Skip to main content

Defects in quasicrystals, in systems with deterministic disorder and in amorphous materials

  • Conference paper
  • 450 Accesses

Part of the book series: Centre de Physique des Houches ((LHWINTER,volume 3))

Abstract

What are (topological1) defects in matter ? Mathematically, they can be defined as singularities of a function Φ(x) associating a quantity, number, vector, etc., Φ∈M to any point x inside the material. Φ(x) represents the configuration of matter in the material. It is better to speak of topological entanglement instead of singularity, since we will encounter defects which are not singular. The aim of a general theory of defects is to associate topological entanglements to the set M of microscopic states of matter, and to classify them.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Toulouse G. and Kléman M., J.Physique Lett. 37 (1976) 149.

    Article  Google Scholar 

  2. Rogula D., “Large Deformation of Crystals, Homotopy and Defects”, Trends in Application of Pure Mathematics to Mechanics, G. Fichera, ed., Pitman, NY 1976.

    Google Scholar 

  3. Volovik G.E. and Mineev V.P., Zh.E.T.F.Pis’ma 23 (1976) 647.

    Google Scholar 

  4. Mermin D., Rev.Mod.Phys. 51 (1979) 591

    Google Scholar 

  5. Michel L., Rev.Mod.Phys. 52 (1980) 617.

    Article  ADS  Google Scholar 

  6. Toulouse G., “A lecture on the topological theory of defects in ordered media: How the old theory was leading to paradoxes, and how their resolution comes within the larger framework of homotopy theory”, in Modern Trends in the Theory of Condensed Matter, A. Pekalski and J. Przystawa, eds., Springer 1980, p. 189.

    Google Scholar 

  7. Monastyrsky M.I., Topology of Gauge Fields and Condensed Matter, Plenum, New York, 1993.

    Google Scholar 

  8. Bresson L., “Mechanical properties of quasicrystals”, in Lectures on Quasicrystals,F. Hippert and D. Gratias, eds., Editions de Physique, Les Ulis 1994, ch.13, p.549.

    Google Scholar 

  9. Kalugin P.A. and Katz A, Europhys. Lett. 21 (1993) 921.

    Article  ADS  Google Scholar 

  10. Katz A. and Gratias D., “Tilings and quasicrystals”, in Lectures on Quasicrystals,F. Hippert and D. Gratias, eds., Editions de Physique, Les Ulis 1994, ch.3, p.187.

    Google Scholar 

  11. Kléman M. and Pavlovitch A., J. de Physique (Coll) 47 (1986) C3–229.

    Google Scholar 

  12. De P. and Pelcovits R.A., Phys. Rev. B 35 (1987) 8609.

    Article  ADS  Google Scholar 

  13. Kléman M., “Imperfections in quasicrystals: Dislocations”, in Quasicrystalline Materials, C. Janot and J.M. Dubois, eds., World Scientific 1988, p. 318

    Google Scholar 

  14. Kléman M., “Dislocations and disvections in aperiodic crystals”, J. Physique I France 2 (1992) 69.

    Article  ADS  Google Scholar 

  15. Wollgarten M., Gratias D., Zhang Z. and Urban K., Phil. Mag. A64 (1991) 819.

    Article  Google Scholar 

  16. Wollgarten M. and Urban K., “Dislocation and plasticity of quasicrystals”, in Lectures on Quasicrystals,F. Hippert and D. Gratias, eds., Editions de Physique, Les Ulis 1994, ch.12, p.535.

    Google Scholar 

  17. Oguey C., Duneau M. and Katz A., Comm. Math. Phys. 118 (1988) 99.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Kramer P., J. Math. Phys. 29 (1988) 516.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Frenkel D.M., Henley C.L. and Siggia E.D., Phys. Rev. B 34 (1986) 3689.

    Article  ADS  Google Scholar 

  20. Rivier N., “Order and disorder in hard sphere packings” in Disorder and Granular Media,D. Bideau and A. Hansen, eds., Elsevier 1993, ch.3, p.55.

    Google Scholar 

  21. Weaire D. and Rivier N., “Soap, cells and statistics - Random patterns in two dimensions”. Contemp. Phys. 25 (1984) 59.

    Article  ADS  Google Scholar 

  22. Pleasants P.A.B., “Quasicrystallography: some interesting new patterns”. Banach Center Publ., 17 (1985) 493

    Google Scholar 

  23. Lunnon W.F. and Pleasants P.A.B., J. Math. pures and appl. 66 (1987) 217.

    MathSciNet  MATH  Google Scholar 

  24. Doubrovnine B.A., Novikov S.P. and Fomenko A.T., Géométrie Contemporaine,Mir, Moscow 1982, §20.

    Google Scholar 

  25. Toulouse G., Physics Reports 49 (1979) 267.

    Article  MathSciNet  ADS  Google Scholar 

  26. Rivier N., “Glasses: a suitable case for homotopy?”. Phil.Mag.A 45 (1982) 1081.

    Google Scholar 

  27. Stewart I.N., Concepts in Modern Mathematics,Penguin 1975.

    Google Scholar 

  28. Yu L.I. and Saupe A., J. Amer. Chem. Soc. 102 (1980) 4879.

    Article  Google Scholar 

  29. Dé Neve T., Kléman M. and Navard P., J. Physique II 2 (1991) 187.

    Article  Google Scholar 

  30. Poénaru V. and Toulouse G., J. Physique 38 (1977) 889.

    Google Scholar 

  31. Jänich K. and Trebin H.R., in Physics of Defects, R. Balian, M. Kléman and J.P. Poirier, eds. (North Holland 1981 ), p. 421.

    Google Scholar 

  32. Kutka R., Trebin H.R. and Kienes M., J. Physique 50 (1989) 861.

    Article  MathSciNet  Google Scholar 

  33. Rivier N., “The topological structure of grain boundaries”, in Number Theory and Physics,J.M. Luck, P. Moussa and M. Waldschmidt, eds., Springer Proc. in Phys. 47 (1990) 118.

    Google Scholar 

  34. Rivier N., “A botanical quasicrystal”. J. de Physique (Coll.) 47 (1986) C3–299

    MathSciNet  Google Scholar 

  35. Bouligand Y., J. Microsc. Spectrosc. Electron. 3 (1978) 373.

    Google Scholar 

  36. Bouligand Y., Derrida B., Poénaru V., Pomeau Y. and Toulouse G., J. Physique 39 (1978) 863.

    Article  MathSciNet  Google Scholar 

  37. Rivier N., “Gauge theory and geometry of condensed matter”, in: Geometry in Condensed Matter Physics, ed. J.F. Sadoc ( World Scientific, Singapore, 1990 ) p. 1.

    Google Scholar 

  38. Rothen F., Pieranski Piotr, Rivier N. and Joyet A., “Cristaux conformes”. European J. Phys. 14 (1993) 227.

    ADS  Google Scholar 

  39. Wang Z.G., Xai M.X. and Wang R., “Observation and simulation of a small dislocation loop in Al-Pd-Mn face-centered icosahedral quasicrystal”. Phil. M.g. Letters 69 (1994) 291.

    Article  ADS  Google Scholar 

  40. Oguey C., “Periodic surfaces in the description of quasicrystals”. J. de Physique (Coll) 51 (1990) C7–273.

    Google Scholar 

  41. Rivier N., “Dislocations in two-dimensional systems, topology and thermodynamics”. in Dislocation 93,J. Rabier, A. George, Y. Bréchet and L. Kubin, eds., Solid State Phenomena 35–36 (1994) 107.

    Google Scholar 

  42. Georges J.M., Meille G., Loubet J.L. and Tolen A.M., Nature 320 (1986) 342.

    Article  ADS  Google Scholar 

  43. Friedel J., Graine de Mandarin,Odile Jacob 1994.

    Google Scholar 

  44. Kolosov V.Yu., “Nontranslational atom ordering in crystals growing in amorphous films”. In Aperiodic ‘84, G. Chapuis, ed., 1995.

    Google Scholar 

  45. Dubois J.M., Kang S.S. and von Stebut J., J. Mater. Sci. Lett. 10 (1991) 537

    Article  Google Scholar 

  46. De Boissieu M., Guyot P. and Audier M., “Quasicrystals,: quasicrystalline order, atomic structure and phase transitions”, in Lectures on Quasicrystals, F. Hippert and D. Gratias, eds., Editions de Physique, Les Ulis 1994, ch. 1, p. 1.

    Google Scholar 

  47. Hirsch P.B., Howie A. and Wheelan M.J., Phil. Trans. Roy. Soc. A252 (1960) 499.

    Article  ADS  Google Scholar 

  48. Sadoc J.F. and Charvolin J., “The crystallography of the hyperbolic plane and infinite periodic minimal surfaces”. J. de Physique (Coll) 51 (1990) C7–319.

    MathSciNet  Google Scholar 

  49. Rivier N., “Glass: elementary excitations and geometry; from bonds to tunnelling modes”. Phil. Mag. B69 (1994) 911.

    Article  Google Scholar 

  50. Rivier N., “Odd rings and tunneling modes in glasses”. J. Non-cryst. Solids 182 (1995) 162.

    Article  ADS  Google Scholar 

  51. Rivier N., “Disclination lines in glasses”. Phil.Mag.A 40 (1979) 859.

    Article  Google Scholar 

  52. Hunklinger S. and Raychaudhari A.K., Progr.Low T.Phys. IX, ed.D.F. Brewer ( North Holland, Amsterdam 1986 ) p. 265.

    Google Scholar 

  53. Phillips W.A., ed., Amorphous Solids. Low-Temperature Properties (Springer 1981).

    Google Scholar 

  54. Shoemaker D.P. and C.B., Acta Cryst. B 42 (1986) 3.

    Google Scholar 

  55. Kléman M. and Sadoc J.F., J. Physique Lett. 40 (1979) 569.

    Article  Google Scholar 

  56. Rivier N. and Lawrence A.J.A., “Disorder as projection from ideal, curved space”. J. Physique (Coll.) 46 (1985) 408–409.

    MathSciNet  Google Scholar 

  57. Sadoc J.F. and Mosseri R., J. Physique 46 (1985) 1809.

    Google Scholar 

  58. Sadoc J.F. and Rivier N., “Hierarchy and disorder in non-crystalline structures”. Phil. Mag. B55 (1987) 537.

    Article  Google Scholar 

  59. Misner C.W., Thorne K.S. and Wheeler J.A., 1973, Gravitation, Freeman, San Francisco, ch. 42.

    Google Scholar 

  60. Rivier N. and Sadoc J.F., “The local geometry of disorder”. J. Non-cryst Solids 106 (1988) 282.

    Article  ADS  Google Scholar 

  61. Mendès-France M., in Number Theory and Physics,J.M. Luck P. Moussa and M. Waldschmidt, eds., Springer Proc. in Phys. 47 (1990) 195.

    Google Scholar 

  62. Shull C.G., Strauser W.A. and Wollan E.O., Phys. Rev. 83 (1951) 333.

    Article  ADS  Google Scholar 

  63. Van Vleck J.H., Physics Bulletin 19 (1968) 167.

    Google Scholar 

  64. Reprinted in The Feynman Lectures in Physics, II-30–9, Addison-Wesley 1964.

    Google Scholar 

  65. Harris W.F., Scient. Amer. 237 (1977) 130.

    Article  Google Scholar 

  66. Bernstein H.J. and Phillips A.V., “Fiber bundles and quantum theory”. Scient. Amer. 245 (1981) 94.

    Article  Google Scholar 

  67. ; Phys. World 2 (1989) 36.

    Google Scholar 

  68. Tonnelat M.-A., Les Théories Unitaires de l’Electromagnétisme et de la Gravitation, Gauthier-Villars, Paris 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rivier, N. (1995). Defects in quasicrystals, in systems with deterministic disorder and in amorphous materials. In: Axel, F., Gratias, D. (eds) Beyond Quasicrystals. Centre de Physique des Houches, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03130-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03130-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59251-8

  • Online ISBN: 978-3-662-03130-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics