Skip to main content

Cryopreservation of Recalcitrant Seeds

  • Chapter
Cryopreservation of Plant Germplasm I

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 32))

Abstract

Long-term ex situ storage of plant germplasm is of increasing importance, both for maintaining the genetic diversity of species with current human use, and for the preservation of species threatened with extinction in the wild. Seed banks have long been used for this purpose, taking advantage of a natural plant preservation mechanism: the dry seed. Most agricultural species have desiccation-tolerant, or orthodox, seeds, which can often remain viable for many years. Longevity can be increased further by storing the seeds at low temperatures (e.g., Ellis and Roberts 1980), and orthodox seeds are generally adaptable to cryopreservation (storage in liquid nitrogen, LN) (Stanwood 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdelnour-Esquivel A, Villalobos V, Engelmann F (1992) Cryopreservation of zygotic embryos of Coffea spp. Cryo Lett 13: 297–302

    Google Scholar 

  • Ahuja MR (1991) Application of biotechnology to preservation of forest tree germplasm. In: Ahuja MR (ed) Woody plant biotechnology. Plenum Press, New York, pp 307–313

    Chapter  Google Scholar 

  • Assy-Bah B, Engelmann F (1992a) Cryopreservation of immature embryos of coconut (Cocos nucifera L.). Cryo Lett 13: 67–74

    Google Scholar 

  • Assy-Bah B, Engelmann F (1992b) Cryopreservation of mature embryos of coconut (Cocos nucifera L.) and subsequent regeneration of plantlets. Cryo Lett 13: 117–126

    Google Scholar 

  • Attree SM, Fowke LC (1993) Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell Tissue Organ Cult 35: 1–35

    Article  CAS  Google Scholar 

  • Bajaj YPS (1984) Induction of growth in frozen embryos of coconut and ovules of citrus. Curr Sci 53: 1215–1216

    Google Scholar 

  • Becwar MR, Stanwood PC, Leonhardt KW (1983) Dehydration effects on freezing characteristics and survival in liquid nitrogen of desiccation-tolerant and desiccation-sensitive seeds. J Am Soc Hortic Sci 108: 613–618

    Google Scholar 

  • Berjak P, Farrant JM, Pammenter NW (1989) The basis of recalcitrant seed behavior. Cell biology of the homoiohydrous seed condition. In: Taylorson RB (ed) Recent advances in the development and germination seeds. Plenum Press, New York, pp 89–108

    Chapter  Google Scholar 

  • Berjak P, Farrant JM, Mycock DJ, Pammenter NW (1990) Recalcitrant (homoiohydrous) seeds: the enigma of their desiccation-sensitivity. Seed Sci Technol 18: 297–310

    Google Scholar 

  • Berjak P, Pammenter NW, Vertucci C (1992) Homoiohydrous (recalcitrant) seeds: development status, desiccation sensitivity and the state of water in axes of Landolphia kirkii Dyer. Planta 186: 248–261

    Article  Google Scholar 

  • Bertrand-Desbrunais A, Fabre J, Engelmann F, Dereuddre J, Charrier A (1988) Reprise de l’embryogenèse adventive à partir d’embryons somatiques de cafeier (Coffea arabica L.) après leur congélation dans l’azote liquide. CR Acad Sci Paris Ser III 307: 795–801

    Google Scholar 

  • Bonner F (1986) Technologies to maintain tree germplasm diversity. In: Technologies to maintain biological diversity, vol 2, part D. Office of Technology Assessment, Washington, DC, pp 630672

    Google Scholar 

  • Chaudhury R, Lakhanpaul S, Chandel KPS (1990) Germination and desiccation tolerance of tea (Camellia sinensis (L.) O. Kuntze) seeds and feasibility of cryopreservation. Sri Lanka J Tea Sci 59: 89–94

    Google Scholar 

  • Chin HF, Krishnapillay B (1989) Cryogenic storage of some horticultural species. Acta Hortic 253: 107–112

    Google Scholar 

  • Chin HF, Krishnapillay B, Alang ZC (1988) Cryopreservation of Veitchia and Howea palm embryos: nondevelopment of the haustorium. Cryo Lett 9: 372–379

    Google Scholar 

  • Chin HF, Krishnapillay B, Hor YL (1989a) A note on the cryopreservation of embryos from young coconuts (Cocos nucifera var. MAWA ). Pertanika 12: 183–186

    Google Scholar 

  • Chin HF, Krishnapillay B, Stanwood PC (1989b) Seed moisture: recalcitrant vs. orthodox seeds. In: Stanwood PC, McDonald MB (eds) Seed moisture. Crop Science Society of America Spec Publ No 14, Madison, Wisconsin, pp 15–22

    Google Scholar 

  • de Boucaud MT, Brison M, Ledoux C, Germain E, Lutz A (1991) Cryopreservation of embryonic axes of recalcitrant seed: Juglans regia L. cv. Franquette, Cryo Lett 12: 163–166

    Google Scholar 

  • Dereuddre J, Blandin S, Hassen N ( 1991 a) Resistance of alginate-coated somatic embryos of carrot (Daucus carota L.) to desiccation and freezing in liquid nitrogen. 1. Effects of preculture. Cryo Lett 12: 125–134

    Google Scholar 

  • Dereuddre J, Hassen N, Blandin S, Kaminski M (1991b) Resistance of alginate-coated somatic embryos of carrot (Daucus carota L.) to desiccation and feeezing in liquid nitrogen. 2. Thermal analysis. Cryo Lett 12: 135–148

    Google Scholar 

  • Driver JA, Kuniyuki AH (1984) In vitro propagation of paradox walnut rootstock. Hort Sci 19: 507–509

    Google Scholar 

  • Dumet D, Engelmann F, Chabrillange N, Duval Y (1993) Cryopreservation of oil palm (Elaeis guineensis Jacq.) somatic embryos involving a desiccation step. Plant Cell Rep 12: 352–355

    Article  CAS  Google Scholar 

  • Ellis RH (1984) Revised table of seed storage characteristics. Plant Genet Resour Newsl 58: 16–33 Ellis RH (1991) The longevity of seeds. HortScience 26: 1119–1125

    Google Scholar 

  • Ellis RH, Roberts EH (1980) The influence of temperature and moisture on seed viability period in barley (Hordeum distichum L.). Ann Bot 45: 31–37

    Google Scholar 

  • Ellis RH, Hong RD, Roberts EH (1985a) Handbook of seed technology for genebanks, vol 1. International Board for Plant Genetic Resources, Rome

    Google Scholar 

  • Ellis RH, Hong RD, Roberts EH (1985b) Handbook of seed technology for genebanks, vol 2. International Board for Plant Genetic Resources, Rome

    Google Scholar 

  • Ellis RH, Hong TD, Roberts EH (1991a) Effect of storage temperature and moisture on the germination of papaya seeds. Seed Sci Res 1: 69–72

    Google Scholar 

  • Ellis RH, Hong TD, Roberts EH (1991b) An intermediate category of seed storage behavior? II. Effects of provenance, immaturity, and imbibition on desiccation-tolerance in coffee. J Exp Bot 42: 653–657

    Google Scholar 

  • Ellis RH, Hong TD, Roberts EH, Soetisna U (1991c) Seed storage behaviour in Elaeis guineensis. Seed Sci Res 1: 99–104

    Google Scholar 

  • Engelmann F, Duval Y, Pannetier C (1988) Use of cryoprotection for setting up a bank of oil palm (Elaeis guineensis Jacq.) somatic embryos. Oleagineux 43: 327–328

    Google Scholar 

  • Farrant JM, Pammenter NW, Berjak P (1986) The increasing desiccation sensitivity of recalcitrant Avicennia marina seeds with storage time. Physiol Plant 67: 291–298

    Article  Google Scholar 

  • Farrant JM, Pammenter NW, Berjak P (1988) Recalcitrance — a current assessment. Seed Sci Technol 16: 155–166

    Google Scholar 

  • Farrant JM, Pammenter NW, Berjak P (1989) Germination-associated events and the desiccation sensitivity of recalcitrant seeds — a study of three unrelated species. Planta 178: 189–198

    Article  Google Scholar 

  • Farrant JM, Pammenter NW, Berjak P (1992) Development of the recalcitrant (homoiohydrous) seeds of Avicennia marina: anatomical, ultrastructural and biochemical events associated with development from histodifferentiation to maturation. Ann Bot 70: 75–86

    CAS  Google Scholar 

  • Finch-Savage WE (1992) Embryo water status and survival in the recalcitrant species Quercus robur. Evidence for a critical moisture content. J Exp Bot 43: 663–669

    Article  Google Scholar 

  • Finkle BJ, Zavala ME, Ulrich JM (1985) Cryoprotective compounds in the viable freezing of plant tissues. In: Kartha KK (ed) Cryopreservation of plant cells and organs. CRC Press, Boca Raton, pp 75–113

    Google Scholar 

  • Fu JR, Zhang BZ, Wang XP, Qiao YZ, Huang XL (1990) Physiological studies on desiccation, wet storage and cryopreservation of recalcitrant seeds of three fruit species and their excised embryonic axes. Seed Sci Technol 18: 743–754

    Google Scholar 

  • Gonzalez-Benito ME, Perez-Ruiz C (1992) Cryopreservation of Quercus faginea embryonic axes. Cryobiology 29: 685–690

    Article  Google Scholar 

  • Grout BWW (1979) Low temperature storage of imbibed tomato seeds: a model for recalcitrant seed storage. Cryo Lett 1: 71–76

    Google Scholar 

  • Grout BWW (1986) Embryo culture and cryopreservation for the conservation of genetic resources of species with recalcitrant seed. In: Withers LA, Alderson PG (eds) Plant tissue culture and its agricultural applications. Butterworth, London, pp 303–309

    Google Scholar 

  • Grout BWW, Shelton K, Pritchard HW (1983) Orthodox behavior of oil palm seed and cryopreservation of the excised embryo for germplasm conservation. Ann Bot 52: 381–384

    Google Scholar 

  • Guo CG, Shi SX (1990) Conservation of tea and camphor seeds at very low temperatures. Crop Gen Res 2: 16

    Google Scholar 

  • Hong TD, Ellis RH (1990) A comparison of maturation drying, germination, and desiccation tolerance between developing seeds of Acer pseudoplatanus L. and Acer platanoides L. New Phytol 116: 589–596

    Article  Google Scholar 

  • Hor YL, Stanwood PC, Chin HF (1990) Effects of dehydration on freezing characteristics and survival in liquid nitrogen of three recalcitrant seeds. Pertanika 13: 309–314

    Google Scholar 

  • Janzen DH (1983) Costa Rican natural history. The University of Chicago Press, Chicago

    Google Scholar 

  • Janzen DH, Vàzquez-Yanes C (1991) Aspects of tropical seed ecology of relevance to management of tropical forested wildlands. In: Gómez-Pompa A, Whitmore TC, Hadley M (eds) Rain forest regeneration and management. UNESCO, Paris, and The Parthenon Publishing Group, Park Ridge, NJ, pp 137–157

    Google Scholar 

  • Jörgensen J (1990) Conservation of valuable gene resources by cryopreservation in some forest tree species. J Plant Physiol 136: 373–376

    Article  Google Scholar 

  • Kendall EJ, Kartha KK, Qureshi JA, Chermak P (1993) Cryopreservation of immature spring wheat zygotic embryos using an abscisic acid pretreatment. Plant Cell Rep 12: 89–94

    Article  CAS  Google Scholar 

  • Kermode AR, Oishi MY, Bewley JD (1989) Regulatory roles for desiccation and abscisic acid in seed development: a comparison of the evidence from whole seeds and isolated embryos. In: Stanwood PC, McDonald MB (eds) Seed moisture. CSSA Spec Publ 14, Crop Science Society of America, Madison, WI, pp 23–50

    Google Scholar 

  • King MW, Roberts EH (1979) The storage of recalcitrant seeds — achievements and possible

    Google Scholar 

  • approaches. International Board for Plant Genetic Resources Secretariat, Rome

    Google Scholar 

  • Kovach DA, Bradford KJ (1992) Imbibitional damage and desiccation tolerance of wild rice (Zizania palustris) seeds. J Exp Bot 43: 747–757

    Article  Google Scholar 

  • Lecouteux C, Florin B, Tessereau H, Bollon H, Petiard V (1991) Cryopreservation of carrot somatic embryos using a simplified freezing process. Cryo Lett 12: 319–328

    Google Scholar 

  • Lecouteux C, Tessereau H, Florin B, Courtois D, Petiard V (1992) Preservation of carrot (Daucus carota L.) somatic embryos by dehydration after pretreatment with sucrose. C R Acad Sci Paris Ser III 314: 423–428

    CAS  Google Scholar 

  • Lloyd G, McCown B (1981) Commercially feasible micropropagation of mountain laurel, Kalmia lai(folia, by use of shoot-tip culture. Int Plant Prop Soc 30: 421–427

    Google Scholar 

  • Ma YS (1991) Advances in conservation technology for crop germplasm resources in China. Crop Gen Res 3: 1–3

    Google Scholar 

  • Marin ML, Mafla G, Roca WM, Withers LA (1990) Cryopreservation of cassava zygotic embryos and whole seeds in liquid nitrogen. Cryo Lett 11: 257–264

    Google Scholar 

  • Matsumoto T, Sakai A, Yamada K (1994) Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by vitrification and subsequent high plant regeneration. Plant Cell Rep 13: 442–446

    Article  Google Scholar 

  • Meryman HT, Williams RJ (1985) Basic principles of freezing injury to plant cells; natural tolerance and approaches to cryopreservation. In: Kartha KK (ed) Cryopreservation of plant cells and organs. CRC Press, Boca Raton, pp 13–47

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Mycock DJ, Berjak P (1990) Fungal contaminants associated with several homoiohydrous (recalcitrant) seed species. Phytophylactica 22: 413–418

    Google Scholar 

  • Mycock DJ, Watt MP, Berjak P (1991) A simple procedure for the cryopreservation of hydrated embryonic axes of Pisum sativum. J Plant Physiol 138: 728–733

    Article  Google Scholar 

  • Nkang A, Chandler G (1989) Changes during germination in rainforest seeds with orthodox and recalcitrant viability characteristics. J Plant Physiol 134: 9–16

    Article  CAS  Google Scholar 

  • Normah MN, Vengadasalam M (1992) Effects of moisture content on cryopreservation of Coffea and Vigna seeds and embryos. Cryo Lett 13: 199–208

    Google Scholar 

  • Normah MN, Chin HF, Hor YL (1986) Desiccation and cryopreservation of embryonic axes of Hevea brasiliensis Muell-Arg. Pertanika 9: 299–303

    Google Scholar 

  • Pammenter NW, Vertucci CW, Berjak P (1991) Homoiohydrous (recalcitrant) seeds: dehydration, the state of water and viability characteristics in Landolphia kirkii. Plant Physiol 96: 1093–1098

    Article  PubMed  CAS  Google Scholar 

  • Pence VC (1990) Cryostorage of embryo axes of several large-seeded temperate tree species. Cryobiology 27: 212–218

    Article  Google Scholar 

  • Pence VC (1991a) Cryopreservation of seeds of Ohio native plants and related species. Seed Sci Technol 19: 235–251

    Google Scholar 

  • Pence VC (1991 b) Cryopreservation of immature embryos of Theobroma cacao Plant Cell Rep 10: 144–147

    Google Scholar 

  • Pence VC (1992) Desiccation and the survival of Aesculus, Castanea, and Quercus embryo axes through cryopreservation. Cryobiology 29: 391–399

    Article  Google Scholar 

  • Poulsen KM (1992) Sensitivity to desiccation and low temperature (—196 °C) of embryo axes from acorns of the pedunculate oak (Quercus robur L.). Cryo Lett 13: 75–82

    Google Scholar 

  • Pritchard HW (1991) Water potential and embryonic axis viability in recalcitrant seeds of Quercus rubra. Ann Bot 67: 43–50

    Google Scholar 

  • Pritchard HW, Prendergast FG (1986) Effects of desiccation and cryopreservation on the in vitro viability of the recalcitrant seed species Araucaria hunsteinii K. Schum. J Exp Bot 37: 1388–1397

    Google Scholar 

  • Probert RJ, Longley PL (1989) Recalcitrant seed storage physiology in three aquatic grasses (Zizania palustris, Spartina anglica and Porteresia coarctata). Ann Bot 63: 53–63

    Google Scholar 

  • Radhamani J, Chandel KPS (1992) Cryopreservation of embryonic axes of trifoliate orange (Poncirus trifoliata [L.] RAF.). Plant Cell Rep 11: 204–206

    Google Scholar 

  • Roberts EH (1973) Predicting the storage life of seeds. Seed Sci Technol 1: 499–514

    Google Scholar 

  • Roberts EH, King MW, Ellis RH (1984) Recalcitrant seeds: their recognition and storage. In: Holden JHW, Williams JT (eds) Crop genetic resources: conservation and evaluation. George Allen and Unwin, London, pp 38–52

    Google Scholar 

  • Shimonishi K, Ishikaura M, Suzuki S, Oosawa K (1991) Cryopreservation of melon somatic embryos by desiccation method. Jpn J Breed 41: 347–351

    Google Scholar 

  • Stanwood PC (1985) Cryopreservation of seed germplasm for genetic conservation. In: Kartha KK (ed) Cryopreservation of plant cells and organs. CRC Press, Boca Raton, pp 199–226

    Google Scholar 

  • Tompsett PB (1984) Desiccation studies in relation to the storage of Araucaria seed. Ann Appl Biol 105: 581–586

    Article  Google Scholar 

  • Tompsett PB (1987) Desiccation and storage studies of Dipterocarpus seeds. Ann Appl Biol 110: 371–380

    Article  Google Scholar 

  • Tompsett PB, Pritchard HW (1993) Water status changes during development in relation to the germination and desiccation tolerance of Aesculus hippocastanum L. seeds. Ann Bot 71: 107–116

    Article  Google Scholar 

  • Uragami A, Lucas MO, Ralambosoa J, Renard M, Dereuddre J (1993) Cryopreservation of microspore embryos of oilseed rape (Brassica napus L.) by dehydration in air with or without alginate encapsulation. Cryo Lett 14: 83–90

    Google Scholar 

  • Vertucci CW (1989) Relationship between thermal transitions and freezing injury in pea and soybean seeds. Plant Physiol 90: 1121–1128

    Article  PubMed  CAS  Google Scholar 

  • Vertucci CW, Leopold AC (1987) Water binding in legume seeds. Plant Physiol 85: 224–231 Vertucci CW, Roos EE (1990) Theoretical basis of protocols for seed storage. Plant Physiol 94: 1019–1023

    Google Scholar 

  • Vertucci CW, Berjak P, Pammenter NW, Crane J (1991) Cryopreservation of embryonic axes of an homeohydrous (recalcitrant) seed in relation to calorimetric properties of tissue water. Cryo Lett 12: 339–350

    Google Scholar 

  • Vertucci CW, Crane J, Oelke EA (1993) The effect of moisture content and temperature on the viability of Zizania embryos. Plant Physiol 102 (Suppl): 76

    Google Scholar 

  • Wang XF, Fu JR (1991) Studies on desiccation and storage of mango seeds. Acta Bot Sin 33: 118–123

    Google Scholar 

  • Wesley-Smith J, Vertucci CW, Berjak P, Pammenter NW, Crane J (1992) Cryopreservation of desiccation-sensitive axes of Camellia sinensis in relation to dehydration, freezing rate and the thermal properties of tissue water. J Plant Physiol 140: 596–604

    Article  Google Scholar 

  • Yamada T, Sakai A, Matsumura T, Higuchi S (1991) Cryopreservation of apical meristems of white clover (Trifolium repens L.) by vitrification. Plant Sci 78: 81–87

    Article  CAS  Google Scholar 

  • Young JA, Young CG (1992) Seeds of woody plants in North America. Dioscorides Press, Portland, OR

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pence, V.C. (1995). Cryopreservation of Recalcitrant Seeds. In: Bajaj, Y.P.S. (eds) Cryopreservation of Plant Germplasm I. Biotechnology in Agriculture and Forestry, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03096-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03096-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08184-2

  • Online ISBN: 978-3-662-03096-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics