Skip to main content

1,25 Dihydroxyvitamin D3: Coordinate Regulator of Active Cell Death and Proliferation in MCF-7 Breast Cancer Cells

  • Conference paper
Apoptosis in Hormone-Dependent Cancers

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 14))

Abstract

Maintenance of normal tissue cell number requires a net balance between the rate of cell division and the rate of cell death. The uncontrolled growth characteristic of both benign and metastatic tumors may be due to either an increase in the rate of proliferation or a decrease in the rate of cell death, or both (Williams 1991). Cell death can be classified into one of two categories: necrosis, the result of tissue insult or injury; and apoptosis, or active cell death (ACD), a process of active cellular self-destruction. ACD is an asynchronous process consisting of a series of distinct steps which are common to epithelial cells of the prostate, mammary gland, liver, and many other tissues (Bursch et al. 1990). A schematic representation of the morphology and biochemistry of ACD is shown in Fig. 1. The first visible stage of ACD in regressing mammary gland involves disruption of the cytoskeleton and condensation of intermediate filaments around the nucleus. During this stage, loss of cell to cell contacts results in the release of dying cells from the basement membrane in vivo or rounding up and detachment of adherent cells in vitro. The early apoptotic cell thus lies above the plane of the monolayer and is characterized by cytoplasmic condensation. Chromatin condensation occurs simultaneously, producing the hyperchromatic, pyknotic nucleus, which then separates into discrete masses of condensed chromatin. In some, but not all, forms of ACD, cleavage of DNA into large (50–300-kbp) fragments and further degradation into 200-bp fragments, characteristic of a nucleosome ladder, can be demonstrated (Oberhammer et al. 1993). Finally, the cell itself fragments into a number of membrane-bound vesicles called apoptotic bodies, some of which contain chromatin. In vitro, apoptotic cells and bodies can be recovered in the media, whereas in vivo, these are removed by phagocytic macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe J, Nakano T, Nishii Y, Matsumoto T, Ogata E, Ikeda K (1992) A novel vitamin D3 analog, 22-oxa-1,25 dihydroxyvitamin D3, inhibits the growth of human breast cancer in vitro and in vivo without causing hypercalcemia. Endocrinology 129: 832–837

    Article  Google Scholar 

  • Armstrong DK, Isaacs JT, Ottaviano YL, Davidson NE (1992) Programmed cell death in an estrogen independent human breast cancer cell line, MDAMB-468. Cancer Res 52: 3418–3424

    PubMed  CAS  Google Scholar 

  • Berger U, Wilson P, McClelland RA, Colston K, Haussier MR, Pike W, Coombes RC (1987) Immunocytochemical detection of 1,25-dihydroxyvitamin D3 receptor in breast cancer. Cancer Res 47: 6793–6799

    PubMed  CAS  Google Scholar 

  • Bursch W, Paffe S, Putz B, Barthel G, Schulte-Hermann R (1990) Determination of the length of the histological stages of apoptosis in normal liver and altered hepatic foci of rats. Carcinogenesis 11: 847–853

    Article  PubMed  CAS  Google Scholar 

  • Cho-Chung YS, Gullino PM (1973) Mammary tumor regression V. Role of acid ribonuclease and cathepsin. J Biol Chem 248: 4743–4749

    Google Scholar 

  • Chouvet C, Berger U, Coombes RC (1986) 1,25 Dihydroxyvitamin D3 inhibitory effect on the growth of two human breast cancer cell lines (MCF-7, BT-20). J Steroid Biochem 24: 373–376

    Google Scholar 

  • Cohen GM, Sun XM, Snowden RT, Dinsdale D, Skilleter DN (1992) Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation. Biochem J 286: 331–334

    PubMed  CAS  Google Scholar 

  • Colston K, Berger U, Wilson P, Hadcocks L, Naeem I, Earl HM, Coombes RC (1988) Mammary gland 1,25-dihydroxyvitamin D3 receptor content during pregnancy and lactation. Mol Cell Endocrinol 60: 15–22

    Article  PubMed  CAS  Google Scholar 

  • Colston K, Chander SK, Mackay AG, Coombes RC (1992) Effects of synthetic vitamin D analogs on breast cancer cell proliferation in vivo and in vitro. Biochem Pharmacol 44: 693–702

    Article  PubMed  CAS  Google Scholar 

  • Demirpence E, Balaguer P, Trousse F, Nicolas JC, Pons M, Gagner D (1994) Antiestrogenic effects of all trans retinoic acid and 1,25 dihydroxyvitamin D in breast cancer cells occur at the estrogen response element level but through different molecular mechanisms. Cancer Res 54: 1458–1464

    PubMed  CAS  Google Scholar 

  • Eisman J, Sutherland RL, McMenemy ML, Fragonas JC, Musgrove EA, Pang G (1989) Effects of 1,25-dihydroxyvitamin D3 on cell cycle kinetics of T47D human breast cancer cells. J Cell Physiol 138: 611–616

    Article  PubMed  CAS  Google Scholar 

  • Frampton RJ, Omond SA, Eisman JA (1983) Inhibition of human cancer cell growth by 1,25-dihydroxyvitamin D3 metabolites. Cancer Res 43: 44434447

    Google Scholar 

  • Guenette RS, Corbeil H, Leger J, Wong K, Mezl V, Mooibroek M, Tenniswood M (1994) Induction of gene expression during involution of the lactating mammary gland of the rat. J Mol Endocrinol 12: 47–60

    Article  PubMed  CAS  Google Scholar 

  • Jeng MH, Jordan VC (1991) Growth stimulation and differential regulation of transforming growth factor-beta 1 (TGFB1), TGFB2 and TGFB3 messenger RNA levels by norethidrone in MCF-7 human breast cancer cells. Mol Endocrinol 5: 1120–1128

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Abdelkader N, Katz M, McLane JA (1992) 1,25-Dihydroxyvitamin D3 enhances antiproliferative effect and transcription of TGF-beta on human keratinocytes in culture. J Cell Physiol 151: 579–587

    Google Scholar 

  • Knabbe C, Lippman ME, Wakefield LM, Flanders KC, Kasid A, Derynyck R, Dickson RB (1987) Evidence that transforming growth factor-beta is a hormonally regulated negative growth factor in human breast cancer cells. Cell 48: 417–428

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Hashimoto K, Yoshikawa K (1993) Growth inhibition of human keratinocytes by 1,25-Dihydroxyvitamin D3 is linked to dephosphorylation of retinoblastoma gene product. Biochem Biophys Res Commun 196: 487–493

    Article  PubMed  CAS  Google Scholar 

  • Kyprianou N, English H, Davidson N, Isaacs J (1991) Programmed cell death during regression of the MCF-7 human breast cancer following estrogen ablation. Cancer Res 51: 162–166

    PubMed  CAS  Google Scholar 

  • Lanzerotti RH, Gullino PM (1972) Activities and quantities of lysosomal enzymes during mammary tumor regression. Cancer Res 32: 2679–2685

    PubMed  CAS  Google Scholar 

  • Martikainen P, Kyprianou N, Isaacs JT (1990) Effect of transforming growth factor 131 on proliferation and death of rat prostatic cells. Endocrinology 127: 2963–2968

    Article  PubMed  CAS  Google Scholar 

  • Miller TE, Beausang LA, Meneghini N, Lidgard G (1994) Cell death and nuclear matrix proteins. In: Tomei LD, Cope FO (eds) Apoptosis II: the molecular basis of apoptosis in disease. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 357–376

    Google Scholar 

  • Oberhammer F, Bursch W, Parzefall W, Breit P, Erber E, Stadler M, Schulte-Hermann R (1991) Effect of transforming growth factor beta on cell death of cultured rat hepatocytes. Cancer Res 51: 2478–2485

    PubMed  CAS  Google Scholar 

  • Oberhammer F, Wilson JW, Dive C, Morris ID, Hickman JA, Wakeling AE, Walker PR, Sikorska M (1993) Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal degradation EMBO J 12: 3679–3684

    PubMed  CAS  Google Scholar 

  • Osborne CK, Boldt DH, Clark GM, Trent JM (1985) Effects of tamoxifen on human breast cancer cell cycle kinetics: accumulation of cells in early Gi phase. Cancer Res 43: 3583–3585

    Google Scholar 

  • Pilarsky C, Haase W, Koch-Brandt C (1993) Stable expression of gp80 (TRPM-2, clusterin), a secretory protein implicated in programmed cell death, in transfected BHK-21 cells. Biochim Biophys Acta 1179: 306–310

    Article  PubMed  CAS  Google Scholar 

  • Rotello RJ, Lieberman RC, Purchio AF, Gerschenson LE (1991) Coordinated regulation of apoptosis and cell proliferation by transforming growth factor beta 1 in cultured uterine epithelial cells. Proc Natl Acad Sci USA 88: 3412–3415

    Article  PubMed  CAS  Google Scholar 

  • Sahota SS, Edgar AJ, Colston K, Coombes RC (1991) Analysis of 1,25-dihydroxyvitamin D3 mRNA in human breast cancer tissues by polymerase chain reaction and in rat mammary tumours by Northern blots. In: Norman AW, Bouillon R, Thomasset M (eds) Vitamin D: gene regulation, structure-function analysis and clinical application. Proceedings of the 8th workshop on vitamin D, 5–10 July 1991, Paris, France. De Gruyter, Berlin, pp 459–460

    Google Scholar 

  • Tenniswood M, Guenette RS, Lakins J, Mooibroek M, Wong P, Welsh JE (1992) Active cell death in hormone dependent tissues. Cancer Metastasis Rev 11: 197–220

    Article  PubMed  CAS  Google Scholar 

  • Tenniswood M, Taillefer D, Lakins J, Guenette RS, Mooibroek M, Daehlin L, Welsh JE (1994) Control of gene expression during apoptosis in hormone-dependent tissues. In: Tomei LD, Cope FO (eds) Apoptosis II: the molecular basis of apoptosis in disease. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 283–311

    Google Scholar 

  • Urban J, Parczyk K, Leutz A, Kayne M, Kondor-Kock C (1987) Constitutive apical secretion of an 80-kD sulfated glycoprotein complex in the polarized epithelial Madin Darby canine kidney cell line. J Cell Biol 105: 2735–2743

    Article  PubMed  CAS  Google Scholar 

  • Walker PR, Kwast-Welfeld J, Gourdeau H, Leblanc J, Neugebauer W, Sikorska M (1993) Relationship between apoptosis and the cell cycle in lymphocytes: roles of protein kinase C, tyrosine phosphorylation and API. Exp Cell Res 207: 142–151

    Article  PubMed  CAS  Google Scholar 

  • Warri AM, Huovinen RL, Laine AM, Martikainen PM, Harkonen PL (1993) Apoptosis in toremifene-induced growth inhibition of human breast cancer cells in vivo and in vitro. J Natl Cancer Inst 85: 1412–1418

    Article  PubMed  CAS  Google Scholar 

  • Williams GT (1991) Programmed cell death: apoptosis and oncogenesis. Cell 65: 1097–1098

    Article  PubMed  CAS  Google Scholar 

  • Yang CH, Lambie EJ, Snyder M (1991) NUMA: an unusually long coiled-coil related protein in mammalian nucleus. J Cell Biol 116: 1303–1317

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Simboli-Campbell, M., Welsh, J. (1995). 1,25 Dihydroxyvitamin D3: Coordinate Regulator of Active Cell Death and Proliferation in MCF-7 Breast Cancer Cells. In: Tenniswood, M., Michna, H. (eds) Apoptosis in Hormone-Dependent Cancers. Ernst Schering Research Foundation Workshop, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03122-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03122-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03124-7

  • Online ISBN: 978-3-662-03122-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics