart DR (1969) Climatic geomorphology: review and reassessment. Prog Geogr 1: 160 - 222Google Scholar
  29. Strakhov NM (1967) Principles of lithogenesis. Oliver and Boyd, Edinburgh, 245 ppGoogle Scholar
  30. Thomas MF (1994) Geomorphology in the tropics, 2nd edn. Wiley, Chichester, 460 ppGoogle Scholar
  31. Tricart J, Cailleux A (1972) Introduction to climatic geomorphology. Longman, London, 279 ppGoogle Scholar
  32. Troll C (1944) Strukturboden, Solifluktion und Frostklimate der Erde. Geol Rundsch 34: 545 - 695Google Scholar
  33. UNESCO (1978) World water balance and water resources of the earth. UNESCO, Paris, 663 ppGoogle Scholar
  34. Viles A (ed) (1988) Biogeomorphology. Blackwell, New York, 365 ppGoogle Scholar
  35. Wilhelmy H (1958) Klimamorphologie der Massengesteine. Westermann, Braunschweig, 238 ppGoogle Scholar
  36. Wilhelmy H (1971-1974) Geomorphologie in Stichworten, Sections I-IV. Hirt, KielGoogle Scholar
  37. Wilhelmy H (1975) Die klimageomorphologischen Zonen und Höhenstufen der Erde. Z Geomorph 19: 353 - 376Google Scholar
  38. Wilson L (1969) Les relations entre les processus géomorphologiques et le climat moderne comme méthode de paléoclimatologie. Rev Géogr Phys et Géol Dyn 11: 303 - 314Google Scholar
  39. Wirthmann A (1987) Geomorphologie der Tropen. Wissenschaftliche Buchgesellschaft, Darmstadt, 222 ppGoogle Scholar
  40. Young A (1972) Slopes. Oliver and Boyd, Edinburgh, 288 ppGoogle Scholar

Chapter 2.5: Vegetation and Animal Life

  1. Bazilevich NI, Rodin LY (1971) Geographical regularity in productivity and the circulation of chemical elements in the earths main vegetation types. Soviet geography: review and translation. New York, pp 24 - 53Google Scholar
  2. Brazilevich NI, Titlyanova AA (1980) Comparative studies of ecosystem function. In: Breymeyer AI, Van Dyne GM (eds) Grasslands, systems analysis and man. Int Biol Progr 19. Cambridge University Press, Cambridge, pp 713 - 758Google Scholar
  3. Bazzaz FA (1990) The response of natural ecosystems to the rising global CO2 levels. Annu Rev Ecol Syst 21: 167 - 196Google Scholar
  4. Berthelin J (ed) (1991) Diversity of environmental biogeochemistry. Developments in Geochemistry 6. Elsevier, Amsterdam. 537 ppGoogle Scholar
  5. Bick H (1989) Ökologie. Fischer, Stuttgart, 327 ppGoogle Scholar
  6. Bond WJ (1993) Keystone species. In: Schulze E-D, Mooney HA (eds) Biodiversity and ecosystemGoogle Scholar
  7. function. Ecological Studies 99. Springer, Berlin Heidelberg New York, pp 237-253Google Scholar
  8. Box EO, Meentmeyer V (1991) Geographic modeling and modern ecology. In: Esser G, Overdieck D (eds) Modern ecology: basic and applied aspects. Elsevier, Amsterdam, pp 773 - 804Google Scholar
  9. Breymeyer AI (1991) Search for geographic scale regularities in ecosystem processes. In: Esser G, Overdieck D (eds) Modern ecology: basic and applied aspects. Elsevier, Amsterdam, pp 751-771Google Scholar
  10. Brian MV (ed) (1978) Production ecology of ants and termites. Int Biol Progr 13. Cambridge University Press, Cambridge, 404 ppGoogle Scholar
  11. Budyko MI (1963) see Chapter 2.2Google Scholar
  12. Budyko MI (1968) Solar radiation and the use of it by plants. In: UNESCO: Agroclimatological methods. Paris, pp 39 - 53Google Scholar
  13. Butcher PJ, Samuel S, Chanson RJ (eds) (1992) Global biogeochemical cycles. Academic Press, London, 379 ppGoogle Scholar
  14. Canell MGR (1982) World forest biomass and primary production data. Academic Press, London, 391 ppGoogle Scholar
  15. Chabot BF, Mooney HA (1985) Physiological ecology of North American plant communities. Chapman and Hall, New York, 719 ppGoogle Scholar
  16. Christian RR (1984) A life-table approach to decomposition studies. Ecology 65, 5: 1693 - 1697Google Scholar
  17. Cluesener-Godt M (1989) The content of Mg, Ca and K in plant tissues and their relationship to soils in natural ecosystems. In: Lieth H, Markert B (eds) Element concentration catasters in ecosystems. VCH, Weinheim, pp 1 - 11Google Scholar
  18. Cole DW, RAPP M (1981) Elemental cycling in forest ecosystems. In: Reichle DE, pp 341 - 409Google Scholar
  19. Cooper JP (ed) Photosynthesis and productivity in different environments. Int Biol Progr 3. Cambridge University Press, Cambridge, 715 ppGoogle Scholar
  20. Coupland RT (1979) see Chapter 3.4Google Scholar
  21. De Angelis DL (1992) Dynamics of nutrient cycling and food webs. Population and Community. Boil Ser 9. Chapman and Hall, London, 270 ppGoogle Scholar
  22. De Angelis DL, Gardner RH, Shugart HH (1981) Productivity of forest ecosystems studied during the IBP: the woodlands data set. In: Reichle DE, pp 567 - 672Google Scholar
  23. Duvigneaud P (ed) (1971) Productivity of forest ecosystems. UNESCO, Paris, 707 ppGoogle Scholar
  24. Duvigneaud P, Denaeyer-De Smet S (1975) Mineral cycling in terrestrial ecosystems. In: National Academy of Science, pp 133 - 154Google Scholar
  25. Eagles CF, Wilson D (1982) Photosynthetic efficiency and plant productivity. In: Rechcigel M Jr, pp 213-247, see Chapter 2. 6Google Scholar
  26. Eber W (1991) Morphology in modern ecological research. In: Esser G, Overdieck D (ed): Modem ecology: basic and applied aspects. Elsevier, Amsterdam pp, 3 - 20Google Scholar
  27. Eckardt FE (ed) (1968) Functioning of terrestrial ecosystems at the primary production level. UNESCO, Paris, 516 ppGoogle Scholar
  28. Edwards NT et al. (1981) Carbon metabolism in terrestrial ecosystems. In: Reichle DE, pp 499 - 536Google Scholar
  29. Ellenberg H (ed) (1973) Ökosystemforschung. Springer, Berlin Heidelberg New York, 280 ppGoogle Scholar
  30. Ellenberg H, Müller-Dombois D (1967) Tentative physiognomic-ecological classification of plant formations of the earth. Ber Geobot Forschungsinst Rübel Zürich 37: 21 - 55Google Scholar
  31. Esser G (1989) Zum Kohlenstoff—Haushalt der terrestrischen Biosphäre. Verh Ges Ökologie Göttingen 18: 387 - 396Google Scholar
  32. Esser G (1991) Osnabrück biosphere model: structure, construction, results. In: Esser G, Overdieck D (eds) Modem ecology: basic and applied aspects. Elsevier, Amsterdam pp 679 - 710Google Scholar
  33. Esser G, Overdieck D (eds) (1991) Modern ecology: basic and applied aspects. Elsevier, Amsterdam 1991, 844 ppGoogle Scholar
  34. Hampicke U, Bach W (1980) Die Rolle terrestrischer Ökosysteme im globalen Kohlenstoff-Kreislauf. Münstersche Geogr Arb 6. Paderborn, pp 37 - 104Google Scholar
  35. Harrison AF, Ineson P, Heal OW (1990) Nutrient cycling in terrestrial ecosystems. Field methods, application and interpretation. Elsevier, London, 454 ppGoogle Scholar
  36. Heal OW et al (1981), see Chapter 3.1Google Scholar
  37. Heal OW, Maclean SF Jr (1975) Comparative productivity in ecosystems — secondary productivity. In: Van Dobben WH, Lowe-McConnell RH, pp 89 - 108Google Scholar
  38. Hill AR (1987) Ecosystem stability: some recent perspectives. Progr Phys Geogr 11, 3: 315-333 Hueck K (1966) Die Wälder Südamerikas. Stuttgart, 422 ppGoogle Scholar
  39. Janetschek H (1982) Ökologische Feldmethoden. Ulmer, Stuttgart, 175 ppGoogle Scholar
  40. Janzen DH (1986) The future of tropical ecology. Annu Rev Ecol Syst 17: 305 - 324Google Scholar
  41. Jenny H (1980) see Chapter 2.4Google Scholar
  42. Johnson DW, Lindberg SE (eds) (1992) Atmospheric deposition and forest nutrient cycling. A synthesis of the integrated forest study. Ecological Studies 91. Springer, Berlin Heidelberg New York, 707 ppGoogle Scholar
  43. Jones RL (1989) Biogeography. Prog Phys Geogr 13, 1: 133 - 146Google Scholar
  44. Kinzel H, Albert R, Ernst W (1982) Pflanzenökologie und Mineralstoffwechsel. Ulmer, Stuttgart, 534 ppGoogle Scholar
  45. Kira T (1975) Primary production of forests. In: Cooper JP, pp 5 - 40Google Scholar
  46. Kira T, Shidei T (1967) Primary production and turnover of organic matter in different ecosystems of the Western Pacific, Jpn J Ecol 17: 70 - 87Google Scholar
  47. Klaus D (1979) see Chapter 2.2Google Scholar
  48. Klink H—J, Glawion R (1982) Die natürlichen Vegetationsformationen der Erde. Geogr Rundsch 34, 10: 461 - 470Google Scholar
  49. Klink H—J, Mayer E (1983) Vegetationsgeographie. Westermann, Braunschweig, 278 ppGoogle Scholar
  50. Kloft W, Gruschwitz M (1988) Ökologie der Tiere, 2nd edn. Ulmer, Stuttgart, 333 ppGoogle Scholar
  51. Klötzli F (1991) Niches of longevity and stress. In: Esser G, Overdieck D (eds) Modern ecology: basic and applied aspects. Elsevier, Amsterdam, pp 97 - 110Google Scholar
  52. Klötzli F (1993) Ökosysteme, 3rd edn. Fischer, Stuttgart, 477 ppGoogle Scholar
  53. Knapp R (1965) Die Vegetation von Nord-und Mittelamerika. Fischer, Stuttgart, 373 pp Knapp R ( 1973 ) Die Vegetation von Afrika. Fischer, Stuttgart, 626 ppGoogle Scholar
  54. Koop H (1989) Forest dynamics. Silvi-Star: a comprehensive monitoring system. Springer, Berlin Heidelberg New York, 229 ppGoogle Scholar
  55. Kreeb K—H (1983) Vegetationskunde. Ulmer, Stuttgart, 331 ppGoogle Scholar
  56. Kreeb K—H (1990) Methoden zur Pflanzenökologie und Bioindikation. Fischer, Jena, 327 ppGoogle Scholar
  57. Kuttler W (ed) (1993) Handbuch zur Ökologie. Analytica, Berlin, 524 ppGoogle Scholar
  58. Landsberg HE (1963), see Chapter 2.2Google Scholar
  59. Lange OL et al. (1976) Water and plant life. Ecological Studies 19. Springer, Berlin Heidelberg New York, 536 ppGoogle Scholar
  60. Larcher W (1984) Ökologie der Pflanzen 4th edn. Ulmer, Stuttgart, 403 ppGoogle Scholar
  61. Larcher W (1993) Ökophysiologie der Pflanzen. Ulmer, Stuttgart, 394 ppGoogle Scholar
  62. Lauer W (1952) Humide und aride Jahreszeiten in Afrika und Südamerika und ihre Beziehung zu den Vegetationsgürteln. Bonner Geogr Abh 9. Bonn, pp 15 - 98Google Scholar
  63. Lawson GW (ed) (1987) Plant ecology in Western Africa. Systems and processes. Wiley, Chichester, 357 ppGoogle Scholar
  64. Lerch G (1991) Pflanzenökologie. Akademie, Berlin, 535 ppGoogle Scholar
  65. Lieth H (1964) Versuch einer kartographischen Darstellung der Produktivität der Pflanzendecke auf der Erde. Geogr Taschenbuch 1964/65, Wiesbaden, pp 72 - 80Google Scholar
  66. Lieth H (1978) Biological productivity of tropical lands. Unasylva, FAO, Rome, pp 24 - 31Google Scholar
  67. Lieth H, Markert BA (1988) Aufstellung und Auswertung ökosystemarer Element-KonzentrationsKataster. Springer, Berlin Heidelberg New York, 193 ppGoogle Scholar
  68. Lieth H, Whittaker RH (eds) (1975) Primary productivity of the biosphere. Ecological Studies 14. Springer, Berlin Heidelberg New York, 339 ppGoogle Scholar
  69. Likens GE (ed) Long-term studies in ecology. Springer, Berlin Heidelberg New York, 214 pp Löf GOG et al. (1966) see Chapter 2.2Google Scholar
  70. Long SP, Jones MB, Roberts MJ (eds) (1992) Primary productivity of grass ecosystems of the tropics and sub-tropics. Chapman and Hall, London, 267 ppGoogle Scholar
  71. Lyr H, Fiedler H-J, Tranquilling W (1992) Physiologie und Ökologie der Gehölze. Fischer, Jena, 620 ppGoogle Scholar
  72. McClaugherty CA et al. (1985) Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology 66, 1: 266 - 275Google Scholar
  73. McCown RL, Williams J (1990) The water environment and implications for productivity. J Biogeogr 17: 513 - 520Google Scholar
  74. Menting G (1987) Analyse einer Theorie der geographischen Ökosystemforschung. Geogr Z 75, 4: 208 - 227Google Scholar
  75. Miller DH (1981) see Chapter 2.2Google Scholar
  76. Millington A, Townsend J (1989) Biomass assessment. Earthscan Publications, London, 270 ppGoogle Scholar
  77. Mohr H, Schopfer P (1978) Lehrbuch der Pflanzenphysiologie, 3rd edn. Springer, Berlin Heidelberg New York, 608 ppGoogle Scholar
  78. Montheith JL (ed) (1975/1976) Vegetation and the atmosphere, 2 vols. Academic Press, London, 278 and 439 ppGoogle Scholar
  79. Mooney HA, Godron M (eds) (1983) Disturbance and ecosystems (components of response). Ecological Studies 44. Springer, Berlin Heidelberg New York, 292 ppGoogle Scholar
  80. Mosimann T (1984) Landschaftsökologische Komplexanalyse. Steiner, Wiesbaden, 115 ppGoogle Scholar
  81. Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. John Wiley and Sons, New York, 547 ppGoogle Scholar
  82. Müller HJ (ed) (1991) Ökologie, 2nd edn. Fischer, Jena Stuttgart, 415 ppGoogle Scholar
  83. Müller P (1977) Tiergeographie. Teubner, Stuttgart, 268 ppGoogle Scholar
  84. Müller P (1980) Biogeographie. Ulmer, Stuttgart, 414 ppGoogle Scholar
  85. National Academy of Sciences (1975) Productivity of world ecosystems. Proc Symp Aug 31—Sept 1 1972 at the V Gen Assoc of the Spec Comm for the Int Biol Program. Seattle, WashingtonGoogle Scholar
  86. Naveh Z, Lieberman AS (1984) Landscape ecology. Theory and application. Springer, Berlin Heidelberg New York, 356 ppGoogle Scholar
  87. Odum EP (1971) Fundamentals of ecology, 3rd edn. Saunders, PhiladelphiaGoogle Scholar
  88. Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44: 322 - 331Google Scholar
  89. Olson JS (1975) Productivity of forest ecosystems. In: National Academy of SciencesGoogle Scholar
  90. ONeill RV, De Angelis DL (1981) Comparative productivity and biomass relations of forest ecosystems. In: Reichle DE, pp 411 - 450Google Scholar
  91. Polunin N (ed) (1986) Ecosystem theory and application. Wiley, Chichester, 445 ppGoogle Scholar
  92. Post WM et al. (1982) Soil carbon pools and world life zones. Nature 298: 156 - 159Google Scholar
  93. Rambler MB, Morgulis L, Fester R (1989) Global ecology. Towards a science of the biosphere. Academic Press, Boston, 204 ppGoogle Scholar
  94. Raunkiaer C (1910) Statistik der Lebensformen als Grundlage fir die biologische Pflanzengeographie. Beih Biol Cbl 27 (II): 171-206 dGoogle Scholar
  95. Read DJ, Mitchell DT (1983) see Chapter 3.6Google Scholar
  96. Reichle DE (1971) Energy and nutrient metabolism of soil and litter invertebrates. In: Duvigneaud P, pp 465 - 477Google Scholar
  97. Reichle DE et al. (1975) Principles of energy and material exchange in ecosystems. In: Van Dobben WH, Lowe—McConnell RHGoogle Scholar
  98. Reichle DE (ed) (1981) Dynamic properties of forest ecosystems. Int Biolog Prog 23. Cambridge Univ Press, Cambridge, 683 ppGoogle Scholar
  99. Remmert H (ed) (1991) The mosaic-cycle concept of ecosystems. Ecological Studies 85. Springer, Berlin Heidelberg New York, 363 ppGoogle Scholar
  100. Remmert H (1992) Ökologie, 5th edn. Springer, Berlin Heidelberg New York, 269 ppGoogle Scholar
  101. Ricklefs RE (1983) The economy of nature, 2nd edn. Chiron Press, New York, 510 ppGoogle Scholar
  102. Ricklefs RE (1990) Ecology, 3rd edn. Freeman and Company, New York, 896 ppGoogle Scholar
  103. Risser PG (1991) Long-term ecological research. John Wiley and Sons, Chichester, 294 ppGoogle Scholar
  104. Rodin LE, Bazilevich NI (1967) Production and mineral cycling in terrestrial vegetation. Oliver and Boyd, Edinburgh, 288 ppGoogle Scholar
  105. Rodin LE, Bazilevich NI, Rozov NN (1975) Productivity of worlds main ecosystems. In: National Academy of Sciences, pp 13 - 26Google Scholar
  106. Rosenzweig ML (1968) Net primary productivity of terrestrial communities: prediction from climatological data. Am Nat 102: 67 - 74Google Scholar
  107. Ross J (1981) The radiation regime and architecture of plant stands. Dr W Junk, London, 391 ppGoogle Scholar
  108. Schäfer M (1983) Wörterbücher der Biologie: Ökologie, 3rd edn. Fischer, Stuttgart, 433 ppGoogle Scholar
  109. Schmithüsen J (1968) Allgemeine Vegetationsgeographie, 3rd edn. De Gruyter, Berlin, 463 ppGoogle Scholar
  110. Schmithüsen J (ed) (1976) Atlas zur Biogeographie. Meyer, Mannheim, 80 ppGoogle Scholar
  111. Schubert R (1991) Lehrbuch der Ökologie, 3rd edn. Fischer, Jena, 657 ppGoogle Scholar
  112. Schultz J (1989) Die Biosphäre. In: Nolzen H (ed) Handbuch des Geographieunterrichts, vol 10/2. Aulis, Köln, pp 112 - 192Google Scholar
  113. Schulz ED, Mooney HA (eds) (1993) Biodiversity and ecosystem function. Ecological Studies 99. Springer, Berlin Heidelberg New York, 525 ppGoogle Scholar
  114. Schwerdtfeger F (1978) Lehrbuch der Tierökologie. Parey, Hamburg, 384 ppGoogle Scholar
  115. Seiler W, Crutzen J (1980) Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim Change 2: 207 - 247Google Scholar
  116. Strasburger E et al. (1983) Lehrbuch der Botanik, 32nd edn. Fischer, Stuttgart, 1161 ppGoogle Scholar
  117. Sutcliffe J (1977) Plants and temperature. Studies in Biology 86. Arnold, London, 57 ppGoogle Scholar
  118. Swift MJ et al. (1979) Decomposition in terrestrial ecosystems. Blackwell, Oxford, 372 ppGoogle Scholar
  119. Tieszen LL et al. (1981) An analysis of processes of primary production in tundra growth forms. In: Bliss LC et al., pp 285-356, see Chpater 3. 1Google Scholar
  120. Tischler W (1984) Elinfiihrung in die Ökologie, 3rd edn. Fischer, Stuttgart, 307 ppGoogle Scholar
  121. Tischler W (1990) Ökologie der Lebensräume. Fischer, Stuttgart, 356 ppGoogle Scholar
  122. Troll C (1966) Die dreidimensionale Landschaftsgliederung der Erde. Erdkundl Wissen 11. Wiesbaden, pp 265-295, pp 328 - 359Google Scholar
  123. Troll C, Paffen KW (1964) see Chapter 2.1Google Scholar
  124. Turner MG (1989) Landcape ecology: the effect of pattern on process. Annu Rev Ecol Syst 20: 171 - 197Google Scholar
  125. Van Dobben WH, Lowe—McConnell RH (eds) (1975) Unifying concepts in ecology. The HagueGoogle Scholar
  126. Vogt KA et al. (1986) Production, turnover, and nutrient dynamics of above— and below-ground detritus of world forests. Adv Ecol Res 15: 303 - 377Google Scholar
  127. Walter H (1960) Grundlagen der Pflanzenverbreitung, I. Teil: Standortslehre. Ulmer, Stuttgart, 566 ppGoogle Scholar
  128. Walter H (1968-1973) Die Vegetation der Erde in öko—physiologischer Betrachtung. Vol I: Die tropischen und subtropischen Zonen, 3rd edn. Fischer, Stuttgart 1973, 743 pp. Vol II: Die gemäßigten und arktischen Zonen. Fischer, Stuttgart 1968, 1001 ppGoogle Scholar
  129. Walter H (1974) Die Vegetation Osteuropas, Nord— und Zentralasiens. Fischer, Stuttgart, 452 ppGoogle Scholar
  130. Walter H (1976) Die ökologischen Systeme der Kontinente (Biogeosphäre). Fischer, Stuttgart, 131 ppGoogle Scholar
  131. Walter H (1986) Allgemeine Geobotanik, 3rd edn. Uni Taschenbücher, Stuttgart, 256 ppGoogle Scholar
  132. Walter H (1990) Vegetation und Klimazonen, 6th edn. Ulmer, Stuttgart, 382 ppGoogle Scholar
  133. Walter H, Breckle SW (1983-1991) see Chapter 1Google Scholar
  134. Watts D (1974) Biogeochemical cycles and energy flows in environmental systems. In: Manners IR,Google Scholar
  135. Mikesell MW (eds) Perspectives on environment. Ass. Am. Geogr., Washington DC, pp 24-56Google Scholar
  136. Whittaker RH (1975) Communities and ecosystems, 2nd edn. MacMillan, New York, 385 ppGoogle Scholar
  137. Whittaker RH, Likens GE (1975) The biosphere and man. In Lieth H, Whittaker RH, pp 305 - 328Google Scholar
  138. Whittaker RH, Woodwell GM (1971) Measurement of net primary production of forests. In: Duvigneaud P, pp 159 - 175Google Scholar
  139. Wilmanns O (1984) Ökologische Pflanzensoziologie, 3rd edn. Quelle and Meyer, Heidelberg, 372 ppGoogle Scholar
  140. Windhorst HW (1979) Neuere Versuche der Bestimmung der Primärproduktion der Wälder und forstlicher Ertragspotentiale. Erdkunde 33: 10 - 23Google Scholar
  141. Woodward FI (1987) see Chapter 2.2Google Scholar

Chapter 2.6: Land Use

