Skip to main content

Therapeutic Significance of Apoptosis in the Treatment of Androgen-Dependent and Androgen-Independent Prostate Cancer

  • Conference paper
Apoptosis in Hormone-Dependent Cancers

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 14))

  • 44 Accesses

Abstract

Prostate cancer is the most commonly diagnosed malignancy in men in the United States and a major contributor to cancer mortality. The disease has a remarkably high annual mortality rate, with 38 000 men dying each year from metastatic prostate cancer (Boring et al. 1993). Due to the rapid rise in aging of the US population, it is estimated that by the year 2000 there will be a 37% increase in prostate cancer deaths (Carter and Coffey 1990). Approximately 200 000 new cases of prostate cancer are clinically diagnosed each year. The disease varies widely in its clinical aggressiveness. In some patients, prostate cancer metastasizes rapidly, killing the patient within a year of initial clinical presentation, whereas other patients may live for many years with localized disease without apparent metastases. At the same time, prostate cancer is often characterized as being clinically “silent” in a large number of men who harbor it histologically. An inviting challenge in prostate cancer research, therefore, is to distinguish prostatic tumors destined to progress to lethal metastatic disease from those with little likelihood of causing morbidity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong DK, Isaacs JT, Ottaviano YL, Davidson NE (1992) Programmed cell death in an estrogen-independent human breast cancer cell line, MDAMB-468. Cancer Res 52: 3418–3424

    PubMed  CAS  Google Scholar 

  • Berns EMMJ, Schnurmans LG, Bolt J, Lamb DJ, Foekens JA, Mulder E (1990) Antiproliferative effects of suramin on androgen responsive tumors. Eur J Cancer 26: 470–474

    Article  PubMed  CAS  Google Scholar 

  • Bettuzi S, Hippakka RA, Gilna P, Liao S (1989) Identification of an androgen-repressed in mRNA in rat ventral prostate is coding for sulphate glycoprotein 2 by cDNA cloning and sequence analysis. Biochem J 257: 293–296

    Google Scholar 

  • Boring CC, Squires TS, Tong T (1993) Cancer statistics. Cancer 43: 7–26

    CAS  Google Scholar 

  • Buttyan R, Zaker Z, Lochshin R, Wolgemuth D (1988) Cascade induction of c-fos, c-myc and heat shock 70K transcripts during regression of the rat ventral prostate gland. Mol Endocrinol 2: 650–657

    Article  PubMed  CAS  Google Scholar 

  • Carter BH, Coffey DS (1990) The prostate: an increasing medical problem. Prostate 16: 39–48

    Article  PubMed  CAS  Google Scholar 

  • Cohen, JJ, Duke RC (1984) Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J Innnunol 132: 38–42

    CAS  Google Scholar 

  • De Clerq E (1979) Suramin: a potent inhibitor of the reverse transcriptase of RNA tumor viruses. Cancer Lett 8: 9–22

    Article  Google Scholar 

  • Eisenberger MA, Reyno LM, Jodrell DI Sinibaldi VJ Tkaczuk KH, Sridhara R, Zuhowski EG, Lowitt MH, Jacobs SC, Egorin NU (1993) Suramin an active drug for prostate cancer: interim observations in phase I trial. J Natl Cancer Inst 85: 611–621

    CAS  Google Scholar 

  • English HF, Kyprianou N, Isaacs JT (1989) Relationship between DNA fragmentation and apoptosis in the programmed cell death in the rat prostate following castration. Prostate 15: 233–251

    Article  PubMed  CAS  Google Scholar 

  • Grem JL (1990) Fluorinated pyrimidines. In: Chabner BA, Collins JM (eds) Cancer chemotherapy. Lippincott, Philadelphia, pp 180–224

    Google Scholar 

  • Hermens AF, Bentvelzen PAJ (1992) Influence of the H-ras oncogene on radiation responses of rat rhabdomyosarcoma cell line. Cancer Res 52: 30733082

    Google Scholar 

  • Isaacs JT (1984) Antagonistic effect of androgen on prostatic cell death. Prostate 5: 545–558

    Article  PubMed  CAS  Google Scholar 

  • Jindal HK, Anderson CN, Davis RG, Vishinanantha JK (1990) Suramin affects DNA synthesis in HELA cells by inhibition of DNA polymerases. Cancer Res 50: 7754–7761

    PubMed  CAS  Google Scholar 

  • Kim JH, Sherwood ER, Sutkowski DM, Lee C, Kozlowski JM (1991) Inhibition of prostatic tumor cell proliferation by suramin: alteration in TFG alpha-mediated autocrine growth regulation and cell cycle distribution. J Urol 146: 171–176

    PubMed  CAS  Google Scholar 

  • Kyprianou N, Isaacs JT (1988) Activation of programmed cell death in the rat ventral prostate after castration. Endocrinology 122: 552–562

    Article  PubMed  CAS  Google Scholar 

  • Kyprianou N, Isaacs JT (1989a) “Thymineless” death in androgennde- pendent prostatic cancer cells. Biochem Biophys Res Commun 165:73–81

    Google Scholar 

  • Kyprianou N, Isaacs JT (1989b) Expression of transforming growth factor-n in the rat ventral prostate during castration-induced programmed cell death. Mol Endocrinol 3: 1515–1522

    Article  PubMed  CAS  Google Scholar 

  • Kyprianou N, English HF, Isaacs JT (1988) Activation of a Ca 2+ — Mg 2+ dependent endonuclease as an early event in castration-induced prostatic cell death. Prostate 13: 103–118

    Article  PubMed  CAS  Google Scholar 

  • Kyprianou N, English HF, Isaacs JT (1990) Programmed cell death during regression of PC-82 human prostate cancer following androgen ablation. Cancer Res 50: 3748–3753

    PubMed  CAS  Google Scholar 

  • Kyprianou N, Martikainen P, Davis L, English HF, Isaacs JT (1991a) Programmed cell death as a new target for prostatic cancer therapy. Cancer Sury 11: 265–277

    CAS  Google Scholar 

  • Kyprianou N, Alexander RB, Isaacs JT (1991b) Activation of programmed cell death by recombinant human tumor necrosis factor plus topoismerase II targeted drugs in L-929 tumor cells. J Natl Cancer Inst 83: 346–349

    Article  PubMed  CAS  Google Scholar 

  • Kyprianou N, Bains AK, Jacobs SC (1994) Induction of apoptosis in androgen-independent human prostate cancer cells undergoing thymineless death. Prostate 25: 12–22

    Article  Google Scholar 

  • Léger JG, Monpetit MD, Tenniswood MP (1987) Characterization and cloning of androgen-repressed mRNA from rat ventral prostate. Biochem Biophys Res Commun 147: 196–203

    Article  PubMed  Google Scholar 

  • Martikainen P, Kyprianou N, Tucker R, Isaacs, JT (1991) Programmed cell death of non-proliferating androgen-independent prostate cancer cells. Cancer Res 51: 4693–4700

    PubMed  CAS  Google Scholar 

  • McConkey DJ, Nikotera P, Hartzell P, Bellomo G, Wyllie AH, Orrenius S (1989) Glucocorticoids activate a suicide process in thymocytes through elevation of cytosolic Cat+ concentration. Arch Biochem Biophys 269: 365–370

    Article  PubMed  CAS  Google Scholar 

  • McKenna WG, Weiss MC, Bakananskas VJ, Sandler H, Kelsten ML, Bioglow J, Tuttle SW, Endlich B, Ling CC, Muschel RJ (1990) The role of the H-ras oncogene in radiation resistance and metastasis. J Radiat Oncol Biol Phys 18: 849–859

    Article  CAS  Google Scholar 

  • Myers C, Cooper M, Stein C (1992) Suramin: a novel growth factor antagonist with activity in hormone-refractory metastatic prostate cancer. J Clin Oncol 10: 881–889

    PubMed  CAS  Google Scholar 

  • Nicotera P, Hartzell P, Davis G, Orrenius S (1986) The formation of plasma membrane blebs in hepatocytes exposed to agents that increase cytosolic Cat+ is mediated by the activation of a non-lysosomal proteolytic system. Science 209: 139–142

    CAS  Google Scholar 

  • Painter RB (1980) The role of DNA damage and repair in cell killing induced by ionizing radiation. In: Meyn RE, Withers HR (eds) Radiation biology in cancer research. Raven, New York, pp 59–68

    Google Scholar 

  • Paulson DF, Lin GH, Hinshaw W, Stephani S, Urology and Oncology Research Group (1982) Radical surgery versus radiotherapy for adenocarcinoma of the prostate. J Urol 128: 502–504

