Branched-Chain Organic Acidurias

  • H. Ogier de Baulny
  • U. Wendel
  • J.-M. Saudubray

Abstract

Branched chain organic acidurias are a group of disorders that result from an inherited abnormality of specific enzymes mainly involving the catabolism of branched-chain amino acids (BCAA). Collectively, maple syrup urine disease (MSUD), isovaleric aciduria (IVA). 3-methylcrotonylglycinuria (3-MCG), propionic aciduria (PA), and methylmalonic aciduria (MMA) represent the most commonly encountered abnormal organic acidurias. Beside these disorders, 3-methylglutaconic aciduria and 3-hydroxyisobutyric aciduria due to leucine and valine catabolism defects, respectively, are rare diseases without any effective treatment (Fig. 1).

Keywords

Pancreatitis Dehydration Neurol Neutropenia Cardiomyopathy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saudubray JM, Ogier H, Bonnefont JP, Munnich A, Lombes A et al (1989) Clinical approach to inherited diseases in the neonatal period: a 20-year survey. J Inherited Metab Dis 12 [Suppl 1]: 1–17CrossRefGoogle Scholar
  2. 2.
    Boeckx RL, Hicks JM (1982) Methylmalonic acidemia with the unusual complication of severe hyperglycemia. Clin Chem 28: 1801–1803PubMedGoogle Scholar
  3. 3.
    Riviello JJ, Rezvani I, DiGeorge AM, Foley CM (1991) Cerebral edema causing death in children with maple syrup urine disease. J Pediatr 119: 42–45Google Scholar
  4. 4.
    Layward EM, Tanner MS, Pollitt RJ, Bartlett K (1989) Isolated biotin-resistant 3-methylcrotonylCoA carboxylase deficiency presenting as a Reye syndrome-like illness. J Inherited Metab Dis 12: 339–340PubMedCrossRefGoogle Scholar
  5. 5.
    Berry GT, Yudkoff M, Segal S (1988) Isovaleric acidemia: medical and neurodevelopmental effects of long term therapy. J Pediatr 113: 58–64PubMedCrossRefGoogle Scholar
  6. 6.
    Tuchman M, Berry SA, Thuy LP, Nyhan WL (1993) Partial methylcrotonyl-coenzyme A carboxylase deficiency in an infant with failure to thrive, gastrointestinal dysfunction, and hypertonia. Pediatrics 91: 664–666PubMedGoogle Scholar
  7. 7.
    Elpeleg ON, Havkin S, Barash V, Jacobs C, Glick B, Shalev RS (1992) Familial hypotonia of childhood caused by isolated 3-methylcrotonyl-coenzyme A carboxylase deficiency. J Pediatr 121: 407–410PubMedCrossRefGoogle Scholar
  8. 8.
    Sethi KD, Ray R, Roesel RA, Carter AL, Gallagher BB, Loring DW, Hommes FA (1989) Adult-onset chorea and dementia with propionic acidemia. Neurology 39: 1343–1345PubMedCrossRefGoogle Scholar
  9. 9.
    Church JA, Koch R, Shaw KNF, Nye CA, Donnell GN (1984) Immune functions in methylmalonicaciduria. J Inherited Metab Dis 7: 12–14PubMedCrossRefGoogle Scholar
  10. 10.
    Brismar J, Aqeel A, Brismar G, Coates R, Gascon G, Ozand P (1990) Maple syrup urine disease: findings on CT and MR scans of the brain in 10 infants. Am J Neuroradiol 11: 1219–1228PubMedGoogle Scholar
  11. 11.
    Treacy E, Clow CL, Reade TR, Chitayat D, Marner OA, Scriver CR (1992) Maple syrup urine disease: interrelations between branched-chain amino-, oxo-and hydroxyacids; implications for treatment; associations with CNS dysmyelination. J Inherited Metab Dis 15: 121–135PubMedCrossRefGoogle Scholar
  12. 12.
    Levin ML, Scheimann A, Lewis RA, Beaudet AL (1993) Cerebral edema in maple syrup urine disease. J Pediatr 122: 167–168PubMedCrossRefGoogle Scholar