  1. Andreae B (1983) Agrargeographie, 2nd edn. De Gruyter, Berlin, 504 ppGoogle Scholar
  2. Bassham JA (1977) Increasing crop production through more controlled photosynthesis. Science 197: 630 - 638Google Scholar
  3. Buringh P (1977) Food production potential of the world. World Dev 5: 477 - 485Google Scholar
  4. Buringh P (1985) Die bisherigen Erfolge und die technischen und betriebswirtschaftlichen Voraussetzungen der “Grünen Revolution”, bzw. der intensiven Landwirtschaft in verschiedenen Ländern. In: Elster H—J (ed) Aktuelle Probleme der Welternährungslage. Schweizerbartsche Verlagsbuchhandlung, Stuttgart, pp 27 - 40Google Scholar
  5. Engelbrecht H (1930) Die Landbauzonen der Erde. Peterm Mitt Erg H 209: 287 - 297Google Scholar
  6. FAO (1978/80) Report on the agro—ecological zones project. World Soil Resources Report 48, 1-4, RomeGoogle Scholar
  7. Gerasimov IP (1983) Land resources of the world; their use and reserves. Definition of land quality and agricultural potential by soil survey maps. Geoforum 14, 4: 427 - 439Google Scholar
  8. Glauner HJ (1983) Versuch einer Systematisierung ökologischer Landbauformen an tropisch-subtropischen Standorten. Der Tropenlandwirt 84: 209 - 223Google Scholar
  9. Golley FB (1984) Land management strategies in the humid and subhumid tropics. In: Di Castri F, Baker FW, Hadley M (eds) Ecology in practise, part I: ecosystem management. UNESCO, Paris, pp 29 - 56Google Scholar
  10. Golley FB, Cooley JH (eds) (1985) Organic production: the relationship between agricultural and natural vegetation production rates. Intecol Bull 11. Athens, GeorgiaGoogle Scholar
  11. Grigg DB (1974) The agricultural systems of the world. Cambridge University Press, Cambridge, 358 ppGoogle Scholar
  12. Higgins GM, Kassam AH (1981) Regional assessments of land potential: a follow-up to the FAO/UNESCO soil map of the world. Nature and Resources 17, 4: 11 - 23Google Scholar
  13. Higgins GM et al. (1982) Potential population supporting capacities of lands in the developing world. FAO, Rome, 139 ppGoogle Scholar
  14. Higgins GM et al. (1984) Land, food and population in the developing world. Nature and Resources 20, 3: 2 - 10Google Scholar
  15. Jätzold R (1981) Klimageographie Ostafrika. Karte E5 des Afrika-Kartenwerkes der DFG, Beiheft. Berlin StuttgartGoogle Scholar
  16. Jätzold R (1984) Das System der agro-ökologischen Zonen der Tropen als angewandte Klimageographie mit einem Beispiel aus Kenia. 44. Dt Geogr Tag. Stuttgart, pp 85 - 93Google Scholar
  17. Lamprecht H (1986) Waldbau in den Tropen. Parey, Hamburg, 318 ppGoogle Scholar
  18. Loomis RS, Gerakis PA (1975) Productivity of agricultural ecosystems. In: Cooper JP, pp 145-172, see Chapter 2. 5Google Scholar
  19. Lowrance R, Stinner BR, House GJ (eds) (1984) Agricultural ecosystems. Wiley, Chichester, 233 ppGoogle Scholar
  20. Manshard W (1968) Agrargeographie der Tropen. Bibliogr Inst, Mannheim, 307 ppGoogle Scholar
  21. Müller-Wille W (1978) Gedanken zur Bonitierung und Tragfähigkeit der Erde. Westfälische Geogr Stud 35, pp 25 - 56Google Scholar
  22. Mundlak Y, Singer SF (eds) (1977) Arid zone development: potentialities and problems. Ballinger Publ, Cambridge, MA, 293 ppGoogle Scholar
  23. Nair PKR (ed) (1989) Agroforestry systems in the tropics. Forestry Sciences 31. DordrechtGoogle Scholar
  24. Papadakis J (1970) Agricultural potentialities of world climates. Buenos Aires, 70 ppGoogle Scholar
  25. Pimentel D (1985) Energy flow in agricultural and natural ecosystems. Intecol Bull 11: 51 - 58Google Scholar
  26. Rechcigl M Jr (ed) (1982) CRC handbook of agricultural productivity, vol 1: plant productivity. CRC Press, Boca Raton, 468 ppGoogle Scholar
  27. Rehm S (ed) (1986) Grundlagen des Pflanzenbaues in den Tropen und Subtropen. Handbuch der Landwirtschaft und Ernährung in den Entwicklungsländern, vol 3, 2nd edn. Ulmer, Stuttgart, 478 ppGoogle Scholar
  28. Rehm S (ed) (1989) Spezieller Pflanzenbau in den Tropen und Subtropen. Hdb der Landwirtschaft und der Ernährung in den Entwicklungsländern, vol 4, 2nd edn. Ulmer, Stuttgart, 653 ppGoogle Scholar
  29. Ruthenberg H (1980) Farming systems in the tropics, 3rd edn. Clarendon Press, Oxford, 313 ppGoogle Scholar
  30. Ryszkowski L (1985) Primary production in agroecosystems. Intecol Bull 11: 25 - 34Google Scholar
  31. Sanchez PA et al (1982) The fertility capability soil classification system: interpretation, applicability and modification. Geoderma 27, Amsterdam, pp 283 - 309Google Scholar
  32. Schlichting E (1985) Standortskundliche Voraussetzungen der Bodennutzung (insbes. des Ackerbaues) in verschiedenen Regionen der Erde. In: Elster H-J (ed) Aktuelle Probleme der Welternährungslage. Schweizerbartsche Verlagsbuchhandlung, Stuttgart, pp 41 - 57Google Scholar
  33. Schultz J (1984) Agrargeographie. In: Gäbe W et al. Sozial-und Wirtschaftsgeographie, vol 3. Harms Handbuch der Geographie. List, Munich, pp 22 - 112Google Scholar
  34. Sick W-D (1983) Agrargeographie. Das geographische Seminar. Westermann, Braunschweig, 249 ppGoogle Scholar
  35. Snaydon RW (ed) (1987) Managed grasslands. Analytical studies. Ecosystems of the world 17 B. Elsevier, Amsterdam, 285 ppGoogle Scholar
  36. Spath HJ (1980) Die agro-ökologische Trockengrenze. Neu-Definition und Dynamik der Trockengrenze des Regenfeldbaus in den zentralen Great Plains von Nord-Amerika. Erdkunde 34: 224 - 231Google Scholar
  37. Spielmann HO (1989) Agrargeographie in Stichworten. Hirt, Unterägeri, 176 ppGoogle Scholar
  38. Squire GR (1990) The physiology of tropical crop production. WallingfordGoogle Scholar
  39. Tivy J (1987) Nutrient cycling in agro-ecosystems. Appl Geogr 7: 93 - 113Google Scholar
  40. UNESCO (1979) Tropical grazing land ecosystems. UNESCO, Paris, 655 ppGoogle Scholar
  41. Van Dyne GM (ed) (1969) The ecosystem concept in natural resource management. Academic Press, New York, 383 ppGoogle Scholar
  42. Webster CC, Wilson PN (1980) Agriculture in the tropics. Tropic Agric Ser, 2nd edn. Longman, London, 640 ppGoogle Scholar
  43. Whittlesey D (1936) Major agricultural regions of the earth. Ann Assoc Am Geogr 26: 199 - 240Google Scholar
  44. Wrigley G (1981) Tropical agriculture. The development of production, 4th edn. Longman London, 496 ppGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Jürgen Schultz
    • 1
  1. 1.Hochschule Aachen (RWTH), Geographisches InstitutRheinisch-Westfälische TechnischeAachenGermany

Personalised recommendations