Skip to main content

Anti-Growth Factor Activity of Antiestrogens in Human Breast Cancer Cells: A Review

  • Conference paper
Book cover Apoptosis in Hormone-Dependent Cancers

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 14))

  • 42 Accesses

Abstract

The conjunction of the long-recognized role of ovarian hormones on breast tumor growth (Beatson 1896) and the identification of intracellular estrogen receptors (ER; Jensen and Jacobson 1960) has prompted the design and therapeutic use of drugs which could selectively antagonize unfavorable steroid hormone action in their target tissues. Nonsteroidal antiestrogens were initially described by Lerner and coworkers in 1958; many structural derivatives of triphenylethylene have since been synthesized, the most widely used in breast cancer treatment being tamox-ifen (or Nolvadex) (Harper and Walpole 1966). Though their pharmacology is complex and often paradoxical, they all present common characteristic features. They interact with nuclear ER and display estrogen agonist activities which vary within species (human, chick, mouse, rat), tissue (uterus, breast, bone), or with the gene considered (progesterone receptor, cathepsin D, pS2). In the presence of estrogens, they act as competitive inhibitors for binding to nuclear steroid receptors and thus behave as strong hormone antagonists. On the basis of these recognized antagonistic properties, several antiestrogens have been tested clinically as agents for breast cancer therapy (Cole et al. 1971).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bardon S, Vignon F, Chalbos D, Rochefort H (1985) RU486, a progestin and glucocorticoid antagonist inhibits the growth of breast cancer cells via the progesterone receptor. J Clin Endocrinol Metab 60: 692–697

    Article  PubMed  CAS  Google Scholar 

  • Bardon S, Vignon F, Montcourrier P, Rochefort H (1987) Steroid-receptor mediated cytotoxicity of an antiestrogen and an antiprogestin in breast cancer cells. Cancer Res 47: 1441–1448

    PubMed  CAS  Google Scholar 

  • Beatson GT (1896) On the treatment of inoperable cases of carcinoma of the mamma: suggestions for a new method of treatment, with illustrative cases. Lancet 2:104–107, 162–167

    Google Scholar 

  • Benz C, Cadman E, Gwin J, Wu T, Amara J, Eisenfeld A, Dannies P (1983) Tamoxifen and 5-fluorouracil in breast cancer: cytotoxic synergism in vitro. Cancer Res 43: 5298–5303

    PubMed  CAS  Google Scholar 

  • Berthois Y, Katzenellenbogen JA, Katzenellenbogen BS (1986) Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci USA 83: 2496–2500

    Article  PubMed  CAS  Google Scholar 

  • Berthois Y, Dong XF, Martin PM (1989) Regulation of epidermal growth factor receptor by estrogen and antiestrogen in the human breast cancer cell line MCF-7. Biochem Biophys Res Commun 159: 126–131

    Article  PubMed  CAS  Google Scholar 

  • Chalbos D, Philips A, Galtier F, Rochefort H (1993) Synthetic antiestrogens modulate induction of p52 and cathepsin D mRNA by growth factors and adenosine 3’, 5’ -monophosphate in MCF7 cells. Endocrinology 133:571–576

    Google Scholar 

  • Coezy E, Borgna JL, Rochefort H (1982) Tamoxifen and metabolites in MCF7 cells: correlation between binding to estrogen receptor and inhibition of cell growth. Cancer Res 42: 317–323

    PubMed  CAS  Google Scholar 

  • Cole MP, Jones CTA, Todd IDH (1971) A new anti-estrogenic agent in late breast cancer. Br J Cancer 25: 270–275

    Article  PubMed  CAS  Google Scholar 

  • Dickson RB, Lippman ME (1987) Estrogenic regulation of growth and polypeptide growth factor secretion in human breast carcinoma. Endocrine Rev 8: 29–43

    Article  CAS  Google Scholar 

  • Freiss G, Vignon F (1994) Antiestrogens increase protein tyrosine phosphatase activity in human breast cancer cells. Mol Endocrinol 8: 1389–1396

    Article  PubMed  CAS  Google Scholar 

  • Freiss G, Prébois C, Rochefort H, Vignon F (1990a) Anti-steroidal and antigrowth factor activity of antiestrogens. J Steroid Biochem Mol Biol 37: 777–781

    Article  PubMed  CAS  Google Scholar 

  • Freiss G, Rochefort H, Vignon F (1990b) Mechanisms of 4-hydroxytamoxifen anti-growth factor activity in breast cancer cells: alterations of growth factor receptor binding sites and tyrosine kinase activity. Biochem Biophys Res Commun 173: 919–926

    Article  PubMed  CAS  Google Scholar 

  • Freiss G, Prébois C, Vignon F (1993) Control of breast cancer cell growth by steroids and growth factors: interactions and mechanisms. Breast Cancer Res Treat 27: 57–68

    Article  PubMed  CAS  Google Scholar 

  • Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119: 493–501

    Article  PubMed  CAS  Google Scholar 

  • Gill PG, Vignon F, Bardon S, Derocq D, Rochefort H (1987) Difference between R5020 and the antiprogestin RU486 in antiproliferative effects on human breast cancer cells. Breast Cancer Res Treat 10: 37–45

    Article  PubMed  CAS  Google Scholar 

  • Gottardis MM, Robinson SP, Jordan VC (1988) Estradiol-stimulated growth of MCF-7 tumors in athymic nude mice: a model to study the tumoristatic action of tamoxifen. J Steroid Biochem 20: 311–314

    Article  Google Scholar 

  • Green MD, Whybourne AM, Taylor IW, Sutherland RL (1981) Effects of antioestrogens on the growth and cell cycle kinetics of cultured human mammary carcinoma cells. In: Sutherland RL, Jordan VC (eds) Non-steroidal antioestrogens: molecular pharmacology and antitumour activity. Academic, Sydney, pp 397–412

    Google Scholar 

  • Harper MJK, Walpole AL (1966) Contrasting endocrine activities of cis and trans isomers in a series of substituted triphenylethylenes. Nature 212: 87

    Article  PubMed  CAS  Google Scholar 

  • Ignar-Trowbridge DM, Nelson KG, Bidwell MC, Curtis SW, Washburn TF, Mc Lahlan JA, Korach KS (1992) Coupling of dual signaling pathways: epidermal growth factor action involves the estrogen receptor. Proc Natl Acad Sci USA 89: 4658–4662

    Article  PubMed  CAS  Google Scholar 

  • Jensen EV, Jacobson HI (1960) Fate of steroid estrogens in target tissues. In: Pincus G, Vollmer EP (eds) Biological activity of steroids in relation to cancer. Academic, New York, pp 161–178

    Google Scholar 

  • Jordan VC, Collins MM, Rowsby L, Prestwich G (1977) A monohydroxylated metabolite of tamoxifen with potent antioestrogenic activity. J Endocrinol 75: 305–316

    Article  PubMed  CAS  Google Scholar 

  • Katzenellenbogen BS, Norman MJ (1990) Multihormonal regulation of the progesterone receptor in MCF7 human breast cancer cells: interrelationships among insulin/insulin-like growth factor-I, serum and estrogen. Endocrinology 126: 891–898

    Article  PubMed  CAS  Google Scholar 

  • Kerr JFK, Wyllie AH, Currie AH (1972) Apoptosis, a basic biological phenomenon with wider implications in tissue kinetics. Br J Cancer 26: 239–245

    Article  PubMed  CAS  Google Scholar 

  • Knabbe CK, Lippman ME, Wakefield LM, Flanders KC, Kasid A, Derynck R, Dickson RB (1987) Evidence that transforming growth factor-beta is a hormonally regulated negative growth factor in human breast cancer cells. Cell 48: 417–428

    Article  PubMed  CAS  Google Scholar 

  • Kyprianou N, Isaacs JT (1989) Expression of transforming growth factor-I3 in the ventral prostate during castration-induced programmed cell death. Mol Endocrinol 3: 1515–1522