  13. 13.
    Müller K, Kahn T, Wendel U (1993) Is demyelination a feature of maple syrup urine disease? Pediatr Neurol 9: 375–382PubMedCrossRefGoogle Scholar
  14. 14.
    de Sousa C, Piesowicz AT, Brett EM, Leonard JV (1989) Focal changes in the globi pallidi associated with neurological dysfunction in methylmalonic acidaemia. Neuropediatrics 20: 199–201PubMedCrossRefGoogle Scholar
  15. 15.
    Stöckler S, Slave I, Ebner F, Baumgartner R (1992) Asymptomatic lesions of the basal ganglia in a patient with methylmalonic aciduria. Eur J Pediatr 151: 920PubMedCrossRefGoogle Scholar
  16. 16.
    Korf B, Wallman JK, Levy HL (1986) Bilateral lucency of the globus pallidus complicating methylmalonic acidemia. Ann Neurol 20: 363–366CrossRefGoogle Scholar
  17. 17.
    D’Angio, Dillon MJ, Leonard JV (1991) Renal tubular dysfunction in methylmalonic acidaemia. Eur J Pediatr 150: 259–263PubMedCrossRefGoogle Scholar
  18. 18.
    Rutledge SL, Geraghty M, Mroczek E, Rosenblatt D, Kohout E (1993) Tubulointersticial nephritis in methylmalonic acidemia. Pediatr Nephrol 7: 81–82PubMedCrossRefGoogle Scholar
  19. 19.
    De Raeve I, De Meirleir L, Ramet J, Vandenplas Y, Gerlo E (1994) Acrodematitis enteropathica-like cutaneous lesions in organic aciduria. J Pediatr 124: 416–420PubMedCrossRefGoogle Scholar
  20. 20.
    Khaler SG, Sherwood WG, Woolf D, Lawless ST, Zaritsky A, Bonham J, Taylor JC, Clarke JTR, Durie P, Leonard JV (1994) Pancreatitis in patients with organic acidemias. J Pediatr 124: 239–243CrossRefGoogle Scholar
  21. 21.
    Massoud AF, Leonard JV (1993) Cardiomyopathy in propionic acidaemia. Eur J Pediatr 152: 441–445PubMedCrossRefGoogle Scholar
  22. 22.
    Nobukuni Y, Mitsubuchi H, Ohta K, Akaboshi I, Indo Y, Endo F, Matsuda I (1992) Molecular diagnosis of maple syrup urine disease: screening and identification of gene mutations in the branched chain a-ketoacid dehydrogenase multienzyme cornplex. J Inherited Metab Dis 15: 827–833.PubMedCrossRefGoogle Scholar
  23. 23.
    Wendel U (1984) Acute and long term treatment of children with maple syrup urine disease. In: Adibi SA, Fekl W, Langenbeck U, Schauder P (eds) Branched-chain amino acids and keto acids in health and disease. Karger, Basel, pp 335–347Google Scholar
  24. 24.
    Chalmers RA, Roe CR, Stacey TE, Hoppel CR (1984) Urinary excretion of L-carnitine and acylcarnitine by patients with disorders of organic acids metabolism: evidence for secondary insufficiency of L-carnitine. Pediatr Res 18: 1325–1328PubMedCrossRefGoogle Scholar
  25. 25.
    Tsai MY, Johnson DD, Sweetman L, Berry SA (1989) Two siblings with biotin-resistant 3 methylcrotonyl-coenzyme A carboxylase deft- ciency. J Pediatr 115: 110–113.PubMedCrossRefGoogle Scholar
  26. 26.
    Gibson KM, Lee CF, Wappner RS (1992) 3Methylglutaconyl-coenzyme-A hydratase defi ciency: a new case. J Inherited Metab Dis 15: 363–366Google Scholar
  27. 27.
    Gibson KM, Sherwood WG, Hoffman GF, Stumpf DA, Dianzani I et al (1991) Phenotypic heterogeneity in the syndromes of 3-methylglutaconic aciduria. J Pediatr 118: 885–890.PubMedCrossRefGoogle Scholar
  28. 28.
    Kelley RI, Cheatham JP, Clark BJ, Nigro MA, Powell BR, Sherwood GW, Sladky JT, Swisher WPGoogle Scholar
  29. (1991).
    X-linked dilated cardiomyopathy with neutropenia, growth retardation, and methyl glutaconic aciduria. J Pediatr 119: 738–747Google Scholar
  30. 29.
    Elpeleg ON, Costeff H, Joseph A, Shental Y, Weitz R, Gibson KM (1994) 3-Methylglutaconic aciduria in the Iraqi-Jewish “optic atrophy plus” ( Costeff)syndrome. Dev Med Child Neurol 36: 167–172Google Scholar
  31. 30.
    Ibel H, Endres W, Hadorn HB, Deufel T, Paetzke IDuran M, Kennaway NG, Gibson KM (1993) Multiple respiratory chain abnormalities associated with hypertrophie cardiomyopathy and 3methylglutaconic aciduria. Eur J Pediatr 152: 665670Google Scholar
  32. 31.
    Brown GK, Huint SM, Scholem R, Fowler K,Grimes A, Mercer JFB, Truscott RM, Cotton GH, Rogers JG, Danks DM (1982) ß-ydroxyisobutyryl-coenzyme A deacylase deficiency: a defect in valine metabolism associated ith physical malformations. Pediatrics 70: 532–38PubMedGoogle Scholar
  33. 32.
    Gibson KM, Lee CF, Bennett MJ, Holmes B, yhan WL (1993) Combined malonic, methylmalonic and ethylmalonic acid semialdehyde ehydrogenase deficiencies: an inborn error of alanine, L-valine and L-alloisoleucine metabolism?J Inherited Metab Dis 16: 563–567.CrossRefGoogle Scholar
  34. 33.
    Bain MD, Jones M, Borrielo SP, Reed PJ, Tracey BM, Chalmers RA, Stacey TE (1988) Contribution of gut bacterial metabolism to human metabolic disease. Lancet is 1078–1079.Google Scholar
  35. 34.
    Chalmers RA, Lawson AM (1982) Disorders of propionate and methylmalonate metabolism. In:Chalmers RA, Lawson AM (eds) Organic acids in man. Chapman and Hall, London, pp 296–331.Google Scholar
  36. 35.
    Michaud JL, Lemieux B, Ogier H, Lambert MA (1992) Nutritional vitamin B12 deficiency: two cases detected by routine newborn urinary screening. Eur J Pediatr 151: 218–220.PubMedCrossRefGoogle Scholar
  37. 36.
    Treacy E, Clow C, Marner A, Scriver R (1993) Methylmalonic acidemia with a severe chemical linical phenotype. J Pediatr 122: 428 429.Google Scholar
  38. 37.
    Chalmers RA, Roe CR, Stacey TE, Hoppel CR (1984) Urinary excretion of L-carnitine and acyl carnitine by patients with disorders of organic acids metabolism: evidence for secondary insufficiency of L-carnitine. Pediatr Res 18: 1325–1328.Google Scholar
  39. 38.
    Wendel U, Zass R, Leupold D (1993) Contribution of odd-numbered fatty acid oxidation to propionate production in neonates with methylmalonic and propionic acidaemiac。EurJ Peadiatr 1021–1023.Google Scholar
  40. 39.
    Jakobs C, Ten Brink HG, Stellaard F (1991) Prenatal diagnosis of inherited metabolic disorders by quantification of characteristic metabolites in amni otic fluid: facts and future. Prenat Diagn I0: 265–271.Google Scholar
  41. 40.
    Kelts DG, Ney D, Bay C, Saudubray JM, Nyhan WL (1985) Studies on requirements for amino acids in infants with disorders of amino acids metabolism.1. Effect of alanine. Pediatr Res 19: 86–91.Google Scholar
  42. 41.
    Berry Gt, Heindenreich R, Kaplan P, Levine F,Mazur A, Palmieri MJ, Hudkoff M, Segal S (1991) Branched chain amino acid-free parenteral nutrition in the treatment of acute metabolic decompensation in patients with maple syrup urine disease.N Engl J Med 324: 175–179Google Scholar
  43. 42.
    Parini R, Sereni LP, Bagozzi DC, Corbetta C,Rabier R, Narcy C, Hubert P, Saudubray JM (1993)Nasogastric drip feeding as the only treatment of neonatal maple syrup urine disease. Pediatrics 92: 280–283.Google Scholar
  44. 43.
    Casadevall I, Ogier H, Germain JF, Daoud P,Hartman JF, Mercier C, Beaufils F (1992)Hemofiltration arterioveineuse continue: prise encharge d’un cas de leucinose néonatale. Arch Fr Pediatr 49: 803–805Google Scholar
  45. 44.
    Elsas LJ, Ellerine NP, Klein PD (1993) Practical methods to estimate whole body leucine oxidationin maple syrup urine disease. Pediatr Res 33: 445–451.PubMedCrossRefGoogle Scholar
  46. 45.
    Hilliges C, Awiszus D, Wendel U (1993) Intelectualperformance of children with maple urine disease.Eur J Pediatr 152: 144–147Google Scholar
  47. 46.
    Shigematsu Y, Sudo M, Momoi T, Inoue Y, Suzuki Y, Kameyama (1984) Changing plasma and urinary organic acid levels in a patient with isovaleric acidemia during an attack. Pediatr Res 16: 771–775Google Scholar
  48. 47.
    Naglack M, Salvo R, Madsen K, Dembure P, Elsas L (1988) The treatment of isovaleric acidemia with glycine supplement. Pediatr Res 24: 9–13CrossRefGoogle Scholar
  49. 48.
    deSousa C, Chalmers SA, Stacey TE, Tracey BM,Weaver CM, Bradley D (1986) The reponse to Lcarnitine and glycine treatment in isovalericacidemia. Eur J Pediatr 144: 451–456Google Scholar
  50. 49.
    Mayatepek E, Kurczynski TW, Hoppel CL (1991)Long-term L-carnitine treatment in isovaleric acidemia. Pediatr Neurol 7: 137–140Google Scholar
  51. 50.
    Chalmers RA, Bain MD, Mistry J, Tracey BM, Weaver C (1991) Enzymologic studies on patients with methylmalonic aciduria: basis for a linical trial of deoxyadenosylcobalamin in a ydroxocobalamin-unresponsive patient. PediatrRes 30: 560–563Google Scholar
  52. 51.
    Koletzko B, Bachman C, Wendel U (1990) Antibiotic therapy for improvement of metabolic control in methylmalonic aciduria. J Pediatr 117: 99–100.PubMedCrossRefGoogle Scholar
  53. 52.
    Surtees RAH, Matthews EE, Leonard JV (1992)Neurologic outcome of propionic acidemia. Pediatr Neurol 5: 334–337Google Scholar
  54. 53.
    Fisher C, Chuang JL, Griffin TA, Lau KS, Cox RP, Chuang DT (1989) Molecular phenotypes in cultured maple syrup urine disease cells. J Biol Chem 64: 3448–3453Google Scholar
  55. 54.
    Vockley J, Nagao M, Parimoo B, Tanaka K (1992)The variant human isovaleryl-CoA dehydrogenase gene responsible for type II isovaleric acidemia determines an RNA splicing error, leading to the deletion of the entire second coding exon and the production of a truncated precursor protein that interacts poorly with mitochondrial import recep tors. J Biol Chem 267: 2494–2501Google Scholar
  56. 55.
    Tahara T, Kraus JP, Ohura T, Rosenberg LE,Fenton WA (1993) Three independent mutations in the same exon of the PCCB gene: differences between Caucasian and Japanese propionic acidemia.J Inherited Metab Dis 16: 353–360Google Scholar
  57. 56.
    Lamhonwah AM, Leclerc D, Loyer M, Clarizio R,Gravel RA (1994) Correction of the metabolic de fect in propionic acidemia fibroblasts by microinje tion of a full-length cDNA or RNA transcript encoding the propionyl-CoA carboxylase subunit Genomics 19: 500–505Google Scholar
  58. 57.
    Crane AM, Martin LS, Valle D, Ledley FD (1992)Phenotype of disease in three patients with identicalmutations in methylmalonyl-CoA mutase. HumGenet 89: 259–264.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • H. Ogier de Baulny
  • U. Wendel
  • J.-M. Saudubray

There are no affiliations available

Personalised recommendations