A mechanism for diffusion in quasicrystals

  • P. A. Kalugin
Part of the Centre de Physique des Houches book series (LHWINTER, volume 3)


Within ten years after their discovery quasicrystals (QC) evolved from poor quality micron-sized grains to thermodynamically stable materials with structure coherence length as large as that in good crystals. The X-ray diffraction experiments give us today the intensities of hundreds of independent reflections. This would largely suffice to determine the structure of any crystalline metallic alloy, but our knowledge of the structure of QC is still far from being complete. Whatever the reasons for this situation may be, it might be useful to have an alternative source of structural information. The atomic diffusion, being strongly structure dependent, is of great interest from this point of view [1].


Atomic Surface Distorted Region Matching Rule Gibbs Ensemble Atomic Jump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kalugin P. A., Katz A., Europhys. Lett. 21 (1993) 921.Google Scholar
  2. [2]
    Flynn C. P., Point Defects and Diffusion ( Clarendon Press, Oxford, 1972 ).Google Scholar
  3. [3]
    Frenkel D.M., Henley C.L., Siggia E.D., Phys. Rev. B 34 (1986) 3649.ADSCrossRefGoogle Scholar
  4. [4]
    Kalugin P. A., Europhys. Lett. 9 (1989) 545.Google Scholar
  5. [5]
    Katz A., in Proceedings of the Adriatico Anniversary Research Conference on Quasicrystals ( World Scientific Publishing Co., Singapore, 1990 ).Google Scholar
  6. [6]
    Katz A., in From Number Theory to Physics (M. Luck, P. Moussa, M. Waldschmidt and C. Itzykson, eds.), (Springer-Verlag, 1992 ).Google Scholar
  7. [7]
    Elser V., Phys. Rev. Lett. 54 (1985) 1730.Google Scholar
  8. [8]
    Shaw L.J. and Henley C.L., J. Phys. A 24 (1991) 4129.Google Scholar
  9. [9]
    Kalugin P. A., JETP Lett. 49 (1989) 406.Google Scholar
  10. [10]
    De Bruijn N. G., Nether]. Acad. Wetensch. Proc. Ser. A 43 (1981) 39.MATHGoogle Scholar
  11. [11]
    Li W., Park H., Widom M., J. Stat. Phys. 66 (1992) 1.MathSciNetADSMATHCrossRefGoogle Scholar
  12. [12]
    Beenker F. P. M., Algebraic theory of non-priodic tilings by two simple building blocks: a square and a rhombus (Eindhoven, TH-Report 82WSK-04, 1982 ).Google Scholar
  13. [13]
    Joseph D., Baake M., Kramer P., Trebin H.-R., Europhys. Lett. 27 (1994) 451.ADSMATHCrossRefGoogle Scholar
  14. [14]
    Dotera T. and Steinhardt P. J., Phys. Rev. Lett. 72 (1994) 1670.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • P. A. Kalugin
    • 1
  1. 1.Centre de Physique ThéoriqueEcole PolytechniquePalaiseau CedexFrance

Personalised recommendations