    Google Scholar 

  • Peehl D, Wong S, Stamey T (1991) Cytostatic effects of suramin on prostate cancer cells cultured from primary tumors. J Urol 145: 624–630

    PubMed  CAS  Google Scholar 

  • Raff MC (1992) Social controls on cell survival and cell death. Nature 356: 397–400

    Article  PubMed  CAS  Google Scholar 

  • Raghavan D (1988) Non-hormone chemotherapy for prostate cancer: principles of treatment and application to the testing of new drugs. Semin Oncol 15: 371–389

    PubMed  CAS  Google Scholar 

  • Rago R, Mitchen J, Cheng AL, Oberley T, Wilding G (1991) Disruption of cellular energy balance by suramin in intact human prostatic carcinoma cells, a likely antiproliferative mechanism. Cancer Res 51: 6629–6635

    PubMed  CAS  Google Scholar 

  • Seewald MJ, Olsen R, Powls G (1989) Suramin blocks intracellular Cat+ release and growth factor-induced increases in cytoplasmic free Cat+ concentration. Cancer Lett 49: 107–113

    Article  Google Scholar 

  • Sensibar JA, Griswold MD, Sylvester SR, Buttyan R, Bardin CN, Cheng CV, Dudek S, Lee C (1992) Prostatic ductal system in rats: regional variation in localization of an androgen-repressed gene product SGP-2. Endocrinology 52: 4042–4045

    Google Scholar 

  • Sklar GN, Eddy HA, Jacobs SC, Kyprianou N (1993) Combined antitumor effect of suramin plus irradiation in human prostate cancer cells: the role of apoptosis. J Urol 150: 1526–1532

    PubMed  CAS  Google Scholar 

  • Stein CA, LaRocca RV, Thomas R, McAtee N, Myers CE (1989) Suramin: an anticancer drug with a unique mechanism of action. J Clin Oncol 7: 499508

    Google Scholar 

  • Stephens LC, Ang KK, Schulthers TE, Milas L, Meyn R (1991) Apoptosis in irradiated murine tumors. Radiat Res 127: 308–316

    Article  PubMed  CAS  Google Scholar 

  • Sylvester SR, Skinner MK, Griswold MD (1984) A sulphated glycoprotein synthesized by Sertoli cells and by epididymal cells is a component of the sperm membrane. Biol Reprod 31: 1087–1101

    Article  PubMed  CAS  Google Scholar 

  • Tanon I, Janot E (1924) Essai de traitement de la maladie du sommeil, auameroun, par le Bayer 205. Action sur les parasites. Action sur le rein du foie. Ann Paras Hum Comp 2: 327–334

    Google Scholar 

  • Umansky SR, Korol BA, Nelipovich PA (1981) In vivo DNA degradation in thymocytes of y-irradiated or hydrocortisone-treated rats. Biochem Biophys Acta 655: 9–17

    Article  PubMed  CAS  Google Scholar 

  • Van Steenbrugge GJ, Groen M, Romijin JC, Schroeder F (1984) Biological effects of hormonal treatment regimen on a transplantable human prostate tumor line (PC-82). J Urol 131: 812–817

    PubMed  Google Scholar 

  • Wyllie AH, Kerr JFR, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68: 251–306

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Ohyama H (1988) Radiation-induced interphase death of rat thy- mocytes is internally programmed (apoptosis). Int J Radiat Biol 53: 65–75

    Article  CAS  Google Scholar 

  • Yanagihara K, Tsumuraya M (1992). Transforming growth factor ßi induces apoptotic cell death in cultured human gastric carcinoma cells. Cancer Res 52: 4042–4045

    PubMed  CAS  Google Scholar 

  • Zietman AL, Coen JJ, Shipley WU, Willet CG, Efird JT (1994) Radical radiation therapy in the management of prostatic adenocarcinoma: the initial prostate specific antigen value as a predictor of treatment outcome. J Urol 151: 640–645

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kyprianou, N. (1995). Therapeutic Significance of Apoptosis in the Treatment of Androgen-Dependent and Androgen-Independent Prostate Cancer. In: Tenniswood, M., Michna, H. (eds) Apoptosis in Hormone-Dependent Cancers. Ernst Schering Research Foundation Workshop, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03122-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03122-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03124-7

  • Online ISBN: 978-3-662-03122-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics