Skip to main content

Cellular Mechanisms in Allergic Contact Dermatitis

  • Chapter
Textbook of Contact Dermatitis

Abstract

In the last two decades, our understanding of the basic mechanisms underlying induction, expression and regulation of allergic contact dermatitis (ACD) has rapidly increased. Highlights in this period include the discovery of T-cell lymphoid tissue domains related to cell-mediated immunity, the discovery of the thymus as the cradle for these T lymphocytes, and how such T cells may bear specificity to just one or few allergens out of the vast number of allergens known. Progress has also resulted from the development of reagents (monoclonal antibodies) that allow better identification of various inflammatory cells and the bioindustrial production of large amounts of peptide-mediators like interferon-γ and interleukin-2 (IL-2), which allow in-depth analysis of skin inflammatory processes such as those taking place in ACD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boerrigter GH, Bra H, Scheper RJ (1988) Hapten-specific antibodies in allergic contact dermatitis in the guinea pig. Int Arch Allergy Appl Immunol 85: 385–391

    Article  PubMed  CAS  Google Scholar 

  2. Bergstresser PR (1989) Sensitization and elicitation of inflammation in contact dermatitis. In: Norris DA (ed) Immune mechanisms in cutaneous disease. Dekker, New York, pp 219–246

    Google Scholar 

  3. Turk JL (1975) Delayed hypersensitivity, 2nd edn. North-Holland, Amsterdam

    Google Scholar 

  4. Gell PDH, Coombs RRA, Lachman R (1975) Clinical aspects of immunology, 3rd edn. Blackwell, London

    Google Scholar 

  5. Polak L (1980) Immunological aspects of contact sensitivity. An experimental study. Monogr Allergy 15: 4–60

    Google Scholar 

  6. Von Blomberg BME, Bruynzeel DP, Scheper RI (1991) Advances in mechanisms of allergic contact dermatitis: in vitro and in vitro. In: Marzulli FN, Maibach HI (eds) Dermatotoxicology, 4th edn. Hemisphere, Washington, pp 255–362

    Google Scholar 

  7. Stingl G, Katz SI, Clement L et al. (1978) Immunological functions of Ia-bearing epidermal Langerhans cells. J Immunol 121: 2005–2013

    PubMed  CAS  Google Scholar 

  8. Czernielewski JM, Demarchez M (1987) Further evidence for the self-reproducing capacity of Langerhans cells in human skin. J Invest Dermatol 88: 17–20

    Article  PubMed  CAS  Google Scholar 

  9. Breathnach SM (1988) The Langerhans cell. Centenary review. Br J Dermatol 119: 463–469

    Article  PubMed  CAS  Google Scholar 

  10. Toews G, Bergstresser P, Streilein J et al. (1980) Epidermal Langerhans cell density determines whether contact hypersensitivity or unresponsiveness follows skin painting with DNCB. J Immunol 124: 445–453

    PubMed  CAS  Google Scholar 

  11. Halliday GM, Muller HK (1986) Induction of tolerance via skin depleted of Langerhans cells by a chemical carcinogen. Cell Immunol 99: 220–227

    Article  PubMed  CAS  Google Scholar 

  12. Marchal G, Seman M, Milon M et al. (1982) Local adoptive transfer of skin delayed type hypersensitivity initiated by a single T Lymphocyte. J Immunol 129: 954–958

    PubMed  CAS  Google Scholar 

  13. Schuler G, Steinman RM (1985) Murine epidermal Langerhans cells mature into potent immuno-stimulatory dendritic cells in vitro. J Exp Med 161: 526–546

    Article  PubMed  CAS  Google Scholar 

  14. Shimada S, Caughman SW, Sharrow SO et al. (1987) Enhanced antigen-presenting capacity of cultured Langerhans cells is associated with markedly increased expressior of Ia antigen. J Immunol 139: 2551–2555

    PubMed  CAS  Google Scholar 

  15. Inaba K, Steinman RM (1986) Accessory cell-T lymphocyte interactions. Antigen-dependent and -independent clustering. J Exp Med 163: 247–261

    Google Scholar 

  16. Braathen LR, Thorsby E (1983) Human epidermal Langerhans cells are more potent than blood monocytes in inducing some antigen-specific T cell-responses. Br J Dermatol 108: 139–146

    Article  PubMed  CAS  Google Scholar 

  17. Res P, Kapsenberg ML, Bos JD et al. (1987) The crucial role of human dendritic antigen-presenting cell subsets in nickel-specific T cell proliferation. J Invest Dermatol 88: 550–554

    Article  PubMed  CAS  Google Scholar 

  18. Cresswell P (1987) Antigen recognition by T lymphocytes. Immunol Today 8: 67–69

    Article  Google Scholar 

  19. Claverie JM, Prochnicka-Chalufour A, Bougueleret L (1989) Implications of a Fab-like structure for the T cell receptor. Immunol Today 10: 10–14

    Article  PubMed  CAS  Google Scholar 

  20. Shimada S, Katz SI (1985) TNP-specific Lyt-2+ cytolytic T cell clones preferentially respond to TNP-conjugated epidermal cells. J Immunol 135: 1558–1563

    PubMed  CAS  Google Scholar 

  21. Sinigaglia F, Scheidegger D, Garotta G et al. (1985) Isolation and characterization of Ni-specific T cell clones from patients with Ni-contact dermatitis. J Immunol 135: 3929–3932

    PubMed  CAS  Google Scholar 

  22. Mosmann TR, Coffmann RL (1989) Thl and Th2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7: 145–173

    Article  PubMed  CAS  Google Scholar 

  23. Cher DJ, Mossmann TR (1987) Two types of murine helper T cell clone. Delayed type hypersensitivity is mediated by Thl clones. J Immunol 138: 3688–3694

    Google Scholar 

  24. Romagnani S (El) Induction of Thl and Th2 responses: a key role for the `natural’ immune response? Immunol Today 13(10): 379–381

    Google Scholar 

  25. Bloom BR, Salgame P, Diamons B (1992) Revisiting and revising suppressor T cells. Immunol Today 13 (4): 131–136

    Article  PubMed  CAS  Google Scholar 

  26. Hsieh CS, Macatonia SE, Tripp CS, Wolf S, O’Garra A, Murphy KM (1993) Development of Thl CD4+ T cells through IL-12 produced by listeria-induced macrophages. Science 260: 547–549

    Article  PubMed  CAS  Google Scholar 

  27. Lehner T, Bergmeier LA, Panagiotidi C, Tao L, Brookes R, Klavinskis LS, Walker P, Ward RG, Hussain L, Gearing AJH, Adams SE (1992) induction of mucosal and systemic immunity to a recombinant simian immunodeficiency viral protein. Science 258: 1365–1369

    Google Scholar 

  28. Scott P (1993) IL-12: initiation cytokine for cell-mediated immunity. Science 260: 496–497

    Article  PubMed  CAS  Google Scholar 

  29. Kapsenberg ML, Bos JD, Wierenga EA (1992) cells in allergic responses to haptens and proteins. Springer Semin Immunopathol 13: 303–314

    Google Scholar 

  30. Sanders ME, Makgoba MW, Shaw S (1988) Human naive and memory T cells: reinterpretation of helper-inducer and suppressor-inducer subsets. Immunol Today 9: 195–198

    Article  PubMed  CAS  Google Scholar 

  31. Dohlsten M, Hedlund G, Sjogren H et al. (1988) Two subsets of human CD4+ T helper cells differing in kinetics and capacities to produce interleukin 2 and interferon-gamma can be defined by the Leu 18 and UCHL1 monoclonal antibodies. Eur J Immunol 18: 1173–1178

    Article  PubMed  CAS  Google Scholar 

  32. Bos JD, Zonneveld I, Das PK et al. (1987) The skin immune system (SIS): distribution and immunophenotype of lymphocyte subpopulations in normal human skin. J Invest Dermatol 88: 569–573

    Article  PubMed  CAS  Google Scholar 

  33. Yon Blomberg BME, van der Burg CKH, Pos O et al. (1987) In vitro studies in nickel allergy: diagnostic value of a dual parameter analyis. J Invest Dermatol 88: 362–368

    Article  Google Scholar 

  34. Hirschberg H, Braathen LR, Thorsby E (1982) Antigen presentation by vascular endothelial cells and epidermal Langerhans cells: the role of HLA-DR. Immunol Rev 65: 57–77

    Article  Google Scholar 

  35. Breitmeyer JB (1987) Lymphocyte activation. How T cells communicate. Nature 329: 760–761

    Article  PubMed  CAS  Google Scholar 

  36. Bierer BE, Burakoff SJ (1988) T cell adhesion molecules. FASEB J 2: 2584–2590

    PubMed  CAS  Google Scholar 

  37. Jenkins MK, Johnson JG (1993) Molecules involved in T-cell costimulation. Curr Opin Immunol 5: 361–367

    Article  PubMed  CAS  Google Scholar 

  38. Issekutz TB, Stoltz JM, von der Meide P (1988) Lymphocyte recruitment in delayed hypersensitivity; the role of interferon-gamma. J Immunol 140: 2989–2993

    PubMed  CAS  Google Scholar 

  39. Rik J. Scheper and B. Mary E. von Blomberg

    Google Scholar 

  40. Messadi DV, Pober JS, Fiers W et al. (1987) Induction of an activation antigen on postcapillary venular endothelium in human skin organ culture. J Immunol 139: 1557–1562

    PubMed  CAS  Google Scholar 

  41. Haskard DO, Cavender D, Fleck RM et al. (1987) Human dermal microvascular endothelial cells behave like umbilical vein endothelial cells in T cell adhesion studies. J Invest Dermatol 88: 340–344

    Article  PubMed  CAS  Google Scholar 

  42. Dustin ML, Rothlein R, Bhan AK et al. (1986) Induction by IL-1 and interferongamma:tissue distribution, biochemistry, and function of a natural adherence molucule (ICAM-1). J Immunol 137: 245–254

    PubMed  CAS  Google Scholar 

  43. Hamann A, Jablonski-Westrich D, Scholz KW et al. (1988) Regulation of lymphocyte homing. I. Alterations in homing receptor expression and organ-specific high endothelial venule binding of lymphocytes upon activation. J Immunol 140: 737–741

    Google Scholar 

  44. Mackay CR (1993) Homing of naive, memory and effector lymphocytes. Curr Opin Immunol 5: 423–427

    Article  PubMed  CAS  Google Scholar 

  45. Picker LJ, Kishimoto TK, Smith CW et al. (1991) ELAM-1 is an adhesion molecule for skin-homing T cells. Nature 349: 796–779

    Article  PubMed  CAS  Google Scholar 

  46. Scheper RJ, von Blomberg BME (1989) Allergic contact dermatitis: T cell receptors and migration. In: Frosch PJ, Dooms-Goossens A, Lachapelle JM, Rycroft RJG, Scheper RJ (eds) Current topics in contact dermatitis. Springer, Berlin Heidelberg New York, pp 12–17

    Chapter  Google Scholar 

  47. Pals ST, Horst E, Scheper RJ et al. (1989) Mechanisms of human lymphocyte migration and their role in the pathogenesis of disease. Immunol Rev 108: 111–133

    Article  PubMed  CAS  Google Scholar 

  48. Duijvesteijn A, Hamann A (1989) Mechanisms and regulation of lymphocyte migration. Immunol Today 10: 23–28

    Article  Google Scholar 

  49. Silvennoinen-Kassinen S, Jakkula H, Karvonen J (1986) Helper T cells carry the specificity of nickel sensitivity reaction in vitro in humans. J Invest Dermatol 86: 18–20

    Article  PubMed  CAS  Google Scholar 

  50. Scheper RJ, von Blomberg BME, Velzen D et al. (1976) Effects of contact sensitization and delayed hyper-sensitivity reactions on immune responses to non-related antigens. Modulation of immune responses. Int Arch Allergy Appl Immunol 50: 243–255

    Google Scholar 

  51. Camarasa JG, Serra-Baldrich E, Lluch M et al. (1989) Recent unexplained patch test reactions to palladium. Contact Dermatitis 20: 388–399

    Article  PubMed  CAS  Google Scholar 

  52. Skog E (1966) Spontaneous flare-up reactions induced by different amounts of 1,3dinitro-4-chlorobenzene. Acta Derm Venereol (Stockh) 46: 386–395

    CAS  Google Scholar 

  53. Scheper RJ, von Blomberg BME, Boerrigter GH et al. (1983) Induction of local memory in the skin. Role of local T cell retention. Clin Exp Immunol 51: 141–151

    Google Scholar 

  54. Yamashita N, Natsuaki M, Sagami S (1989) Flare-up reaction on murine contact hypersensitivity. I. Description of an experimental model: rechallenge system. Immunology 67: 365–369

    PubMed  CAS  Google Scholar 

  55. Scheper RJ, van Dinther-Janssen ACHM, Polak L (1985) Specific accumulation of hapten-reactive T cells in contact sensitivity reaction sites. J Immunol 134: 1333–1336

    PubMed  CAS  Google Scholar 

  56. Miller SD, Sy M-S, Claman HN (1977) The induction of hapten-specific T cell tolerance using hapten-modified lymphoid membranes. II. Relative roles of suppressor T cells and clone inhibition in the tolerant state. Eur J Immunol 7: 165–170

    Google Scholar 

  57. Mowat A (1987) The regulation of immune responses to dietary protein antigens. Immunol Today 8: 93–98

    Article  CAS  Google Scholar 

  58. van Hoogstraten IMW, Andersen JE, von Blomberg BME et al. (1989) Preliminary results of a multicenter study on the incidence of nickel allergy in relationship to previous oral and cutaneous contacts. In: Frosch PJ, Dooms-Goosens A, Lachapelle JM, Rycroft RJG, Scheper RJ (eds) Current topics in contact dermatitis. Springer, Berlin Heidelberg New York, pp 178–184

    Google Scholar 

  59. Semma M, Sagami S (1981) Induction of suppressor T cells to DNFB contact sensitivity by application of sensitizer through Langerhans cell-deficient skin. Arch Dermatol Res 271: 361–364

    Article  PubMed  CAS  Google Scholar 

  60. Elmets CA, Bergstresser PR, Tigelaar RE et al. (1983) Analysis of the mechanism of unresponsiveness produced by haptens painted on skin exposed to ultraviolet radiation. J Exp Med 158: 781–794

    Article  PubMed  CAS  Google Scholar 

  61. Zembala M, Asherson GL (1973) Depression of T cell phenomenon of contact sensitivity by T cells from unresponsive mice. Nature 244: 227–228

    Article  PubMed  CAS  Google Scholar 

  62. Knop J. Stremmer R, Neumann C, De Maeyer D, Macher E (1982) interferon inhibits the suppressor T cell response of delayed-type hypersensitivity. Nature 296: 775–776

    Google Scholar 

  63. Kuchroo VK, Byrne MC, Atsumi Y, Greenfeld E, Connol JB, Whitters MJ, O’Hara RM, Collins M, Dorf ME (1991) T cell receptor alpha chain plays a critical role in antigen-specific suppressor cell function. Proc Natl Acad Sci USA 8700–8704

    Google Scholar 

  64. Gautam SC, Chikkala NF, Hamilton TA (1992) Anti-inflammatory action of IL-4. Negative regulation of contact sensitivity to trinitrochlorobenzene. J Immunol 148: 1411–1415

    Google Scholar 

  65. Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O’Garra A (1991) IL-10 inhibits cytokine production by activated macrophages. J Immunol 147: 3815–3822

    PubMed  CAS  Google Scholar 

  66. van Hoogstraten IMW, von Blomberg BME, Boden D, Kraal G, Scheper RJ (1994) Non-sensitizing epicutaneous skin tests prevent subsequent induction of immune tolerance. J Invest Dermatol 102: 80–83

    Article  PubMed  Google Scholar 

  67. Epstein WL (1987) The poison ivy picker of Pennypack Park: the continuing saga of poison ivy. J Invest Dermatol 88: 7–9

    Article  Google Scholar 

  68. Chase MW (1946) Inhibition of experimental drug allergy by prior feeding of the sensitizing agent. Proc Soc Exp Biol Med 61: 257–259

    PubMed  CAS  Google Scholar 

  69. Polak L, Turk JL (1968) Studies on the effect of systemic administration of sensitizers in guinea pigs with contact sensitivity to inorganic metal compounds. I. The induction of immunological unresponsiveness in already sensitized animals. Clin Exp Immunol 3: 245–251

    Google Scholar 

  70. Wendel GD, Stark BJ, Jamison RB et al. (1985) Penicillin allergy and desensitization in serious infections during pergnancy. N Engl J Med 312: 1229–1232

    Article  PubMed  Google Scholar 

  71. Polak L, Rinck C (1978) Mechanism of desensitization in DNCB-contact sensitive guinea pigs. J Invest Dermatol 70: 98–104

    Article  PubMed  CAS  Google Scholar 

  72. Gaspari AA, Jenkins MK, Katz SI (1988) Class II MCH-bearing keratinocytes induce antigen-specific unresponsiveness in hapten-specific TH1 clones. J Immunol 141: 2216–2220

    PubMed  CAS  Google Scholar 

  73. Boerrigter GH, Scheper RJ (1987) Local and systemic desensitization induced by repeated epicutaneous hapten application. J Invest Dermatol 88: 3–7

    Article  PubMed  CAS  Google Scholar 

  74. Menné T, Brandrup F, Thestrup-Pedersen K et al. (1987) Patch test reactivity to nickel alloys. Contact Dermatitis 16: 255–259

    Article  PubMed  Google Scholar 

  75. Magnusson B, Kligman AM (1977) Usefulness of guinea pig tests for detection of contact sensitizers. In: Marzulli FN, Maibach HI (eds) Dermatotoxicology and pharmacology. Wiley, London, pp 551–560

    Google Scholar 

  76. Klecak G (1983) Identification of contact allergens: predictive tests in animals. In: Marzuli FN, Maibach HI (eds) Dermatotoxicology. McGraw-Hill, New York, pp 193–237

    Google Scholar 

  77. Maguire HC (1985) Estimation of the allergenicity of prospective human contact sensitizers in the guinea pig. In: Maibach HI, Lowe N (eds) Models in dermatology, vol 2. Karger, Basel, pp 234–239

    Google Scholar 

  78. Maurer T (1983) Contact and photocontact allergens: a manual of predictive test methods. Dekker, New York

    Google Scholar 

  79. Maibach H (1985) Clonidine: irritant and allergic contact dermatitis assays. Contact dermatitis 12: 192–195

    Article  PubMed  CAS  Google Scholar 

  80. Kimber I, Mitchell JA, Griffin AC (1986) Development of a murine local lymph node assay for the determination of sensitizing potential. Food Chem Toxicol 24: 585–586

    Article  CAS  Google Scholar 

  81. Kimber I (1988) Immunotoxicology and allergy: old problems and new approaches. Toxic in Vitro 2: 309–311

    Article  CAS  Google Scholar 

  82. Knapp W, Rieber P, Dorken B et al. (1989) Towards a better definition of human leucocyte surface molecules. Immunol Today 10: 253–258

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scheper, R.J., Mary, B., von Blomberg, E. (1995). Cellular Mechanisms in Allergic Contact Dermatitis. In: Rycroft, R.J.G., Menné, T., Frosch, P.J. (eds) Textbook of Contact Dermatitis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03104-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03104-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03106-3

  • Online ISBN: 978-3-662-03104-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics