Cellular Mechanisms in Allergic Contact Dermatitis

  • Rik J. Scheper
  • B. Mary
  • E. von Blomberg


In the last two decades, our understanding of the basic mechanisms underlying induction, expression and regulation of allergic contact dermatitis (ACD) has rapidly increased. Highlights in this period include the discovery of T-cell lymphoid tissue domains related to cell-mediated immunity, the discovery of the thymus as the cradle for these T lymphocytes, and how such T cells may bear specificity to just one or few allergens out of the vast number of allergens known. Progress has also resulted from the development of reagents (monoclonal antibodies) that allow better identification of various inflammatory cells and the bioindustrial production of large amounts of peptide-mediators like interferon-γ and interleukin-2 (IL-2), which allow in-depth analysis of skin inflammatory processes such as those taking place in ACD.


Suppressor Cell Allergic Contact Dermatitis Immunol Today Local Lymph Node Assay Nickel Allergy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boerrigter GH, Bra H, Scheper RJ (1988) Hapten-specific antibodies in allergic contact dermatitis in the guinea pig. Int Arch Allergy Appl Immunol 85: 385–391PubMedCrossRefGoogle Scholar
  2. 2.
    Bergstresser PR (1989) Sensitization and elicitation of inflammation in contact dermatitis. In: Norris DA (ed) Immune mechanisms in cutaneous disease. Dekker, New York, pp 219–246Google Scholar
  3. 3.
    Turk JL (1975) Delayed hypersensitivity, 2nd edn. North-Holland, AmsterdamGoogle Scholar
  4. 4.
    Gell PDH, Coombs RRA, Lachman R (1975) Clinical aspects of immunology, 3rd edn. Blackwell, LondonGoogle Scholar
  5. 5.
    Polak L (1980) Immunological aspects of contact sensitivity. An experimental study. Monogr Allergy 15: 4–60Google Scholar
  6. 6.
    Von Blomberg BME, Bruynzeel DP, Scheper RI (1991) Advances in mechanisms of allergic contact dermatitis: in vitro and in vitro. In: Marzulli FN, Maibach HI (eds) Dermatotoxicology, 4th edn. Hemisphere, Washington, pp 255–362Google Scholar
  7. 7.
    Stingl G, Katz SI, Clement L et al. (1978) Immunological functions of Ia-bearing epidermal Langerhans cells. J Immunol 121: 2005–2013PubMedGoogle Scholar
  8. 8.
    Czernielewski JM, Demarchez M (1987) Further evidence for the self-reproducing capacity of Langerhans cells in human skin. J Invest Dermatol 88: 17–20PubMedCrossRefGoogle Scholar
  9. 9.
    Breathnach SM (1988) The Langerhans cell. Centenary review. Br J Dermatol 119: 463–469PubMedCrossRefGoogle Scholar
  10. 10.
    Toews G, Bergstresser P, Streilein J et al. (1980) Epidermal Langerhans cell density determines whether contact hypersensitivity or unresponsiveness follows skin painting with DNCB. J Immunol 124: 445–453PubMedGoogle Scholar
  11. 11.
    Halliday GM, Muller HK (1986) Induction of tolerance via skin depleted of Langerhans cells by a chemical carcinogen. Cell Immunol 99: 220–227PubMedCrossRefGoogle Scholar
  12. 12.
    Marchal G, Seman M, Milon M et al. (1982) Local adoptive transfer of skin delayed type hypersensitivity initiated by a single T Lymphocyte. J Immunol 129: 954–958PubMedGoogle Scholar
  13. 13.
    Schuler G, Steinman RM (1985) Murine epidermal Langerhans cells mature into potent immuno-stimulatory dendritic cells in vitro. J Exp Med 161: 526–546PubMedCrossRefGoogle Scholar
  14. 14.
    Shimada S, Caughman SW, Sharrow SO et al. (1987) Enhanced antigen-presenting capacity of cultured Langerhans cells is associated with markedly increased expressior of Ia antigen. J Immunol 139: 2551–2555PubMedGoogle Scholar
  15. 15.
    Inaba K, Steinman RM (1986) Accessory cell-T lymphocyte interactions. Antigen-dependent and -independent clustering. J Exp Med 163: 247–261Google Scholar
  16. 16.
    Braathen LR, Thorsby E (1983) Human epidermal Langerhans cells are more potent than blood monocytes in inducing some antigen-specific T cell-responses. Br J Dermatol 108: 139–146PubMedCrossRefGoogle Scholar
  17. 17.
    Res P, Kapsenberg ML, Bos JD et al. (1987) The crucial role of human dendritic antigen-presenting cell subsets in nickel-specific T cell proliferation. J Invest Dermatol 88: 550–554PubMedCrossRefGoogle Scholar
  18. 18.
    Cresswell P (1987) Antigen recognition by T lymphocytes. Immunol Today 8: 67–69CrossRefGoogle Scholar
  19. 19.
    Claverie JM, Prochnicka-Chalufour A, Bougueleret L (1989) Implications of a Fab-like structure for the T cell receptor. Immunol Today 10: 10–14PubMedCrossRefGoogle Scholar
  20. 20.
    Shimada S, Katz SI (1985) TNP-specific Lyt-2+ cytolytic T cell clones preferentially respond to TNP-conjugated epidermal cells. J Immunol 135: 1558–1563PubMedGoogle Scholar
  21. 21.
    Sinigaglia F, Scheidegger D, Garotta G et al. (1985) Isolation and characterization of Ni-specific T cell clones from patients with Ni-contact dermatitis. J Immunol 135: 3929–3932PubMedGoogle Scholar
  22. 22.
    Mosmann TR, Coffmann RL (1989) Thl and Th2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7: 145–173PubMedCrossRefGoogle Scholar
  23. 23.
    Cher DJ, Mossmann TR (1987) Two types of murine helper T cell clone. Delayed type hypersensitivity is mediated by Thl clones. J Immunol 138: 3688–3694Google Scholar
  24. 24.
    Romagnani S (El) Induction of Thl and Th2 responses: a key role for the `natural’ immune response? Immunol Today 13(10): 379–381Google Scholar
  25. 25.
    Bloom BR, Salgame P, Diamons B (1992) Revisiting and revising suppressor T cells. Immunol Today 13 (4): 131–136PubMedCrossRefGoogle Scholar
  26. 26.
    Hsieh CS, Macatonia SE, Tripp CS, Wolf S, O’Garra A, Murphy KM (1993) Development of Thl CD4+ T cells through IL-12 produced by listeria-induced macrophages. Science 260: 547–549PubMedCrossRefGoogle Scholar
  27. 27.
    Lehner T, Bergmeier LA, Panagiotidi C, Tao L, Brookes R, Klavinskis LS, Walker P, Ward RG, Hussain L, Gearing AJH, Adams SE (1992) induction of mucosal and systemic immunity to a recombinant simian immunodeficiency viral protein. Science 258: 1365–1369Google Scholar
  28. 28.
    Scott P (1993) IL-12: initiation cytokine for cell-mediated immunity. Science 260: 496–497PubMedCrossRefGoogle Scholar
  29. 29.
    Kapsenberg ML, Bos JD, Wierenga EA (1992) cells in allergic responses to haptens and proteins. Springer Semin Immunopathol 13: 303–314Google Scholar
  30. 30.
    Sanders ME, Makgoba MW, Shaw S (1988) Human naive and memory T cells: reinterpretation of helper-inducer and suppressor-inducer subsets. Immunol Today 9: 195–198PubMedCrossRefGoogle Scholar
  31. 31.
    Dohlsten M, Hedlund G, Sjogren H et al. (1988) Two subsets of human CD4+ T helper cells differing in kinetics and capacities to produce interleukin 2 and interferon-gamma can be defined by the Leu 18 and UCHL1 monoclonal antibodies. Eur J Immunol 18: 1173–1178PubMedCrossRefGoogle Scholar
  32. 32.
    Bos JD, Zonneveld I, Das PK et al. (1987) The skin immune system (SIS): distribution and immunophenotype of lymphocyte subpopulations in normal human skin. J Invest Dermatol 88: 569–573PubMedCrossRefGoogle Scholar
  33. 33.
    Yon Blomberg BME, van der Burg CKH, Pos O et al. (1987) In vitro studies in nickel allergy: diagnostic value of a dual parameter analyis. J Invest Dermatol 88: 362–368CrossRefGoogle Scholar
  34. 34.
    Hirschberg H, Braathen LR, Thorsby E (1982) Antigen presentation by vascular endothelial cells and epidermal Langerhans cells: the role of HLA-DR. Immunol Rev 65: 57–77CrossRefGoogle Scholar
  35. 35.
    Breitmeyer JB (1987) Lymphocyte activation. How T cells communicate. Nature 329: 760–761PubMedCrossRefGoogle Scholar
  36. 36.
    Bierer BE, Burakoff SJ (1988) T cell adhesion molecules. FASEB J 2: 2584–2590PubMedGoogle Scholar
  37. 37.
    Jenkins MK, Johnson JG (1993) Molecules involved in T-cell costimulation. Curr Opin Immunol 5: 361–367PubMedCrossRefGoogle Scholar
  38. 38.
    Issekutz TB, Stoltz JM, von der Meide P (1988) Lymphocyte recruitment in delayed hypersensitivity; the role of interferon-gamma. J Immunol 140: 2989–2993PubMedGoogle Scholar
  39. 26.
    Rik J. Scheper and B. Mary E. von BlombergGoogle Scholar
  40. 39.
    Messadi DV, Pober JS, Fiers W et al. (1987) Induction of an activation antigen on postcapillary venular endothelium in human skin organ culture. J Immunol 139: 1557–1562PubMedGoogle Scholar
  41. 40.
    Haskard DO, Cavender D, Fleck RM et al. (1987) Human dermal microvascular endothelial cells behave like umbilical vein endothelial cells in T cell adhesion studies. J Invest Dermatol 88: 340–344PubMedCrossRefGoogle Scholar
  42. 41.
    Dustin ML, Rothlein R, Bhan AK et al. (1986) Induction by IL-1 and interferongamma:tissue distribution, biochemistry, and function of a natural adherence molucule (ICAM-1). J Immunol 137: 245–254PubMedGoogle Scholar
  43. 42.
    Hamann A, Jablonski-Westrich D, Scholz KW et al. (1988) Regulation of lymphocyte homing. I. Alterations in homing receptor expression and organ-specific high endothelial venule binding of lymphocytes upon activation. J Immunol 140: 737–741Google Scholar
  44. 43.
    Mackay CR (1993) Homing of naive, memory and effector lymphocytes. Curr Opin Immunol 5: 423–427PubMedCrossRefGoogle Scholar
  45. 44.
    Picker LJ, Kishimoto TK, Smith CW et al. (1991) ELAM-1 is an adhesion molecule for skin-homing T cells. Nature 349: 796–779PubMedCrossRefGoogle Scholar
  46. 45.
    Scheper RJ, von Blomberg BME (1989) Allergic contact dermatitis: T cell receptors and migration. In: Frosch PJ, Dooms-Goossens A, Lachapelle JM, Rycroft RJG, Scheper RJ (eds) Current topics in contact dermatitis. Springer, Berlin Heidelberg New York, pp 12–17CrossRefGoogle Scholar
  47. 46.
    Pals ST, Horst E, Scheper RJ et al. (1989) Mechanisms of human lymphocyte migration and their role in the pathogenesis of disease. Immunol Rev 108: 111–133PubMedCrossRefGoogle Scholar
  48. 47.
    Duijvesteijn A, Hamann A (1989) Mechanisms and regulation of lymphocyte migration. Immunol Today 10: 23–28CrossRefGoogle Scholar
  49. 48.
    Silvennoinen-Kassinen S, Jakkula H, Karvonen J (1986) Helper T cells carry the specificity of nickel sensitivity reaction in vitro in humans. J Invest Dermatol 86: 18–20PubMedCrossRefGoogle Scholar
  50. 49.
    Scheper RJ, von Blomberg BME, Velzen D et al. (1976) Effects of contact sensitization and delayed hyper-sensitivity reactions on immune responses to non-related antigens. Modulation of immune responses. Int Arch Allergy Appl Immunol 50: 243–255Google Scholar
  51. 50.
    Camarasa JG, Serra-Baldrich E, Lluch M et al. (1989) Recent unexplained patch test reactions to palladium. Contact Dermatitis 20: 388–399PubMedCrossRefGoogle Scholar
  52. 51.
    Skog E (1966) Spontaneous flare-up reactions induced by different amounts of 1,3dinitro-4-chlorobenzene. Acta Derm Venereol (Stockh) 46: 386–395Google Scholar
  53. 52.
    Scheper RJ, von Blomberg BME, Boerrigter GH et al. (1983) Induction of local memory in the skin. Role of local T cell retention. Clin Exp Immunol 51: 141–151Google Scholar
  54. 53.
    Yamashita N, Natsuaki M, Sagami S (1989) Flare-up reaction on murine contact hypersensitivity. I. Description of an experimental model: rechallenge system. Immunology 67: 365–369PubMedGoogle Scholar
  55. 54.
    Scheper RJ, van Dinther-Janssen ACHM, Polak L (1985) Specific accumulation of hapten-reactive T cells in contact sensitivity reaction sites. J Immunol 134: 1333–1336PubMedGoogle Scholar
  56. 55.
    Miller SD, Sy M-S, Claman HN (1977) The induction of hapten-specific T cell tolerance using hapten-modified lymphoid membranes. II. Relative roles of suppressor T cells and clone inhibition in the tolerant state. Eur J Immunol 7: 165–170Google Scholar
  57. 56.
    Mowat A (1987) The regulation of immune responses to dietary protein antigens. Immunol Today 8: 93–98CrossRefGoogle Scholar
  58. 57.
    van Hoogstraten IMW, Andersen JE, von Blomberg BME et al. (1989) Preliminary results of a multicenter study on the incidence of nickel allergy in relationship to previous oral and cutaneous contacts. In: Frosch PJ, Dooms-Goosens A, Lachapelle JM, Rycroft RJG, Scheper RJ (eds) Current topics in contact dermatitis. Springer, Berlin Heidelberg New York, pp 178–184Google Scholar
  59. 58.
    Semma M, Sagami S (1981) Induction of suppressor T cells to DNFB contact sensitivity by application of sensitizer through Langerhans cell-deficient skin. Arch Dermatol Res 271: 361–364PubMedCrossRefGoogle Scholar
  60. 59.
    Elmets CA, Bergstresser PR, Tigelaar RE et al. (1983) Analysis of the mechanism of unresponsiveness produced by haptens painted on skin exposed to ultraviolet radiation. J Exp Med 158: 781–794PubMedCrossRefGoogle Scholar
  61. 60.
    Zembala M, Asherson GL (1973) Depression of T cell phenomenon of contact sensitivity by T cells from unresponsive mice. Nature 244: 227–228PubMedCrossRefGoogle Scholar
  62. 61.
    Knop J. Stremmer R, Neumann C, De Maeyer D, Macher E (1982) interferon inhibits the suppressor T cell response of delayed-type hypersensitivity. Nature 296: 775–776Google Scholar
  63. 62.
    Kuchroo VK, Byrne MC, Atsumi Y, Greenfeld E, Connol JB, Whitters MJ, O’Hara RM, Collins M, Dorf ME (1991) T cell receptor alpha chain plays a critical role in antigen-specific suppressor cell function. Proc Natl Acad Sci USA 8700–8704Google Scholar
  64. 63.
    Gautam SC, Chikkala NF, Hamilton TA (1992) Anti-inflammatory action of IL-4. Negative regulation of contact sensitivity to trinitrochlorobenzene. J Immunol 148: 1411–1415Google Scholar
  65. 64.
    Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O’Garra A (1991) IL-10 inhibits cytokine production by activated macrophages. J Immunol 147: 3815–3822PubMedGoogle Scholar
  66. 65.
    van Hoogstraten IMW, von Blomberg BME, Boden D, Kraal G, Scheper RJ (1994) Non-sensitizing epicutaneous skin tests prevent subsequent induction of immune tolerance. J Invest Dermatol 102: 80–83PubMedCrossRefGoogle Scholar
  67. 66.
    Epstein WL (1987) The poison ivy picker of Pennypack Park: the continuing saga of poison ivy. J Invest Dermatol 88: 7–9CrossRefGoogle Scholar
  68. 67.
    Chase MW (1946) Inhibition of experimental drug allergy by prior feeding of the sensitizing agent. Proc Soc Exp Biol Med 61: 257–259PubMedGoogle Scholar
  69. 68.
    Polak L, Turk JL (1968) Studies on the effect of systemic administration of sensitizers in guinea pigs with contact sensitivity to inorganic metal compounds. I. The induction of immunological unresponsiveness in already sensitized animals. Clin Exp Immunol 3: 245–251Google Scholar
  70. 69.
    Wendel GD, Stark BJ, Jamison RB et al. (1985) Penicillin allergy and desensitization in serious infections during pergnancy. N Engl J Med 312: 1229–1232PubMedCrossRefGoogle Scholar
  71. 70.
    Polak L, Rinck C (1978) Mechanism of desensitization in DNCB-contact sensitive guinea pigs. J Invest Dermatol 70: 98–104PubMedCrossRefGoogle Scholar
  72. 71.
    Gaspari AA, Jenkins MK, Katz SI (1988) Class II MCH-bearing keratinocytes induce antigen-specific unresponsiveness in hapten-specific TH1 clones. J Immunol 141: 2216–2220PubMedGoogle Scholar
  73. 72.
    Boerrigter GH, Scheper RJ (1987) Local and systemic desensitization induced by repeated epicutaneous hapten application. J Invest Dermatol 88: 3–7PubMedCrossRefGoogle Scholar
  74. 73.
    Menné T, Brandrup F, Thestrup-Pedersen K et al. (1987) Patch test reactivity to nickel alloys. Contact Dermatitis 16: 255–259PubMedCrossRefGoogle Scholar
  75. 74.
    Magnusson B, Kligman AM (1977) Usefulness of guinea pig tests for detection of contact sensitizers. In: Marzulli FN, Maibach HI (eds) Dermatotoxicology and pharmacology. Wiley, London, pp 551–560Google Scholar
  76. 75.
    Klecak G (1983) Identification of contact allergens: predictive tests in animals. In: Marzuli FN, Maibach HI (eds) Dermatotoxicology. McGraw-Hill, New York, pp 193–237Google Scholar
  77. 76.
    Maguire HC (1985) Estimation of the allergenicity of prospective human contact sensitizers in the guinea pig. In: Maibach HI, Lowe N (eds) Models in dermatology, vol 2. Karger, Basel, pp 234–239Google Scholar
  78. 77.
    Maurer T (1983) Contact and photocontact allergens: a manual of predictive test methods. Dekker, New YorkGoogle Scholar
  79. 78.
    Maibach H (1985) Clonidine: irritant and allergic contact dermatitis assays. Contact dermatitis 12: 192–195PubMedCrossRefGoogle Scholar
  80. 79.
    Kimber I, Mitchell JA, Griffin AC (1986) Development of a murine local lymph node assay for the determination of sensitizing potential. Food Chem Toxicol 24: 585–586CrossRefGoogle Scholar
  81. 80.
    Kimber I (1988) Immunotoxicology and allergy: old problems and new approaches. Toxic in Vitro 2: 309–311CrossRefGoogle Scholar
  82. 81.
    Knapp W, Rieber P, Dorken B et al. (1989) Towards a better definition of human leucocyte surface molecules. Immunol Today 10: 253–258PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Rik J. Scheper
  • B. Mary
  • E. von Blomberg

There are no affiliations available

Personalised recommendations