Skip to main content

Doping of a quantum dot and self-limiting effect in electrochemical etching

  • Chapter
Porous Silicon Science and Technology

Part of the book series: Centre de Physique des Houches ((LHWINTER,volume 1))

Abstract

The observation of photoluminescence (Canham, 1990) in electrochemically etched porous silicon has launched an intense research activity because this discovery has opened the door for a possible optoelectronic role for silicon, the all important material for electronics. Furthermore, the apparent increase in the fundamental optical absorption energy gap (Lehmann and Gösele, 1991) and the decrease in the Raman phonon frequency with increase of the position of the peak photoluminescence established the role of quantum confinement (Tsu et al., 1992). Fundamentally, quantum confinement pushes up the allowed energies resulting in an increase in the binding energy of shallow impurities such as the cases of quantum well (Bastard, 1981) and superlattice (Ioriatti and Tsu, 1986). Theoretical treatment of the dielectric constant in quantum confined systems (Tsu and Ioriatti, 1986) (Kahen et al., 1985) shows that a significant reduction takes place when the width of the quantum well is reduced to 2 nm and below. In a quantum dot of radius a, the reduction of the size dependent static dielectric constant ε(a) results in a significant increase of the binding energy (Tsu et al., 1993) of shallow impurities. Since electrochemical etching depends on the current, significant increase in the binding energy can cut-off extrinsic conduction leading to a self-limiting process in the electrochemical etching during the formation of the porous silicon (Tsu et al., 1993). The model used in calculating ε(a) is the modified Penn model (Penn, 1962) which replaces the continuous electron energies by the discrete energy states of a quantum dot. The calculated ε(a) agrees (Tsu and Ioriatti, unpublished) with ε(q) in the results of Walter and Cohen (1970) when q is replaced by π/a. Having obtained ε(a), we are in a position to compute the binding energy of the shallow impurity, Eb, in a quantum dot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babić D., Tsu R. and Greene R.F., Phys. Rev. B45 (1992) 14150.

    Article  Google Scholar 

  • Bastard G., Phys. Rev. B24 (1981) 4714.

    Article  ADS  Google Scholar 

  • Bockris J. O’M. and Reddy A.K.N., Modern Electrochemistry ( Plenum, New York, 1973 ) p. 156.

    Google Scholar 

  • Canham L.T., Appl. Phys. Lett. 57 (1990) 1046.

    Article  ADS  Google Scholar 

  • Ioriatti L. and Tsu R., Surf. Sci. 174 (1986) 420.

    Article  ADS  Google Scholar 

  • Kahen K.B., Leburton J.P. and Hess K., Superlattice and Microstructure 1 (1985) 289. Lehmann V. and Gösele U., Appl. Phys. Lett. 60 (1991) 856.

    Google Scholar 

  • Luttinger J.M. and Kohn W., Phys Rev. 97 (1955) 869.

    Article  ADS  MATH  Google Scholar 

  • Matsumoto T. Futagi T. Mimura H. and Kanemistu Y., 1992 Int. Conf. Solid State Devices and Materials (Tsukuba, Japan) p.478., also in Futagi T., Matsumoto T. Katsuno M., Ohta Y., Mimura H. and Kitamura K., Mat. Res. Soc. Symp. Proc. 283 (1993) 389.

    Google Scholar 

  • Pantelides S.T., Rev. Mod. Phys. 50 (1978) 797 .

    Google Scholar 

  • Penn D.R., Phys. Rev. 128 (1962) 2093.

    Article  ADS  MATH  Google Scholar 

  • Peter L. suggested that a value of 6 should better represent the physics involved during the discussions at the Les Houches Winter School “Luminescence of Porous Silicon and Silicon Nanostructures” from 8 to 12 February 1994.

    Google Scholar 

  • Priester C., Allan G. and Lannoo M., Phys. Rev. B28 (1983) 7194.

    Article  ADS  Google Scholar 

  • Tsu R. and Ioriatti L. Superlattice and Microstructure 1 (1985) 295.

    Google Scholar 

  • Tsu R., Shen H. and Dutta M., Appl. Phys. Lett. 60 (1992) 112.

    Article  ADS  Google Scholar 

  • Tsu R., Ioriatti L., Harvey J.F., Shen H. and Lux R.A., Mat. Res. Soc. Symp. Proc. 283 (1993) 437.

    Article  Google Scholar 

  • Tsu R. and Babié D., “Effects of the Reduction of Dielectric Constant in Nanoscale Silicon”, Optical Prop. of Low Dimensional Silicon Structures, CNET, France, 1–3 March 1993, edited by Bensahel D., Canham L.T. and Ossiani S. ( Kluwer, Dordrecht/Boston/London, 1993 ) p. 203.

    Google Scholar 

  • Tsu R. and Ioriatti L., unpublished.

    Google Scholar 

  • Walter J.P. and Cohen M.L., Phys. Rev. B2 (1970) 1821.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tsu, R., Babić, D. (1995). Doping of a quantum dot and self-limiting effect in electrochemical etching. In: Vial, JC., Derrien, J. (eds) Porous Silicon Science and Technology. Centre de Physique des Houches, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03120-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03120-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58936-5

  • Online ISBN: 978-3-662-03120-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics