Numerical Study of Nonlinear Waves

  • Benyu Guo


Since Zabusky and Kruskal discovered the important behaviour of solitons by computation in 1965, numerical study of nonlinear waves has developed rapidly, and become one of the active branches of numerical analysis. There exist three main numerical methods. The first is the finite difference method. Zabusky, Kruskal [1] used the Leap-Frog scheme with the second order accuracy for the Korteweg- de Vries equation. Latter Vliegenthart [2], Greig, Morris [3] and Kuo Pen-yu [4] proposed dissipative, Hopscotch and conservative schemes respectively. Strauss, Vazquez [5] and Perring, Skyrme [6] applied the finite difference method to the Klein-Gordon equation and the sine-Gordon equation. The next is the finite element method. Wahlbin [7] developed the dissipative finite element scheme for the Korteweg-de Vries equation. Sanz-Serna, Christie [8] adopted the PetrovGalerkin approach, while Mitchell, Schoombie [9] constructed other schemes by using shift functions. The third is the spectral method. Gazdag [l0], Tappert [11], Canosa, Gazdag [12] Schamel, Elsässer [13], Watanabe, Ohishi, Tanaca [14], Abe, Inoue [15] and Guo Ben-yu [16] provided various spectral schemes for the Korteweg-de Vries equation. Recently Ma He-ping, Guo Ben-yu [17] proposed a new pseudospectral method with restraint operator. On the other hand, numerical experiment has played an important role in studying nonlinear wave equations. Bishop, Krumhansland, Trullinger [18] solved initial-boundary value problems of the sine-Gordon equation numerically. Chu, Xiang, Baransky [19] and Guo Ben-yu, Weideman [20] exhibited independently the solitary waves of the Korteweg-de Vries equation induced by boundary motion. Besides Kaup, Hansen [21] and Guo Ben-yu, Yan Xiao-pu[22] found some phenomena for the Schrödinger equation and the sine-Gordon equation by numerical investigations.


Solitary Wave Nonlinear Wave Truncation Error Finite Difference Scheme Nonlinear Wave Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. J. Zabusky, M. D. Kruskal, Interaction of “solitons” in collisionless plasma and the recurrence of initial states., Phys. Rev. Lett. 15 (1965), 240–243.MATHCrossRefGoogle Scholar
  2. 2.
    A. C. Vliegenthart, On finite difference methods for the Korteweg-de Wies equation, J. of Engineering Mathematics. 5 (1971), 137–155.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    I. S. Greig, J. L. Morris, A hopscotch method for the Korteweg-de Vries equation, J. Comp. Phys. 20 (1976), 64–80.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Kuo Pen-yu, The numerical method and error estimation for incompressible viscous fluid problem, Kexue Tongbao 21 (1976), 127–131. (in Chinese)MathSciNetMATHGoogle Scholar
  5. 5.
    W. Strauss, L. Vazquez, Numerical solution of a nonlinear Klein-Gordon equation, J. Comp. Phys. 28 (1976), 271–278.MathSciNetCrossRefGoogle Scholar
  6. 6.
    J. K. Perring, T. H. R. Skyrme, A model unified field equation, Nucl. Phys. 31 (1962), 550–555.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    L. B. Wahlbin, A dissipative Galerkin method for the numerical solution of first order hyperbolic equation, Math. aspects of finite elements in partial differential equations (Boor C. De., ed.), Academic Press, New York, 1974, pp. 147–169.Google Scholar
  8. 8.
    J. M. Sanz-Serna, I. Christie, Petrov-Galerkin methods for nonlinear dispersive waves, J. Comp. Phys. 39 (1981), 94–102.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    A. R. Mitchell, S. W. Schoombie, Finite element studies of solitons, Dundee Report NA/47 (1981).Google Scholar
  10. 10.
    J. Gazdag, Numerical convective schemes based on accurate computation of space derivative, J. Comp. Phys. 13 (1973), 100–113.MATHCrossRefGoogle Scholar
  11. 11.
    F. Tappert, Numerical solution of the Korteweg-de Vries equation and its step Fourier method, Nonlinear wave motion (Newell, A. C., ed.), Providence, Rhode Island, 1974, pp. 215–216.Google Scholar
  12. 12.
    J. Canosa, J. Gazdag, The Korteweg-de Vries-Burgers equation, J. Comp. Phys. 23 (1977), 393–403.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    H. Schamel, K. Elsässer, The application of the spectral method to nonlinear wave propagation, J. Comp. Phys. 22 (1976), 510–516.CrossRefGoogle Scholar
  14. 14.
    S. Watanabe, M. Ohishi, H. Tanaca, Coupled modes an approach to nonlinear dispersive wave I, Recurrence of soliton„ J. Phys. Soc. Japan, 42 (1977), 1382–1390.CrossRefGoogle Scholar
  15. 15.
    K. Abe, O. Inoue, Fourier expansion solution of the Korteweg-de Vries equation, J. Comp. Phys. 34 (1980), 202–210.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Guo Ben-yu, Error estimations of the spectral method for solving KdV-Burgers equation, Acta Mathematica Sinica 28 (1985), 1–15. (in Chinese)MathSciNetGoogle Scholar
  17. 17.
    Ma He-ping, Guo Ben-yu, The Fourier pseudospectral method with a restrain operator for the Korteweg-de Vries equation, J. Comp. Phys. 65 (1986), 120–137.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    A. R. Bishop, J. A. Krumhansland, S. E. Trullinger, Soliton in condensed matter, A Parodigm, Physica, D 1 (1980), 1–44.MathSciNetCrossRefGoogle Scholar
  19. 19.
    C. K. Chu, L. W. Xiang, Y. Baransky, Solitary waves induced by boundary motion, CPAM, 36 (1983), 495–504.MathSciNetMATHGoogle Scholar
  20. 20.
    Guo Ben-yu, J. A. C. Weideman„ Solitary solution of an initial boundary problem of the Korteweg-de Vries equation, Proc. of ICNM (Chien Wei-zang et al., ed.), Science Press, Beijing, 1985, pp. 692–702.Google Scholar
  21. 21.
    D. J. Kaup, P. J. Hansen, The forced nonlinear Schrodinger equation, NSF-ITP-85–22 (1985).Google Scholar
  22. 22.
    Guo Ben-yu, Yan Xiao-pu, Numerical study of an initial-boundary value problem of the sine-Gordon equation, Acta Mathematica Scientia 9 (1989), 287–296.MathSciNetMATHGoogle Scholar
  23. 23.
    A. C. Scott, F. Y. Chu, D. W. McLaughlin, The soliton: A new concept in applied science, Proc. IEEE. 61 (1973), 1443–1483.MathSciNetCrossRefGoogle Scholar
  24. 24.
    P. D. Lax, Almost periodic solutions of the KdV equation, SIAM Review 18 (1976), 351–375.MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    J. M. Sanz-Serna, An explicit finite-difference scheme with exact conservation properties, J. Comp. Phys. 47 (1982), 199–210.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Kuo Pen-yu, Wu Hua-mo, Numerical solution of KdV equation, JMAA 82 (1981), 334–345.MathSciNetMATHGoogle Scholar
  27. 27.
    R. D. Richtmyer, K. W. Morton, Finite difference methods for initial value problem, 2nd edition, Interscience Publisher, New York, 1967.Google Scholar
  28. 28.
    Guo Ben-yu, On stability of discretization, Scientia Sinica, Series A, 25 (1982), 702–715.MATHGoogle Scholar
  29. 29.
    Bui An Ton, Initial boundary-value problems for the Korteweg-de Vries equation, J. of differential equations, 25 (1977), 288–309.MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Guo Ben-yu, Numerical solution of an initial boundary value problem of the Kortewegde Vries equation, Acta Mathematica Scientia 5 (1985), 337–348.MATHGoogle Scholar
  31. 31.
    R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett. 27 (1971), 1192–1194.MATHCrossRefGoogle Scholar
  32. 32.
    M. E. Alexander, J. L. Morris, Galerkin methods applied to some model equations for nonlinear dispersive waves, J. Comp. Phys. 30 (1979), 428–451.MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    R. Winther, A conservative finite element method for the Korteweg-de Vries equation, Math. of Comp. 34 (1980), 23–43.MathSciNetMATHGoogle Scholar
  34. 34.
    D. Gottlieb, S. A. Orszag, Numerical analysis of spectral methods, CBMS-NSF Regional conference series in applied mathematics, 26 (1977), SIAM Philadelphia.Google Scholar
  35. 35.
    H. O. Kreiss, J. Oliger, Stability of the Fourier method, SIAM J. Numer. Anal. 16 (1979), 421–433.MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    D. H. Peregrine, Calculation of the development of an undular bore, J. Fluid Mech. 25 (1966), 321–330.CrossRefGoogle Scholar
  37. 37.
    J. C. Eilbeck, G. R. McGuire, Numerical study of the regularized long-wave equation I: Numerical methods, J. Comp. Phys. 19 (1975), 43–57.MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    J. C. Eilbeck, G. R. McGuire, Numerical study of the regularized long wave equation II: Interaction of solitary waves, J. Comp. Phys. 23 (1977), 63–73.MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Kh. O. Abdulloev, I. L. Bogolubsky, V. G. Makhankov, One more example of inelastic solution interaction, Phys. Lett. 56A (1976), 427–433.MathSciNetCrossRefGoogle Scholar
  40. 40.
    P. J. Olver, Euler operators and conservation laws of the BBM equation, Math. Proc. Camb. Phil. Sco. 85 (1979), 143–160.MathSciNetMATHGoogle Scholar
  41. 41.
    R. S. Hirsh, Problems by a compact differencing technique, Higher order accurate difference solutions of fuild mechanics, J. Corn. Phys. 19 (1975), 90–109.MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Wu Hua-mo, Guo Ben-yu, High order accurate difference schemes for KdV-Burgers-RLW equations, Mathematica Numerical Sinica 5 (1983), 90–98. (in Chinese)MathSciNetMATHGoogle Scholar
  43. 43.
    J. L. Bona, W. G. Pritchard, L. R. Scott, Solitary wave interaction, Fluid Mechanics Research Institute, University of Essex, Report No. 94, (1980).Google Scholar
  44. 44.
    Guo Ben-yu, V. S. Manoranjan, A spectral method for solving the RLW equation, IMA JNA 5 (1985), 307–318.MathSciNetMATHGoogle Scholar
  45. 45.
    Guo Ben-yu, Cao Wei-ming, The Fourier pseudospectral method with a restrain operator for the RLW equation, J. Comp. Phys. 74 (1988), 48–53.MathSciNetCrossRefGoogle Scholar
  46. 46.
    Guo Ben-yu, Numerical solution of nonlinear wave equation, Mathematica Numerical Sinica 4 (1982), 46–56. (in Chinese)MATHGoogle Scholar
  47. 47.
    Guo Ben-yu, P. J. Pascual, M. J. Rodrignez, L. Vazquez, Numerical solution of the sine-Gordon equation, AMC 18 (1985), 1–14.Google Scholar
  48. 48.
    M. J. Ablowitz, M. D. Kruskal, J. F. Ladik, Solitary wave collisions, SIAM J. Appl. Math. 36 (1979), 428–437.MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    H. C. Yuen, B. M. Lake, Nonlinear deep water waves, Theory and experiment, Phys. Fluids 18 (1975), 956–960.MATHCrossRefGoogle Scholar
  50. 50.
    M. J. Ablowitz, J. F. Ladik, A nonlinear difference scheme and inverse scattering, Studies in Appl. Math. 55 (1976), 213–229.MathSciNetGoogle Scholar
  51. 51.
    Zhu You-lan, Implicit difference scheme for the generalized nonlinear Schrodinger system, JCM 1 (1983), 116–129.MATHGoogle Scholar
  52. 52.
    Guo Ben-yu, The convergence of numerical method for nonlinear Schrodinger equation, J. Comp. Math. 4 (1986), 121–130.MATHGoogle Scholar
  53. 53.
    M. Defour, M. Fortin, G. Payne, Finite difference solutions of a nonlinear Schrodinger equation, J. Comp. Phys. 44 (1981), 277–288.CrossRefGoogle Scholar
  54. 54.
    D. F. Griffiths, A. R. Mitchell, J. L. Morris, A numerical study of the nonlinear Schrödinger equation, Dundee Report NA/52, 1982.Google Scholar
  55. 55.
    A. Alvarez, Kuo Pen-yu, L. Vazquez, The numerical study of a nonlinear one dimensional Dirac equation, AMC 13 (1983), 1–15.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Benyu Guo

There are no affiliations available

Personalised recommendations