    Article  PubMed  CAS  Google Scholar 

  • Kyprianou N, English HF, Davidson NE, Isaacs JT (1991) Programmed cell death during regression of the MCF-7 human breast cancer following estrogen ablation. Cancer Res 51: 162–166

    PubMed  CAS  Google Scholar 

  • Lerner LJ, Holthaus JF, Thompson CR (1958) A non-steroidal estrogen antagonist 1-(p-2-diethylaminoethoxypheny1)-1-pheny1–2-p-methoxyphenylethanol. Endocrinology 63: 295–318

    Article  PubMed  CAS  Google Scholar 

  • Lippman ME, Bolan G, Huff K (1976) The effects of estrogens and anticstrogens on hormone-responsive human breast cancer in long term culture. Cancer Res 36: 4595–4601

    PubMed  CAS  Google Scholar 

  • Murphy LC, Dotzlaw H (1989) Endogenous growth factor expression in T47D human breast cancer cells associated with reduced sensitivity of antiproliferative effects of progestins and antiestrogens. Cancer Res 49: 599–604

    PubMed  CAS  Google Scholar 

  • Osborne CK, Boldt DH, Clark GM, Trent JM (1983) Effects of tamoxifen on human breast cancer cell kinetics: accumulation of cells in early G1 phase. Cancer Res 43: 3583–3585

    PubMed  CAS  Google Scholar 

  • Osborne CK, Hobbs K, Clark GM (1985) Effect of estrogens and antiestrogens on growth of human breast cancer cells in athymic nude mice. Cancer Res 45: 584–590

    PubMed  CAS  Google Scholar 

  • Pazin MJ, Williams LT (1992) Triggering signaling cascades by receptor tyrosine kinases. Trends Biochem Sci 17: 374–375

    Article  PubMed  CAS  Google Scholar 

  • Philips A, Chalbos C, Rochefort H (1993) Estradiol increases and anti-estrogens antagonize the growth factor-induced AP-1 activity in MCF7 breast cancer cells without affecting c-fos and c-jun synthesis. J Biol Chem 268: 14103–14108

    PubMed  CAS  Google Scholar 

  • Poulin R, Dufour JM, Labrie F (1989) Progestin inhibition of estrogen-dependent proliferation in ZR 75–1 human breast cancer cells: antagonism by insulin. Breast Cancer Res Treat 13: 265–276

    Article  PubMed  CAS  Google Scholar 

  • Rochefort H (1987) Do antiestrogens and antiprogestins act as hormone antagonists or receptor-targeted drugs in breast cancer ? Trends Pharmacol Sei 8: 126–128

    Article  CAS  Google Scholar 

  • Rochefort H, Garcia M, Borgna JL (1979) Absence of correlation between antiestrogenic activity and binding affinity for the estrogen receptor. Biochem Biophys Res Commun 88: 351–357

    Article  PubMed  CAS  Google Scholar 

  • Rochefort H, Coezy E, Joly E, Westley B, Vignon F (1980) Hormonal control of breast cancer in cell culture. In: Iacobelli S, King RJB, Lindner HR, Lippman ME (eds) Hormones and cancer, progress in cancer research and therapy, vol 14. Raven, New York, pp 21–29

    Google Scholar 

  • Rochefort H, Borgna JL, Evans R (1983) Cellular and molecular mechanism of action of antiestrogens. J Steroid Biochem 19: 69–74

    Article  PubMed  CAS  Google Scholar 

  • Shafie SM, Grantham FH (1981) Role of hormones in the growth and regression of human breast cancer cells (MCF-7) transplanted into athymic nude mice. J Natl Cancer Inst 67: 51–56

    PubMed  CAS  Google Scholar 

  • Soule HD, Mc Grath CM (1980) Estrogen responsive proliferation of clonal human breast carcinoma cells in athymic nude mice. Cancer Lett 10: 177–189

    Article  PubMed  CAS  Google Scholar 

  • Sumida C, Pasqualini JR (1989) Antiestrogens antagonize the stimulatory effect of epidermal growth factor on the induction of progesterone receptor in fetal uterine cells in culture. Endocrinology 124: 591–597

    Article  PubMed  CAS  Google Scholar 

  • Sutherland RL, Hall RE, Taylor IW (1983) Cell proliferation kinetics of MCF7 human mammary carcinoma cells in culture and effects of tamoxifen on exponentially growing and plateau-phase cells. Cancer Res 43: 3998–4006

    PubMed  CAS  Google Scholar 

  • Tenniswood MP, Guenette RS, Lakins J, Mooibroek M, Wong P, Welsh JE (1992) Active cell death in hormone-dependent tissues. Cancer Metastasis Rev 11: 192–220

    Article  Google Scholar 

  • Van de Velde P, Nique F, Bouchoux F, Brémaud J, Hameau MC, Lucas D, Moratille C, Viet S, Philibert D, Teutsch G (1994) RU 58 668, a new pure antiestrogen inducing a regression of human mammary carcinoma implanted in nude mice. J Steroid Biochem Mol Biol 48: 187–196

    Article  PubMed  Google Scholar 

  • Vaux DL, Haecker G, Strasser A (1994) An evolutionary perspective of apoptosis. Cell 76: 777–779

    Article  PubMed  CAS  Google Scholar 

  • Vignon F, Rochefort H (1987) Autocrine regulation of breast cancer cell growth by estrogen-induced secreted proteins and peptides. In: Moudgil VK (ed) Recent advances in steroid hormone action. De Gruyter, Berlin, pp 405–425

    Google Scholar 

  • Vignon F, Bardon S, Chalbos D, Rochefort H (1982) Antiestrogenic effect of R5020, a synthetic progestin in human breast cancer cells in culture. J Clin Endocrinol Metab 56: 317–323

    Google Scholar 

  • Vignon F, Capony F, Chambon M, Freiss G, Garcia M, Rochefort H (1986) Autocrine growth stimulation of the MCF7 breast cancer cells by the estrogen-regulated 52 K protein. Endocrinol 118: 1537–1545

    Article  CAS  Google Scholar 

  • Vignon F, Bouton MM, Rochefort H (1987) Antiestrogens inhibit the mitogenic effect of growth factors on breast cancer cells in the total absence of estrogens. Biochem Biophys Res Commun 146: 1502–1508

    Article  PubMed  CAS  Google Scholar 

  • Wakeling AE, Bowler J (1987) Steroidal pure antiestrogens. J Endocrinol 112: R7 - R10

    Article  PubMed  CAS  Google Scholar 

  • Wakeling AE, Bowler J (1992) ICI 182,780, a new antiestrogen with clinical potential. J Steroid Biochem Mol Biol 43: 173–177

    Article  PubMed  CAS  Google Scholar 

  • Wakeling AE, Newboult E, Peters SW (1989) Effects of antiestrogens on the proliferation of MCF7 human breast cancer cells. J Mol Endocrinol 2: 225–234

    Article  PubMed  CAS  Google Scholar 

  • Wärri AM, Huovinen RL, Laine AM, Martikainen PM, Härkönen PL (1993) Apoptosis in toremifene-induced growth inhibition of human breast cancer cells in vivo and in vitro. J Natl Cancer Inst 85: 1412–1418

    Article  PubMed  Google Scholar 

  • Westley B, Rochefort H (1980) A secreted glycoprotein induced by estrogen in human breast cancer cell lines. Cell 20: 352–362

    Article  Google Scholar 

  • Wijsman JH, Jonker RR, Keijzer R, Van de Velde CJH, Cornelisse CJ, Van Dierendonck JH (1993) A new method to detect apoptosis in paraffin sections: in situ end-labeling of fragmented DNA. J Histochem Cytochem 41: 7–12

    Article  PubMed  CAS  Google Scholar 

  • Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous nuclease activations. Nature 284: 555–556

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vignon, F., Rochefort, H. (1995). Anti-Growth Factor Activity of Antiestrogens in Human Breast Cancer Cells: A Review. In: Tenniswood, M., Michna, H. (eds) Apoptosis in Hormone-Dependent Cancers. Ernst Schering Research Foundation Workshop, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03122-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03122-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03124-7

  • Online ISBN: 978-3-662-03122-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics