Trace maps

  • J. Peyrière
Part of the Centre de Physique des Houches book series (LHWINTER, volume 3)

Abstract

In several problems arising in the quasicrystal theory one is faced with the problem of computing as simply as possible the traces of matrices defined by recursion using a substitution scheme. To be more specific, let us take an example.

Keywords

Manifold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    J.-P. ALLOUCHE and J. PEYRIERE Sur une formule de récurrence sur les traces de produits de matrices associés à certaines substitutions. C. R. Acad. Sc. Paris 302 (II) (1986), 1135 - 1136.MathSciNetADSMATHGoogle Scholar
  2. [2]
    Y. AVISHAI, D. BEREND, and D. GLAUBMAN Minimum-Dimension Trace Maps for Substitution Sequences. Phys. Rev. Lett. 72 (1994), 1842-1845.Google Scholar
  3. [3]
    Marc CULLER and Peter B. SHALEN Varieties of group representations and splittings of 3-manifolds. Ann. of Math. 117 (1983), 109 - 146.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    R. FRICKE and F. KLEIN Vorlesungen über die Theorie der automorphen Function en. B. G. Teubner, Leipzig 1897. Reprint: Johnson Reprint Corporation ( Academic Press ), New York 1965.Google Scholar
  5. [5]
    R. D. HOROWITZ Characters of Free Groups Represented in the Two-Dimensional Special Linear Group. Comm. Pure and Applied Math. XXV (1972), 635 - 649.Google Scholar
  6. [6]
    R. D. HOROWITZ Induced automorphisms on Fricke Characters of Free Groups. Trans. Amer. Math. Soc. 208 (1975), 41 - 50.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    M. KOHMOTO, L.P. KADANOFF, and C. TANG Localization Problem in One Dimension: Mapping, and Escape. Phys. Rev. Lett. 50 (1983), 1870 - 1872.MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    M. KOLAR and M. K. ALI Trace maps associated with general two-letter substitution rules. Phys. Rev. A 42 (1990), 7112 - 7124.MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    M. KOLAR and F. NORI Trace maps of general substitutional sequences. Phys. Rev. B 42 (1990), 1062 - 1065.MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    U. LERON Trace Identities and Polynomial Identities of n x n Matrices. J. of Algebra 42 (1976), 369 - 377.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    W. MAGNUS Rings of Fricke Characters and Automorphism Groups of Free Groups. Math. Z. 170 (1980), 91 - 103.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    W. MAGNUS, A. KARRASS, and D. SOLITAR Combinatorial Group Theory. Interscience Publishers, New York 1966, and Dover, New York 1976.Google Scholar
  13. [13]
    B. H. NEUMANN Die Autornorphismengruppe der freien gruppen. Math. Ann. 107 (1933), 367 - 386.MathSciNetCrossRefGoogle Scholar
  14. [14]
    J. NIELSEN Die Isomorphismen der allgemeinen unendlichen Gruppe mit zwei Erzengenden. Math. Ann. 78 (1918), 385 - 397.CrossRefGoogle Scholar
  15. [15]
    J. NIELSEN Die Isomorphismen der freien Gruppen. Math. Ann. 91 (1924), 169 - 209.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    J. PEYRIER.E On the trace map for products of matrices associated with substitutive sequences. J. Stat. Phys. 62 (1991), 411 - 414.ADSCrossRefGoogle Scholar
  17. [17]
    J. PEYRIERE, Z. X. WEN, and Z. Y. WEN Polynômes Associés aux Endomorphismes de Groupes Libres. L’ns. Math. 39 (1993), 153 - 175.MathSciNetMATHGoogle Scholar
  18. [18]
    C. PROCESI The Invariant Theory of n x n Matrices. Advances in Math. 19 (1976), 306 - 381.MathSciNetMATHCrossRefGoogle Scholar
  19. [19] JU. P. RAZMYSLOV Trace Identities of Full Matrix Algebras over a Field of Characteristic Zero. Izv. Akad. Nauk SSSR ser. Mat. 38 (1974)
    No. 4 (in Russian); English translation: Math. USSR Izvestija 8 (1974), 727 - 760.Google Scholar
  20. [20]
    C. TRAINA Representation of the Trace Polynomial of Cyclically Reduced Words in a Free Group on Two Generators. Ph.D. Thesis, Polytechnic Institute of New York.Google Scholar
  21. [21] C. TRAINA Trace polynomial for two generator subgroups of SL(2, C).
    Proc. Amer. Math. Soc. 79 (1980), 369 - 372.Google Scholar
  22. [22]
    A. WHITTEMORE On Special Linear Characters of Free Groups of Rank n 4. Proc. Amer. Math. Soc. 40 (1973), 383 - 388.MathSciNetMATHGoogle Scholar
  23. [23]
    Z.-X. WEN Diverses études sur l’automaticité. Thèse, Université Paris-Sud 1991.Google Scholar
  24. [24]
    Z.-X. WEN Relations polynomiales entre les traces de produits de matrices. Comptes Rendus Acad. Sci. Paris, 318 Série I (1994), 99 - 104.Google Scholar
  25. [25]
    Z.-X. WEN and Z.-Y. WEN On the leading term and the degree of the polynomial trace mapping associated with a substitution. J. Stat. Phys. 75 (1994), 627 - 641.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • J. Peyrière
    • 1
  1. 1.Mathématiques, bât. 425Université Paris-SudOrsay CedexFrance

Personalised recommendations