Ion beam analysis of thin films. Applications to porous silicon

  • C. Ortega
  • A. Grosman
  • V. Morazzani
Part of the Centre de Physique des Houches book series (LHWINTER, volume 1)

Abstract

The aim of this paper is twofold: 1)- to present a summary of the fundamental interactions between ion beam (such as proton, deuteron or helium) of MeV energy and solids, interactions that are used in material analysis techniques such as Rutherford Backscattering Spectrometry (RBS), Elastic Recoil Detection Analysis (ERDA) and Nuclear Reaction Analysis (NRA), and 2)- to illustrate the use of these techniques to determine the composition of the surface and outer microns of material. Some examples will be given concerning porous silicon layers.

Keywords

Porosity H218o Platinum Boron Helium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Feldman L. C. and Mayer J. W., Fundamentals of surface and thin films (Elsevier Science Publishing, Amsterdam, ISBN 0 444 00989–2, 1986 ).Google Scholar
  2. [2]
    Chu W. K., Mayer J. W. and Nicollet M. A., Backscattering Spectrometry (Academic Press, New York, ISBN 0–12–173850–7, 1978 ).Google Scholar
  3. [3]
    Valentin L., L’Univers Mécanique (Herman, Paris, ISBN 2–7056–5956–0, 1983 ).Google Scholar
  4. [4]
    L’Ecuyer J., Davies J. A. and Matsunami N., Nucl. Instr. and Meth. 160 (1979) 337.ADSCrossRefGoogle Scholar
  5. [5]
    Cameron J. R., Phys. Rev. 90 (1953) 839.ADSCrossRefGoogle Scholar
  6. [6]
    Blanpain B., Revesz P., Doolittle L. R., Purser K. H. and Mayer J. W., Nucl. Instr. and Meth. in Phys. Res. B 34 (1988) 459.Google Scholar
  7. [7]
    Doolittle L. R., Nucl. Instr. and Meth. in Phys. Res. B 9 (1985) 334.Google Scholar
  8. [8]
    Kotai A., Nucl. Instr. and Meth. in Phys. Res. B 85 (1994) 588.Google Scholar
  9. [9]
    Fano U., Ann. Rev. Nucl. Sci. 13 (1963) 1.CrossRefGoogle Scholar
  10. [10]
    Lindhard J., Nucl. Instr. and Meth. 132 (1985) 1.ADSCrossRefGoogle Scholar
  11. [11]
    Lindhard J., Scharff M. and Schiott H. E., Mat. Fys. Medd. Dan. Vid. Selks No 14 (1963) 33.Google Scholar
  12. [12]
    Firsov O.B., Zh. Eksp. Teor. Fiz. 36 (1959) 1517.Google Scholar
  13. [13]
    Ziegler J. F., Stopping Powers and Ranges in all Elements ( Pergamon, Oxford, 1977 ).Google Scholar
  14. [14]
    Bohr N., Phil. Mag. 30 (1915) 581.CrossRefGoogle Scholar
  15. [15]
    Feldman L. C., Mayer J. W. and Picraux S. T., Materials Analysis by Ion Channeling, ( Academic Press, New York, 1982 ).Google Scholar
  16. [16]
    Quillet V., Abel F. and Schott M., Nucl. Instr. and Meth. in Phys. Res. B 83 (1993) 47.Google Scholar
  17. [17]
    Szilagyi E., Paszti F., Manuaba A., Hadju C. and Kotai E., Nucl. Instr. and Meth. in Phys. Res. B 43 (1989) 502.Google Scholar
  18. [18]
    Vizkelethy G., Nucl. Instr. and Meth. in Phys. Res. B 45 (1990) 1.Google Scholar
  19. [19]
    Amsel G. and Samuel D., J. Anal. Chem. 39 (1967) 1689.Google Scholar
  20. [20]
    Lennard W. N., Mssoumi G. R., Alkemade P. F. A., Mitchell I. V. and Tong S. Y., Nucl. Instr. and Meth. in Phys. Res. B61 (1991) 1.Google Scholar
  21. [21]
    Maurel B., Thesis, Paris 1981.Google Scholar
  22. [22]
    Abel F., Amsel G., D’Artemare E., Ortega C., Siejka J. and Vizkelethy G., Nucl. Instr. and Meth. in Phys. Res. B 45 (1990) 100.Google Scholar
  23. [23]
    Maurel B. and Amsel G., Nucl. Instr. and Meth. in Phys. Res. 218 (1983) 159.Google Scholar
  24. [24]
    Amsel G., Cohen C. and Maurel B., Nucl. Instr. and Meth. in Phys. Res. 218 (1983) 159.Google Scholar
  25. [25]
    Ligeon E. and Bontemps A., J. Radioanaly. Chem. 12 (1972) 335.CrossRefGoogle Scholar
  26. [26]
    Bosseboeuf A., Bouchier D. and Rigo S., J. Electrochem. Soc. 133 (1986) 810.CrossRefGoogle Scholar
  27. [27]
    Dieumegard D., Maurel B. and Amsel G., Nucl. Instr. and Meth. 168 (1980) 93.ADSCrossRefGoogle Scholar
  28. [28]
    Amsel G., Nadai J. P., D’Artemare E., David D., Girard E. and Moulin J., Nucl. Instr. and Meth. 92 (1971) 481.ADSCrossRefGoogle Scholar
  29. [29]
    Ortega C., Siejka J. and Vizkelethy G., Nucl. Instr. and Meth. in Phys. Res. B 45 (1990) 622.Google Scholar
  30. [30]
    Grosman A., Ortega C., Siejka J. and Chamarro M., J. Appl. Phys. 74 (1993) 1992.Google Scholar
  31. [31]
    Earwaker L. G., Farr J. P. G., Grzeszczyk P. E. and Sturland I., Nucl. Instr. and Meth in Phys. Res. B 9 (1985) 317.Google Scholar
  32. [32]
    Steiner P, Weidhass J. and Lang W., “Luminescent Porous Silicon Investigated by accelerator analytics”, Mat. Res. Symp. Proc. 281 (1993) 531.Google Scholar
  33. [33]
    Sabet-Dariani R. and Haneman D., J. Appl. Phys. 73 (1993) 5.CrossRefGoogle Scholar
  34. [34]
    Dubin V. M., Surf. Sci., 274 (1992) 82–92.ADSCrossRefGoogle Scholar
  35. [35]
    Morazzani V., Chamarro M., Grosman A., Ortega C., Rigo S., Siejka J. and von Bardeleben H. J., J. Lum. 57 (1993) 45.ADSCrossRefGoogle Scholar
  36. [36]
    Morazzani V., Grosman A., Ortega C., Rigo S. and Siejka J., Nucl. Instr. and Meth. in Phys. Res. B 85 (1994) 287.Google Scholar
  37. [37]
    von Bardeleben H. J., Ortega C., Grosman A., Morazzani V., Siejka J. and Stievenard D., J. Lum. 57 (1993) 301.CrossRefGoogle Scholar
  38. [38]
    Grosman A., Chamarro M., Morazzani V., Ortega C., Rigo S., Siejka J. and von Bardeleben H. J., J. Lum. 57 (1993) 13.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • C. Ortega
    • 1
  • A. Grosman
    • 1
  • V. Morazzani
    • 1
  1. 1.Groupe de Physique des Solides, URA 17 du CNRSUniversités Paris 7 et 6Paris cedex 05France

Personalised recommendations