Skip to main content

Porous silicon: material processing, properties and applications

  • Chapter
Porous Silicon Science and Technology

Part of the book series: Centre de Physique des Houches ((LHWINTER,volume 1))

Abstract

Porous silicon (PS) is known to form during electrochemical dissolution of silicon in HF-based solutions. This dissolution is obtained by monitoring either the anodic current or potential. In general, constant current is preferable, as it allows a better control of both the porosity and thickness and a good reproducibility from run to run. The simplest cell which can be used to anodize silicon is shown in Figure 1. The silicon wafer serves as the anode. The cathode is made of platinum or any HF-resistant and conducting material. The cell body itself is in general made of highly acid-resistant polymer such as Teflon. Since the entire silicon wafer serves as the anode, PS is formed on any wafer surface in contact with the HF solution, including the cleaved edges. The advantage of such equipment is its simplicity and ability to anodize Silicon-On-Insulator structures. Its drawback is the non uniformity in both the porosity and thickness of the resulting layer. This inhomogeneity is mainly due to a lateral potential drop. In fact, since the current flows laterally along the bulk of the silicon wafer, there is a difference in potential between the top (point A in Fig. 1) and the bottom (point B in Fig. 1). The potential drop across the wafer leads to different values of the local current density which induce porosity and thickness gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. R. Turner, J. Electrochem. Soc. 105, 402 (1958).

    Article  Google Scholar 

  2. R. Memming, and G. Schwandt, Surf. Sci. 4, 109 (1966).

    Article  ADS  Google Scholar 

  3. V. Lehman, and U. Gösele, Appl. Phys. Lett. 58, 856 (1991).

    Article  ADS  Google Scholar 

  4. A. Halimaoui, Appl. Phys. Lett. 63, 1264 (1993).

    Article  ADS  Google Scholar 

  5. A. Halimaoui, Surf. Sci. 306, 550 (1994).

    Article  ADS  Google Scholar 

  6. F. Gaspard, A. Bsiesy, M. Ligeon, F. Muller, and R. Herino, J. Electrochem. Soc. 136, 3043 (1989).

    Article  Google Scholar 

  7. M. I. J. Beale, J. D. Benjamini, M. J. Uren, N. G. Chew, and A. G. Cullis J. Cryst. Growth 73, 622 (1985).

    Article  ADS  Google Scholar 

  8. C. Pickering, M. I. J. Beale, D. J. Robbins, P. J. Pearson, and R. Greej J. Phys. C 17, 6535 (1984).

    Google Scholar 

  9. F. Ferrieu, A. Halimaoui, and D. Bensahel, Solid State comm. 84, 293 (1992).

    Article  ADS  Google Scholar 

  10. R. Herino, G. Bomchil, K. Barla, C. Bertrand, and J. L. Ginoux J. Electrochem. Soc. 134, 1994 (1987).

    Google Scholar 

  11. G. Bomchil, A. Halimaoui, and R. Herino, Microelectronic Engineering 8, 293 (1988), and references therein.

    Google Scholar 

  12. J. P. Gonchond, A. Halimaoui, and K. Ogura, in Microscopy of Semiconducting Materials, pp. 235-238 (1991). Edited by A. G. Cullis and N. J. Long, IOP Publishing Ltd., Bristol.

    Google Scholar 

  13. H. Sugiyama, and O. Nittono, J. Cryst. Growth 103, 156 (1990).

    Article  ADS  Google Scholar 

  14. L. T. Canham, M. R. Houlton, W. Y. Leong, C. Pickering, and J. M. Keen, J. Appl. Phys. 70, 422 (1991).

    Article  ADS  Google Scholar 

  15. R. Herino, A. Perio, K. Barla, and G. Bomchil, Mater. Lett. 2, 519 (1984).

    Article  Google Scholar 

  16. V. Lubanov, V. Bondarenko, L. Gurenko, A. Dorofeev, and L. Tabulina Thin Solid Films 137, 123 (1986).

    Article  ADS  Google Scholar 

  17. P. Gupta, V. L. Colvin, and S. M. George, Phys. Rev. B37, 8234 (1988).

    Article  ADS  Google Scholar 

  18. I. Sagnes, A. Halimaoui, G. Vincent, and P. A. Badoz, Appl. Phys. Lett. 62 1155 (1993).

    Article  ADS  Google Scholar 

  19. S. M. Hu, and D. R. Kerr, J. Electrochem. Soc. 114, 414 (1967).

    Article  Google Scholar 

  20. L. T. Canham, and A. J. Groszek, J. Appl. Phys. 72, 1558 (1992).

    Article  ADS  Google Scholar 

  21. M. B. Robinson, A. C. Dillon, and S. M. George, Appl. Phys. Lett. 62, 1493 (1993).

    Article  ADS  Google Scholar 

  22. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).

    Article  ADS  Google Scholar 

  23. M. Voss, Ph. Uzan, C. Delalande, G. Bastard, and A. Halimaoui Appl. Phys. Lett. 61, 1213 (1992).

    Article  ADS  Google Scholar 

  24. Z. Y. Xu, M. Gal, and M. Gross, Appl. Phys. Lett. 60, 1375 (1992).

    Article  ADS  Google Scholar 

  25. A. J. Read, R. J. Needs, K. J. Nash, L. T. Canham, P. D. J. Calcott, and A. Qteish Phys. Rev. Lett. 69, 1232 (1992).

    Google Scholar 

  26. A. G. Cullis, and L. T. Canham, Nature 353, 335 (1991).

    Article  ADS  Google Scholar 

  27. I. Berbezier, and A. Halimaoui, J. Appl. Phys. 74, 5421 (1993).

    Article  ADS  Google Scholar 

  28. N. Koshida, and H. Koyama, Appl. Phys. Lett. 60, 347 (1992).

    Article  ADS  Google Scholar 

  29. A. Richter, P. Steiner, F. Kozlowski, and W. Lang, LEE Electron. Dev. Lett. 12, 691 (1991).

    Article  Google Scholar 

  30. C. Oules, A. Halimaoui, J. L. Regolini, A. Perio, and G. Bomchil, J. Electrochem. Soc. 139, 3595 (1992).

    Article  Google Scholar 

  31. K. Barla, G. Bomchil, R. Herino, A. Monroy, and Y. Gris, Electron. Lett. 22, 1291 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Halimaoui, A. (1995). Porous silicon: material processing, properties and applications. In: Vial, JC., Derrien, J. (eds) Porous Silicon Science and Technology. Centre de Physique des Houches, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03120-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03120-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58936-5

  • Online ISBN: 978-3-662-03120-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics