Skip to main content

Cryopreservation of Plant Cell, Tissue, and Organ Culture for the Conservation of Germplasm and Biodiversity

  • Chapter
Book cover Cryopreservation of Plant Germplasm I

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 32))

Abstract

The indiscriminate clearing of forests and agricultural land has led to the depeletion of the naturally occurring reservoirs of plant germplasm. About 20 000 species of higher plants are believed to be endangered, rare, and threatened with extinction. Moreover, the green revolution no longer appears to be green, as many of the original native cultivars, especially those of wheat, have been discarded and eventually lost. In Greece, for instance, since World War II, 95% of the wheat varieties have been abandoned (Plucknett et al. 1983), and some of them must have been lost, leading to a continuous depletion of genetic variability. On the other hand, the importance of conservation of rice germplasm has been adequately emphasized (Chang and Vaughan 1991), as wild relatives of rice are also disappearing because of various developmental projects. In maize, for instance, the damage caused by Helminthosporium maydis in the 1970s in the USA alerted plant breeders to look for unconventional sources of genetic variability to avoid such an eventuality in the future. The germplasm of a number of medicinal plants and forest trees is also threatened with extinction (Hussain 1983; Sakai 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

  • Abdelnour-Esquivel A, Villalobos V, Engelmann F (1992a) Cryopreservation of zygotic embryos of Coffea spp. Cryo-Lett 13: 297–302

    Google Scholar 

  • Abdelnour-Esquivel A, Mora A, Villalobos V (1992b) Cryopreservation of zygotic embryos of Musa acuminata (AA) and Musa balbisiana ( BB ). Cryo-Lett 13: 159–164

    Google Scholar 

  • Abou Taleb S, Yates I, Wood BW, Fouad MM (1992) Cryogenics and tissue culture for preserving pecan germplasm. HortSci 27 (6): 693

    Google Scholar 

  • Assy-Bah B, Engelmann F (1992a) Cryopreservation of immature embryos of coconut (Cocos nucifera L.). Cryo-Lett 13: 67–74

    Google Scholar 

  • Assy-Bah B, Engelmann F (1992b) Cryopreservation of mature embryos of coconut (Cocos nucifera L.) and subsequent regeneration of plantlets. Cryo-Lett 13: 117–126

    Google Scholar 

  • Augereau JM, Courtois D, Petiard V (1986) Long-term storage of callus cultures at low temperatures or under mineral oil layer. Plant Cell Rep 5: 372–376

    Article  Google Scholar 

  • Bagniol S, Engelmann F (1991) Effects of pregrowth and freezing conditions on the resistance of meristems of date palm (Phoenix dactylifera L. var. Bou Sthammi noir) to low temperatures and to freezing in liquid nitrogen. Cryo-Lett 12: 279–286

    Google Scholar 

  • Bagniol S, Engelmann F (1992) Effect of thawing and recovery conditions on the regrowth of meristems of date palm (Phoenix dactylifera L.) after cryopreservation in liquid nitrogen. CryoLett 13: 253–260

    Google Scholar 

  • Bajaj YPS (1976a) Regeneration of plants from cell suspensions frozen at —20, — 70, and —196 °C. Physiol Plant 37: 263–268

    Article  Google Scholar 

  • Bajaj YPS (1976b) Gene preservation through freeze storage of cell, tissue, and organ cultures. Acta Hortic 63: 75–84

    Google Scholar 

  • Bajaj YPS (1977a) Survival of Atropa and Nicotiana pollen embryos frozen at —196 °C. Curr Sci 46: 305–307

    Google Scholar 

  • Bajaj YPS (1977b) Initiation of shoots and callus from potato tuber-sprouts and axillary buds frozen at —196 C. Crop Improv 4: 48–53

    Google Scholar 

  • Bajaj YPS (1977c) Clonal propagation and cryopreservation of cassava through tissue culture. Crop Improv 4: 198–204

    Google Scholar 

  • Bajaj YPS (1978a) Tuberization in potato plants regenerated from freeze-preserved meristems. Crop Improv 5: 137–141

    Google Scholar 

  • Bajaj YPS (1978b) Effect of superlow temperature on excised anthers and pollen embryos of Atropa, Nicotiana and Petunia. Phytomorphology 28: 171–176

    Google Scholar 

  • Bajaj YPS (1979a) Technology and prospects of cryopreservation of germplasm. Euphytica 28: 267–285

    Article  Google Scholar 

  • Bajaj YPS (1979b) Establishment of germplasm banks through freeze storage of plant tissue cultures and their implications in agriculture. In: Sharp WR, Larsen PO, Paddock PO, Raghavan V (eds) Plant cell and tissue culture — principles and applications. Ohio State Univ Press, Columbus, pp 745–774

    Google Scholar 

  • Bajaj YPS (1979c) Freeze preservation of meristems of Arachis hypogaea and Cicer arietinum. Indian J Exp Biol 17: 1405–1407

    Google Scholar 

  • Bajaj YPS (1980a) Freeze preservation of plant cells — a novel approach to the conservation of germplasm. In: Gupta AK (ed) Genetics and wheat improvement. Oxford & IBH, New Delhi, pp 141–149

    Google Scholar 

  • Bajaj YPS (1980b) Induction of androgenesis in rice anthers frozen at —196 °C. Cereal Res Commun 8: 365–369

    Google Scholar 

  • Bajaj YPS (1980c) Freeze-preservation of plant cell and tissue cultures — progress and prospects. In: Rao PS, Heble MR, Chadha MS (eds) Plant tissue culture genetic manipulation and somatic hybridisation of plant cells. Natl Symp BARC, Bombay, pp 50–65

    Google Scholar 

  • Bajaj YPS (1981a) Growth and morphogenesis in frozen (-196 °C) endosprem and embryos of rice. Curr Sci 50: 947–948

    Google Scholar 

  • Bajaj YPS (1981b) Regeneration of plants from ultra-low frozen anthers of Primula obconica. Sci Hortic 14: 93–95

    Article  Google Scholar 

  • Bajaj YPS (1981c) Regeneration of plants from potato meristems freeze-preserved for 24 months. Euphytica 30: 141–145

    Article  Google Scholar 

  • Bajaj YPS (1982a) Cryopreservation of germplasm of potato, cassava, peanut and chickpea. In: Fujiwara A (ed) Plant tissue culture 1982. Maruzen, Tokyo, pp 799–800

    Google Scholar 

  • Bajaj YPS (1982b) Induction and cryopreservation of genetic variability in rice. In: Rice tissue culture planning conf 1980, IRRI, Los Banos, pp 99–111

    Google Scholar 

  • Bajaj YPS (1982c) Survial of anther-and ovule-derived cotton callus frozen in liquid nitrogen. Curr Sci 51: 139–140

    Google Scholar 

  • Bajaj YPS (1983a) Cryopreservation and the international exchange of germplasm. In: Sen SK, Giles KL (eds) Plant cell culture in crop improvement. Plenum, New York, pp 19–41

    Google Scholar 

  • Bajaj YPS (1983b) Production of normal seeds from plants regenerated from meristems of Arachis hypogaea and Cicer arietinum cryopreserved for 20 months. Euphytica 32: 425–430

    Article  Google Scholar 

  • Bajaj YPS (1983c) Regeneration of plants from pollen embryos of Arachis, Brassica and Triticum spp. cryopreserved for one year. Curr Sci 52: 484–485

    Google Scholar 

  • Bajaj YPS (1983d) Survival of somatic hybrid protoplasts of wheat x pea and rice x pea subjected to —196 °C. Indian J Exp Biol 21: 120–122

    Google Scholar 

  • Bajaj YPS (1983c) Cryopreservation of germplasm of cereals — progress and prospects. In: Sakamoto S (ed) Proc 6th Int Wheat Genet Symp, Kyoto Univ, Kyoto, pp 565–574

    Google Scholar 

  • Bajaj YPS (1983f) Cassava plants from meristem cultures freeze-preserved for three years. Field Crop Res 7: 161–167

    Article  Google Scholar 

  • Bajaj YPS (1984a) Cryopreservation of germplasm of crops — present status and prospects. Proc Int Symp Plant tissue and cell culture application to crop improvement. Czech Acad Sci, Prague, pp 607–616

    Google Scholar 

  • Bajaj YPS (1984b) Induction of growth in frozen embryos of coconut and ovules of citrus. Curr Sci 53: 1215–1216

    Google Scholar 

  • Bajaj YPS (1984c) The regeneration of plants from frozen pollen embryos and zygotic embryos of wheat and rice. Theor Appl Genet 67: 525–528

    Article  Google Scholar 

  • Bajaj YPS (1985a) Cryopreservation of embryos. In: Kartha KK (ed) Cryopreservation of plant cells and organs. CRC, Boca Raton, pp 227–242

    Google Scholar 

  • Bajaj YPS (1985b) Cryopreservation of plant cell cultures and its prospects in agricultural and forest biotechnology. In: Natesh S et al. (ed) Int Worksh Biotechnology in agriculture: evolving a research agenda for the International Centre of Genetic Engineering and Biotechnology. Oxford & IBH, New Delhi, pp 109–131

    Google Scholar 

  • Bajaj YPS (1985c) Cryopreservation of germplasm of potato and cassava—viability studies on excised meristems cryopreserved up to four years. Indian J Exp Biol 23: 285–287

    Google Scholar 

  • Bajaj YPS (1986a) In vitro preservation of genetic resources—techniques and problems. Int Symp Nuclear techniques and in vitro culture for plant improvement IAEA/FAO, Vienna 1985, pp 43–57

    Google Scholar 

  • Bajaj YPS (1986b) Cryopreservation of potato somaclones. In: Semal J (ed) Proc Symp Somaclonal variations and crop improvement. Nijhoff, Dordrecht, pp 244–251

    Google Scholar 

  • Bajaj YPS (1986c) In vitro regeneration of diverse plants and the cryopreservation of germplasm in wheat (Triticum aestivum L.). Cereal Res Commun 14: 305–311

    Google Scholar 

  • Bajaj YPS (1987a) Cryopreservation of pollen and pollen embryos, and the establishment of pollen banks In: Giles KL, Prakash J (eds) Pollen development and cytology. Academic Press, London, pp 397–420

    Google Scholar 

  • Bajaj YPS (1987b) Cryopreservation of potato germplasm. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 3. Potato. Springer, Berlin Heidelberg New York, pp 472–486

    Google Scholar 

  • Bajaj YPS (1988a) Cryopreservation and the retention of biosynthetic potential in cell cultures of medicinal and alkaloid-producing plants. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 4. Medicinal and aromatic plants I. Springer, Berlin Heidelberg New York, pp 169–187

    Google Scholar 

  • Bajaj YPS (1988b) Regeneration of plants from frozen (-196 °C) protoplasts of Atropa belladonna L., Datura innoxia Mill. and Nicotiana tabacum L. Indian J Exp Biol 26: 289–292

    Google Scholar 

  • Bajaj YPS (1988c) Biotechnology of the cryopreservation of germplasm of plants. In: Ilahi I, Hughes KW (eds) In vitro selection and propagation of economic plants. Jadoon Printing Press, Peshawar, pp 97–102

    Google Scholar 

  • Bajaj YPS (1988d) Biotechnology of the conservation of germplasm and its implications in agriculture and forestry. In: Int Symp Genetic manipulation in crops, Beijing 1984. IRRI/Cassell Tycooly, London, pp 125–127

    Google Scholar 

  • Bajaj YPS (1988e) Biotechnologie kryokonzervace genetickych zdrrojo rostlin. Symp Kryokonzervace v zivocisné a rostlinné vyrobé. Nové Mésto na Moravé Sept 13–15. Dum techniky CSVTS Usti nad Labem, Czechoslovakia, pp 100–105

    Google Scholar 

  • Bajaj YPS (1989a) Induction and cryopreservation of somaclonal variation in wheat and rice. Int Symp Genetic manipulation in crops. CIMMYT, Mexico, pp 195–203

    Google Scholar 

  • Bajaj YPS (1989b) Cryopreservation of plant protoplasts. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 8. Plant protoplasts and genetic engineering I. Springer, Berlin Heidelberg New York, pp 97–106

    Google Scholar 

  • Bajaj YPS (1990a) Cryopreservation of germplasm of vegetatively propagated crops. Bull Soc Bot Fr 137. Actual Bot (3/4): 99–114

    Google Scholar 

  • Bajaj YPS (1990b) Cryopreservation of germplasm of wheat. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 13. Wheat. Springer, Berlin Heidelberg New York, pp 669–681

    Google Scholar 

  • Bajaj YPS (1990c) Cryopreservation of germplasm of legumes and oilseed crops. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 10. Legumes and oilseed crops I. Springer, Berlin Heidelberg New York, pp 49–62

    Google Scholar 

  • Bajaj YPS (1991a) Storage and cryopreservation of in vitro cultures. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 17. High-tech and micropropagation I. Springer, Berlin Heidelberg New York, pp 361–381

    Google Scholar 

  • Bajaj YPS (199 l b) Somaclonal variation — origin, induction, cryopreservation, and implications in plant breeding. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 11. Somaclonal variation in crop improvement I. Springer, Berlin Heidelberg New York, pp 3–48

    Google Scholar 

  • Bajaj YPS (1993) A suggested method for in vitro long-term storage at 4 °C of Chrysanthemum and Petunia germplasm. Plant Tissue Cult 3 (1): 57–58

    Google Scholar 

  • Bajaj YPS (1995) Cryopreservation of somatic embryos. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 30. Somatic embryogenesis and synthetic seed I. Springer, Berlin Heidelberg New York, pp 221–229

    Google Scholar 

  • Bajaj YPS, Reinert J (1975) Regeneration of plants from cells subjected to superlow temperatures. Abstr Int Bot Congr, Leningrad, p 278

    Google Scholar 

  • Bajaj YPS, Reinert J (1977) Cryobiology of plant cell cultures and establishment of gene banks. In: Reinert J, Bajaj YPS (eds) Applied and fundamental aspects of plant cell, tissue, and organ culture. Springer, Berlin Heidelberg New York, pp 757–777

    Google Scholar 

  • Bajaj YPS, Sala F (1991) Cryopreservation of germplasm of rice (Oryza sativa L.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 14. Rice. Springer, Berlin Heidelberg New York, pp 553–571

    Google Scholar 

  • Bajaj YPS, Korneva SB, Gutierrez R, Maribona RH (1987) Freeze preservation of plantlets, excised meristems and cell cultures of sugarcane (Saccharum officinarum L.) at —196 °C. In: Bose A, Sengupta P (eds) Proc Int Conf Cryogenics. McGraw-Hill, New Delhi, pp 222–226

    Google Scholar 

  • Benson EE, Hamill JD (1991) Cryopreservation and post freeze molecular and biosynthetic stability in transformed roots of Beta vulgaris and Nicotiana rustica. Plant Cell Tissue Organ Cult 24: 163–172

    Article  CAS  Google Scholar 

  • Benson EE, Harding K, Smith H (1989) Variation in recovery of cryopreserved shoot tips of Solanum tuberosum exposed to different pre-and post-freeze light regimes. Cryo-Lett 10: 323–344

    Google Scholar 

  • Bensen EE, Chabrillange N, Engelmann F (1992) A comparison of cryopreservation methods for the long-term in vitro conservation of cassava (Manihot esculenta). Proc Soc Low Temp Biol Meet, Sterling, Scotland

    Google Scholar 

  • Bertrand-Desbrunais AJ, Fabre F, Engelmann F, Dereuddre J, Charrier A (1988) Reprise de l’embryogenèse adventive d’embryons somatiques de caféier (Coffea arabica) après congélation dans l’azote liquide. CR Acad Sci Paris 307, Ser III: 795–801

    Google Scholar 

  • Bhandal IS, Hauptmann RM, Widholm JM (1985) Trehalose as cryoprotectant for the freeze preservation of carrot and tobacco cells. Plant Physiol 78: 430–432

    Article  PubMed  CAS  Google Scholar 

  • Braun A (1988) Cryopreservation of sugarbeet germplasm. Plant Cell Tissue Organ Cult 14: 161–168 Bridgen MP, Staby GL (1981) Low pressure and low oxygen storage of plant tissue cultures. Plant Sci Lett 22: 117–186

    Google Scholar 

  • Butenko RG, Popov AS, Volkova LA, Chernyak ND, Nosov AM (1984) Recovery of cell cultures and their biosynthetic-capacity after storage of Dioscorea deltoides and Panax ginseng cells in liquid nitrogen. Plant Sci Lett 33: 285–292

    Article  CAS  Google Scholar 

  • Cachita CD, Zapirtan M, Craciun C, Rakosy TL, Vicol A, Cristea V, Varga P, Craciun V (1991) The response of various types of cormophytoinocula to cryopreservation (-196 °C) IVth Natl Symp Plant cell and tissue culture. Cluj-Napoca, Romania, 1989, pp 90–91

    Google Scholar 

  • Caplin SM (1959) Mineral-oil overlay for conservation of plant tissue cultures. Am J Bot 46: 324–329 Cella R, Colombo R, Galli MG, Nielsen E, Rollo F, Sala F (1982) Freeze-preservation of rice cells: a physiological study of freeze-thawed cells. Physiol Plant 55: 279–284

    Google Scholar 

  • Cellarova E, Cernicka T, Vranova E, Brutovska R, Lapar M (1992) Viability of Chamomilla recutita L. Rauschert cells after cryopreservation. Cryo-Lett 13: 37–42

    Google Scholar 

  • Chang TT, Vaughan DA (1991) Conservation and potentials of rice genetic resources. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 14. Rice. Springer, Berlin Heidelberg New York, pp 531–552

    Google Scholar 

  • Charne DG, Pukachi, Kott LS, Beversdorf WD (1988) Embryogenesis following cryopreservation in isolated microspores of rapeseed (Brassica napus L.) Plant Cell Rep 7 (6): 407–409

    Google Scholar 

  • Chaudhury R, Radhamani J, Chandel KPS (1991) Preliminary observations on the cryopreservation of desiccated embryonic axes of tea [Camellia sinensis (L.) O. Kuntze] seeds for genetic conservation. Cryo-Lett 12: 31–36

    Google Scholar 

  • Chen JL, Beversdorf WD (1992a) Cryopreservation of isolated microspores of spring rapeseed (Brassica napus L.) for in vitro embryo production. Plant Cell Tissue Organ Cult 31: 141–149

    Article  Google Scholar 

  • Chen JL, Beversdorf WD (1992b) Production of spontaneous diploid lines from isolated microspores following cryopreservation in spring rapeseed (Brassica napus L.). Plant Breeding 108: 324–327

    Article  Google Scholar 

  • Chen THH, Kartha KK, Leung NL, Kurz WGW, Chatson KB, Constabel F (1984) Cryopreservation of alkaloid-producing cell cultures of periwinkle (Cathranthus roseus). Plant Physiol 75: 726–731

    Article  PubMed  CAS  Google Scholar 

  • Chen THH, Kartha KK, Gusta LV (1985) Cryopreservation of wheat suspension culture and regenerable callus. Plant Cell Tissue Organ Cult 4: 101–109

    Article  Google Scholar 

  • Chen WH, Cockburn W, Street HE (1979) Preliminary experiments on freeze preservation of sugarcane cells. Taiwania 24: 70–74

    Google Scholar 

  • Chin HF, Krishanapillay B, Alang ZC (1988) Cryopreservation of Veitchia and Howea palm embryos: non-development of the haustorium. Cryo-Lett 9: 372–379

    Google Scholar 

  • Chin HF, Krishnapillay R, Hor YL (1989) A note on the cryopreservation of embryos from young coconuts (Cocos nucifera var. MAWA). Pertanika 12 (2): 183–186

    Google Scholar 

  • Coulibaly Y, Demarly Y (1979) Sur les conditions de développment des microspores de Nicotiana tabacum et d’Oryza sativa soumises à la temperature de l’azote liquide (-196 °C). CR Acad Sci Paris Ser D 286: 1065–1068

    Google Scholar 

  • Cyr DR, Lazaroff WR, Grimes SMA, Quian G, Benthune TD, Dunstan DI, Roberts DR (1994) Cryopreservation of interior spruce (Picea glauca-engelmanni complex) embryogenic cultures. Plant Cell Rep 13: 574–577

    Article  Google Scholar 

  • de Boucaud MT, Brison M, Ledoux C, Germain E, Lutz A (1991) Cryopreservation of embryonic axes of recalcitrant seed: Juglans regia L. cv. Franquette: Cryo-Lett 12: 163–166

    Google Scholar 

  • de Boucaud MT, Brison M, Dosba F (1994) Cryopreservation of walnut somatic embryos. Cryo Lett 15: 151–160

    Google Scholar 

  • Delavallée I, Guillaud J, Beckert M, Dumas C (1989) Cryopreservation of immature maize embryos after freeze-hardening in the ear and in vitro. Plant Sci 60: 129

    Article  Google Scholar 

  • Demeulemeester MAC, Vandenbussche B, de Profit MP (1993) Regeneration of chicory plants from cryopreserved in vitro shoot tips. Cryo-Lett 14: 57–64

    Google Scholar 

  • Dereuddre J, Fabre J, Bassaglia C (1988) Resistance to freezing in LN of carnation (Dianthus caryophyllus L. var. Eolo) apical and axillary shoot tips. Plant Cell Rep 7: 170–173

    Google Scholar 

  • Dereuddre J, Scottez C, Arnaud Y, Duron M (1990a) Effects of cold hardening on cryopreservation of axillary pear (Pyrus communis L. cv. Beurre Hardy) shoot tips of in vitro plantlets. CR Acad Sci Paris 310, Ser III: 265–272

    Google Scholar 

  • Dereuddre J, Scottez C, Arnaud Y, Duron M (1990b) Resistance of alginate-coated shoot tips of pear tree (Pyrus communis L. cv. Beurre Hardy) in vitro plantlets to dehydration and subsequent freezing in liquid nitrogen: effects of previous cold hardening. CR Acad Sci Paris 310, Ser III: 317–323

    Google Scholar 

  • Dereuddre J, Hassen N, Blandin S, Kaminski M (1991) Resistance of alginate-coated somatic embryos of carrot (Daucus carota L.), to desiccation and freezing in liquid nitrogen. 2. Thermal analysis. Cryo-Lett 12: 135–148

    Google Scholar 

  • Diettrich B, Popov AS, Pfeiffer B, Neumann D, Butenko RG, Luckner M (1982) Cryopreservation of Digitalis lanata cell cultures. Planta Med 46: 82–87

    Article  PubMed  CAS  Google Scholar 

  • Diettrich B, Donath P, Popov AS, Butenko RG, Luckner M (1990) Cryopreservation of Chamomilla recutita shoot tips. Biochem Physiol Pflanzen 186: 63–67

    Google Scholar 

  • Dumet D, Engelmann F, Chabrillange N, Duval Y (1993) Cryopreservation of oilpalm (Elaeis guineensis Jacq.) somatic embryos involving a desiccation step. Plant Cell Rep 12: 352–355

    Article  CAS  Google Scholar 

  • Dussert S, Mauro MC, Engelmann F (1992) Cryopreservation of grape embryogenic cell suspensions: 2. Influence of post-treatment conditions and application to different strains. Cryo-Lett 13: 12–22

    Google Scholar 

  • Eksomtramage T, Paulet F, Guiderdoni E, Glaszmann JC, Engelmann F (1992) Development of a cryopreservation process for embryogenic calluses of a commercial hybrid of sugarcane (Saccharum sp.) and application to different varieties. Cryo-Lett 13: 239–252

    Google Scholar 

  • Engelmann F, Duval Y (1986) Cryopreservation d’embryons somatiques de palmier à huile (Elaeis guineenis Jacq.): resultats et perspectives d’application. Oleagineux 41 (4): 169–172

    Google Scholar 

  • Engelmann F, Duval Y, Dereuddre J (1985) Survie et prolifération d’embryons somatiques de palmier à huile (Elaeis guineensis Jacq.) aprés congélation dans l’azote liquide. CR Acad Sci Paris Ser 111, 301: 111–116

    Google Scholar 

  • Fabre J, Dereuddre J (1987) Effects of different sugars (sucrose, glucose, sorbitol and mannitol) on the resistance to deep freezing in liquid nitrogen of meristems from in vitro cultured carnations (Dianthus caryophyllus L., var. Eolo) — cryopreservation. CR Sceances Acad Sci Ser 3, 20: 507–510

    Google Scholar 

  • Fabre J, Dereuddre J (1990) Encapsulation dehydration: a new approach to cryopreservation of Solanum shoot tips. Cryo-Lett 11: 413–426

    Google Scholar 

  • Fahy GM, MacFarlane DR, Angell CA, Meryman HT (1984) Vitrification as an approach to cryopreservation. Cryobiology 21: 407–426

    Article  PubMed  CAS  Google Scholar 

  • Finkle BJ, Ulrich JM (1979) Effects of cryoprotectants in combination on the survival of frozen sugarcane cells. Plant Physiol 63: 598–604

    Article  PubMed  CAS  Google Scholar 

  • Finkle BJ, Ulrich JM (1982) Cryoprotectant removal as a factor in the survival of frozen rice and sugarcane cells. Cryobiology 19: 329–335

    Article  PubMed  CAS  Google Scholar 

  • Finkle BJ, Ulrich JM, Tisserat B, Rains DW (1980) Regeneration of date palm and alfalfa plants after freezing callus tissues to —196 °C in a combination of cryoprotective agents. Cryobiology 17: 625–626

    Article  Google Scholar 

  • Fu JR, Zhang BZ, Wang XP, Qiao YZ, Huang XL (1990) Physiological studies on desiccation, wet storage and cryopreservation of recalcitrant seeds of three fruit species and their excised embryonic axes. Seed Sci Technol 18: 743–754

    Google Scholar 

  • Fukai S (1989) Plant regeneration from shoot tips of Dianthus hybrida cryopreserved in liquid nitrogen to 2 years. Plant Tissue Cult Lett 6: 177–178

    Article  Google Scholar 

  • Fukai S (1990) Cryopreservation of chrysanthemum shoot tips. Sci Hortic 45: 167–174

    Article  Google Scholar 

  • Fukai S, Goi M, Tanaka M (1991) Cryopreservation of shoot tips of Chrysanthemum morifolium and related species native to Japan. Euphytica 54: 201–204

    Google Scholar 

  • Gnanapragasam S, Vasil IK (1990) Plant regeneration from a cryopreserved embryogenic cell suspension of a commerical sugarcane hybrid (Saccharum sp.). Plant Cell Rep 9: 419–423

    Article  CAS  Google Scholar 

  • Göldner EM, Seitz U, Reinhard E (1991) Cryopreservation of Digitalis lanata Ehrh. cell cultures:preculture and freeze tolerance. Plant Cell Tissue Organ Cult 24: 19–24

    Article  Google Scholar 

  • Gonzalez-Benito ME, Perez-Ruiz C (1992) Cryopreservation of Quercus faginea embryonic axes. Cryobiology 29: 685–690

    Article  Google Scholar 

  • Gray DJ, Compton ME, Harrel RC (1995) Somatic embryogenesis and the technology of synthetic seed. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 30. Somatic embryogenesis and synthetic seed I. Springer, Berlin Heidelberg New York, pp 126–151

    Google Scholar 

  • Grout BWW, Henshaw GG (1978) Freeze-preservation of potato shoot-tip cultures. Ann Bot 42: 1227–1229

    Google Scholar 

  • Grout BWW, Westcott RJ, Henshaw GG (1978) Survival of shoot meristems of tomato seedlings frozen in liquid nitrogen. Cryobiology 15: 478–483

    Article  PubMed  CAS  Google Scholar 

  • Grout BWW, Shelton K, Pritchard HW (1983) Orthodox behaviour of oil palm seed and cryopreser-vation of the excised embryo for germplasm conservation. Ann Bot 52: 381–384

    Google Scholar 

  • Gupta PK, Durzan DJ, Finkle BJ (1987) Somatic embryogenesis in embryonal cell masses of Picea abies and Pinus taeda after freezing in liquid NO2. Can J For Res 17: 1130–1136

    Article  Google Scholar 

  • Hahne G, Lörz H (1987) Cryopreservation of embryogenic callus cultures from barley (Hordeum vulgare L.) Plant Breeding 99: 330–332

    Google Scholar 

  • Harding K (1990) Molecular stability of cryopreserved shoot tips of Solanum tuberosum. VIIth Int Congr Plant tissue and cell culture, Amsterdam, Abstr, p 376

    Google Scholar 

  • Harding K, Benson EE, Smith H (1991) The effects of in vitro culture period on the recovery of cryopreserved shoot tips of Solanum tuberosum. Cryo-Lett 12: 17–22

    Google Scholar 

  • Haskins RH, Kartha KK (1980) Freeze-preservation of pea meristems: cell survival. Can J Bot 833–840

    Google Scholar 

  • Hauptmann RM, Widholm JM (1982) Cryostorage of cloned amino acid analog resistant carrot and tobacco suspension culture. Plant Physiol 70: 30–37

    Article  PubMed  CAS  Google Scholar 

  • Heber H (1958) Ursachen der Frostresistenz bei Winterweizen I. Die Bedeutung der Zucker für die Frostresistenz. Planta 52: 188–201

    Google Scholar 

  • Heszky LE, Jekkel Z, Ali AH (1990) Effect of cooling rate, cryoprotectant and holding time at different transfer temperatures on the survival of cryopreserved cell suspension culture [Puccinellia distans ( L.) Parl.]. Plant Cell Tissue Organ Cult 21: 217–226

    Google Scholar 

  • Hiraoka N (1988) Nonfrozen storage of cell cultures and its effect on metabolites. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 4. Medicinal and aromatic plants I. Springer, Berlin Heidelberg New York, pp 157–168

    Google Scholar 

  • Hunter CS (1986) In vitro propagation and germplasm storage of Cinchona. In: Withers LA, Alderson P (eds) Plant tissue culture and its agricultural applications. Butterworth, London, pp 291–301

    Google Scholar 

  • Hussain A (1983) Conservation of genetic resources of medicinal plants in India. In: Jain SK, Mehra KL (eds) Conservation of medicinal plant resources. NBPGR, New Delhi, pp 110–117

    Google Scholar 

  • Jayos EE, Hoekstra FA, Staritsky G (1993) Cryopreservation of somatic embryos of tanier spinach [Xanthosoma brasiliense ( Desf.) Engler]. Plant Cell Tissue Organ Cult

    Google Scholar 

  • Jekkel ZS, Heszky LE, Ali AH (1989) Effect of different cryoprotectants and transfer temperatures on the survival rate of hemp (Cannabis sativa L.) cell suspension in deep freezing. Acta Biol Hung 40: 127–136

    PubMed  CAS  Google Scholar 

  • Jekkel ZS, Kiss J, Kiss E, Gyulai G, Heszky LE (1992) Freeze preservation of somatic embryos of recalcitrant seed species: horsechestnut (Aesculus hippocastanum L.). Proc XIIIth EUCARPIA Congr, Angers, France, July 6–11, 1992

    Google Scholar 

  • Jian LC, Sun LH (1989) Cryopreservation of the stem segments of Chinese gooseberry. Acta Bot Sin 31: 66–68

    Google Scholar 

  • Jian LC, Sun DL, Sun LH (1987) Sugarcane callus cryopreservation. In: Li PH (ed) Plant cold hardiness. Alan R Liss, New York, pp 323–337

    Google Scholar 

  • Jones LH (1974) Long-term survival of embryoids of carrot (Daucus carota L.). Plant Sci Lett 2: 221–224

    Article  CAS  Google Scholar 

  • Jörgensen J (1990) Conservation of valuable gene resources by cryopreservation in some forest tree species. J Plant Physiol 136: 373–376

    Article  Google Scholar 

  • Jullien M (1983) Medium-term preservation of mesophyll cells isolated from Asparagus officinalis L.: development of a simple method by storage at reduced temperature. Plant Cell Tissue Organ Cult 2: 305–316

    Article  CAS  Google Scholar 

  • Kartha KK, Leung NL, Pahl K (1980) Cryopreservation of strawberry meristems and mass propagation of plantlets. J Am Soc Hortic Sci 105: 481–484

    CAS  Google Scholar 

  • Kartha KK, Leung NL, Mroginski LA (1982) In vitro growth responses and plant regeneration from cryopreserved meristems of cassava (Manihot esculenta Crantz). Z Pflanzenphysiol 107: 133140

    Google Scholar 

  • Kartha KK, Fowke LC, Leung NL, Caswell KL, Hakman I (1988) Induction of somatic embryos and plantlets from cryopreserved cell cultures of white spruce (Picea glauca). J Plant Physiol 132: 529–539

    Article  CAS  Google Scholar 

  • Katano M, Ishihara RA, Sakai A (1983) Survival of dormant apple shoot tips after immersion in liquid nitrogen. HortScience 18: 707–708

    Google Scholar 

  • Kendall EJ, Qureshi JA, Kartha KK, Leung N, Chevrier N, Caswell K, Chen THH (1990) Regeneration of freezing-tolerant spring wheat (Triticum aestivum L.) plants from cryoselected callus. Plant Physiol 94: 1756–1762

    Article  PubMed  CAS  Google Scholar 

  • Klimaszewska K, Ward C, Cheliak WM (1992) Cryopreservation and plant regeneration from embryogenic cultures of larch (Larix x eurolepis) and black spruce (Picea mariana). J Exp Bot 43: 73–79

    Article  CAS  Google Scholar 

  • Kobayashi S, Sakai A, Oiyama I (1990) Cryopreservation in liquid nitrogen of cultured navel orange (Citrus sinensis Osb.) nucellar cells and subsequent plant regeneration. Plant Cell Tissue Organ Cult 23: 15–20

    Article  Google Scholar 

  • Kuo CC, Lineberger BD (1985) Survival of in vitro cultured tissue of `Jonathan’ apples exposed to —196 °C. HortScience 20: 764–767

    Google Scholar 

  • Kuoksa T, Hohtola A (1991) Freeze-preservation of buds from Scots pine trees. Plant Cell Tissue Organ Cult 27: 89–93

    Article  Google Scholar 

  • Kuriyama A, Watanabe K, Ueno S, Mitsuda H (1990) Effect of post-thaw treatment on the viability of cryopreserved Lavandula vera cells. Cryo-Lett 1 I: 171–178

    Google Scholar 

  • Kurola H, Nishiyama Y (1983) Liquid nitrogen storage of apple callus cultures. Hokkaido Nat Agric Stn Res Bull 136: 15–21

    Google Scholar 

  • Laine E, Bade F, David A (1992) Recovery of plants from cryopreserved embryogenic cell suspensions of Pinus caribaea. Plant Cell Rep 11: 295–298

    Article  Google Scholar 

  • Langis R, Schnabel B, Earle ED, Steponkus PL, (1990a) Cryopreservation of Brassica campesteris L. cell suspensions by vitrification. Cryo-Lett 10: 421–428

    Google Scholar 

  • Langis R, Schnabel B, Preikstas B, Earle ED, Steponkus PL (1990b) Cryopreservation of carnation shoot tips by vitrification. Cryobiology 27: 657–658

    Google Scholar 

  • Langis P, Steponkus PL (1990) Cryopreservation of rye protoplasts by vitrification. Plant Physiol 92: 666–671

    Article  PubMed  CAS  Google Scholar 

  • Latta R (1971) Preservation of suspension cultures of plant cells by freezing. Can J Bot 49: 1253–1254 Lecouteux C, Florin B, Tessereau H, Bollon H, Petiard V (1991) Cryopreservation of carrot embryos using a simplified freezing process. Cryo-Lett 1: 319–328

    Google Scholar 

  • Lu TG, Sun CS (1992) Cryopreservation of millet (Setaria italica L.). J Plant Physiol 139: 295–298

    Article  CAS  Google Scholar 

  • Maddox AD, Gonsalves F. Shields R (1983) Successful preservation of suspension cultures of three Nicotiana species at the temperature of liquid nitrogen. Plant Sci Lett 28: 157–162

    Google Scholar 

  • Marin ML, Duran-Vila N (1988) Survival of somatic embryos and recovery of plants of sweet orange (Citrus sinensis L. Osb.) after immersion in liquid nitrogen. Plant Cell Tissue Organ Cult 7: 51–57

    Google Scholar 

  • Marin ML, Mafla G, Roca WM, Withers LA (1990) Cryopreservation of cassava zygotic embryos and whole seeds in liquid nitrogen. Cryo-Lett 11: 257–264

    Google Scholar 

  • Mater AA (1987) Production and cryogenic freezing of date palm germplasm and regeneration of plantlets from frozen material. Iraqi J Agric Sci 5: 35–49

    Google Scholar 

  • Matsumoto T, Sakai A, Yamada K (1994) Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabiajaponica) by vitrification and subsequent high plant regeneration. Plant Cell Rep 13: 442–446

    Article  Google Scholar 

  • Mazur RA, Hartmann JX (1979) Freezing of plant protoplasts. In: Sharp WR, Larsen PO, Paddock EF, Raghavan V (eds) Plant cell and tissue culture — principles and applications. Ohio State Univ Press, Columbus, p 876

    Google Scholar 

  • Moriguchi T, Akihawa T, Kozaki I (1985) Freeze-preservation of dormant pear shoot apices. Jpn J Breed 35: 196–199

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Mycock DJ, Watt MP, Berjak P (1991) A simple procedure for the cryopreservation of hydrated embryonic axes of Pisum sativum. J Plant Physiol 138: 728–733

    Article  Google Scholar 

  • Nag KK, Street HE (1975a) Freeze-preservation of cultured plant cells, I. The pretreatment phase. Physiol Plant 34: 254–260

    Google Scholar 

  • Nag KK, Street HE (1975b) Freeze-preservation of cultured plant cells. II. The freezing and thawing phases. Physiol Plant 34: 261–265

    Google Scholar 

  • Niino T, Sakai A (1992) Cryopreservation of alginate-coated in vitro-grown shoot tips of apple, pear and mulberry. Plant Sci 87: 199–206

    Article  CAS  Google Scholar 

  • Niino T, Sakai A, Yakuwa H, Nojiri K (1992a) Cryopreservation of in vitro-grown shoot tips of apple and pear by vitrification. Plant Cell Tissue Organ Cult 28: 261–266

    Article  Google Scholar 

  • Niino T, Sakai A, Enomoto S, Magoshi J, Kato S (1992b) Cryopreservation of in vitro-grown shoot tips of mulberry by vitrification. Cryo-Lett 13: 303–312

    Google Scholar 

  • Niino T, Sakai A, Yakuwa H (1992c) Cryopreservation of dried shoot tips of mulberry winter buds and subsequent plant regeneration. Cryo-Lett 13: 51–58

    Google Scholar 

  • Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1992) Cryopreservation of asparagus (Asparagus officinalis) embryogenic suspension cells and subsequent plant regeneration by new vitrification method. Cryo-Lett 13: 379–388

    Google Scholar 

  • Nitzsche W (1980) One year storage of dried carrot callus. Z Pflanzenphysiol 100: 269–271

    Google Scholar 

  • Niwata E (1992) Cryopreservation of shoot tips of garlic by vitrification. Jpn J Breed 42 (Suppl 1): 326

    Google Scholar 

  • NOrg JV, Baldursson S, Krogstrup P (1993) Genotypic differences in the ability of embryogenic Abies nordmanniana cultures to survive cryopreservation. Silvae Genet 42: 93–97

    Google Scholar 

  • Normah MN, Chin HF, Hor YL (1986) Desiccation and cryopreservation of embryonic axes of Hevea brasiliensis Muell.-Arg. Pertanika 9 (3): 299–303

    Google Scholar 

  • Oka S, Yakuwa H, Sato K, Niino T (1991) Survival and shoot formation in vitro of pear winter buds cryopreserved in liquid nitrogen. HortScience 26: 65–66

    Google Scholar 

  • Panis B, Withers LA, De Langhe E (1990) Cryopreservation of Musa suspension cultures and subsequent regeneration of plants. Cryo-Lett 11: 337–350

    Google Scholar 

  • Parker J (1959) Seasonal variations in sugars of conifers with some observations on cold resistance. For Sci 5: 56–63

    CAS  Google Scholar 

  • Paulet F, Engelmann F, Glaszmann JC (1993) Cryopreservation of apices of in vitro plantlets of sugarcane (Saccharum sp. hybrids) using encapsulation/dehydration. Plant Cell Rep 12: 525–529

    Article  Google Scholar 

  • Pence VC (1990) In vitro collection, regeneration, and cryopreservation of Brunfelsia densifolia. Abstr VIIth Int Congr Plant tissue and cell culture. Amsterdam, p 377

    Google Scholar 

  • Pence VC (1991a) Cryopreservation of immature embryos of Theobroma cacao. Plant Cell Rep 10: 144–147

    Article  Google Scholar 

  • Pence VC (1991b) Cryopreservation of seeds of Ohio native plants and related species. Seed Sci Technol 19: 235–251

    Google Scholar 

  • Plucknett DL, Smith NJH, Williams JT, Murthy Anishetty N (1983) Crop germplasm conservation and developing countries. Science 220: 163–169

    Article  PubMed  CAS  Google Scholar 

  • Popov AS, Fedorovskii DN (1992) Injuries to the plasmalemma of Dioscorea cells cultured in vitro incurred in the process of their cryopreservation. Soy Plant Physiol 39: 211–216

    Google Scholar 

  • Pritchard HW, Prendergast FG (1986) Effects of desiccation and cryopreservation on the in vitro viability of embryos of the recalcitrant seed species Araucaria hunsteinii K. Shum. J Exp Bot 37: 1388–1397

    Google Scholar 

  • Quatrano RS (1968) Freeze-preservation of cultured flax cells utilizing dimethyl sulfoxide. Plant Physiol 43: 2057–2061

    Article  PubMed  CAS  Google Scholar 

  • Radhamani J, Chandel KPS (1992) Cryopreservation of embryonic axes of trifoliate orange (Poncirus trifoliata L.) RAF. Plant Cell Rep 11: 372–374

    Google Scholar 

  • Reed BM (1989) The effect of cold hardening and cooling rate on the survival of apical meristems of Vaccinium species frozen in liquid nitrogen. Cryo Lett 10: 315–322

    Google Scholar 

  • Reed BM (1990) Survival of in vitro-grown apical meristems of Pyrus following cryopreservation. HortScience 25 (1): 111–113

    Google Scholar 

  • Reed BM (1992) Cryopreservation of Ribes apical meristem. 29th Annu Meet Cryobiology, p 41 Reed BM, Lagerstedt HB (1987) Freeze preservation of apical meristems of Rubus in liquid nitrogen. HortScience 22 (2): 302–303

    Google Scholar 

  • Reuff I, Seitz U, Ulrich B, Reinhard E (1988) Cryopreservation of Coleus blumei suspension and callus cultures. J Plant Physiol 133: 414–418

    Article  Google Scholar 

  • Sakai A (1960) The frost-hardening process of woody plants. VIII. Relation of polyhydric alcohols to frost hardiness. Low Temp Sci Ser B 18: 15–22

    Google Scholar 

  • Sakai A (1986) Cryopreservation of germplasm of woody plants. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 1. Trees I. Springer, Berlin Heidelberg New York, pp 113–129

    Google Scholar 

  • Sakai A, Sugawara Y (1973) Survival of poplar callus at superlow temperatures after cold acclima-tion. Plant Cell Physiol 14: 1202–1204

    Google Scholar 

  • Sakai A, Kobayashi S, Oiyama Y (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep. 9: 30–33

    Article  Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1991a) Survival by vitrification of nucellar cells of navel orange (Citrus sinensis var. brasiliensis Tanaka) cooled to —196 °C. J Plant Physiol 137: 465–470

    Article  Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1991b) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb.) by a simple freezing method. Plant Sci 74: 243–248

    Article  Google Scholar 

  • Sakai A, Yamakawa M, Sakato D, Harada T, Yakuwa T (1978) Development of a whole plant from an excised strawberry runner apex frozen to —196 ‘C. Low Temp Sci Ser B, Biol Sci 36: 31–38

    Google Scholar 

  • Sala F, Cella R, Rollo F (1979) Freeze-preservation of rice cells. Physiol Plant 45: 170–176

    Article  CAS  Google Scholar 

  • Seibert M (1976) Shoot initiation from carnation shoot apices frozen to —196 °C. Science 191: 1178–1179

    Article  PubMed  CAS  Google Scholar 

  • Seibert M, Wetherbee PJ (1977) Increased survival and differentiation of frozen herbaceous plant organ cultures through cold treatment. Plant Physiol 59: 1043–1046

    Article  PubMed  CAS  Google Scholar 

  • Seitz U, Reinhard E (1987) Growth and ginsenoside pattern of cryopreserved Panax ginseng cell cultures. J Plant Physiol 131: 215–223

    Article  CAS  Google Scholar 

  • Seitz U, Alfermann AW, Reinhard E (1983) Stability of biotransformation capacity in Digitalis lanata cell cultures after cryogenic storage. Plant Cell Rep 2: 273–276

    Article  CAS  Google Scholar 

  • Shimonishi K, Ishikawa M, Suzuki S, Cosawa K (1991) Cryopreservation of melon somatic embryos by desiccation method. Jpn J Breed 41: 347

    Google Scholar 

  • Siminovitch D, Briggs DR (1949) The chemistry of the living bark of the black locust tree in relation to frost hardiness. I. Seasonal variations in protein content. Arch Biochem 23: 8–17

    Google Scholar 

  • Stanwood PC (1985) Cryopreservation of seed germplasm for genetic conservation. In: Kartha KK (ed) Cryopreservation of plant cells and organs. CRC Press, Boca Raton, pp 199–226

    Google Scholar 

  • Stushnoff C (1991) Cryopreservation of fruit crop genetic resources. HortScience 26: 518–522

    Google Scholar 

  • Stushnoff C, Remmele RL, Esensee V (1992) Use of phase diagrams to assess cryopreservability of

    Google Scholar 

  • dormant buds from several apple cultivars and from Amelanchier alnifolia Nutt. `SMOKY’, CRYO-92, 41 pp

    Google Scholar 

  • Sudarmonowati E, Henshaw GG (1990) Cryopreservation of cassava somatic embryos. VIIth Int Congr Plant tissue and cell culture, Amsterdam, Abstr, p 378

    Google Scholar 

  • Sugawara Y, Sakai A (1974) Survival of suspension-cultured sycamore cells cooled to the temperature of liquid nitrogen. Plant Physiol 54: 772–774

    Article  Google Scholar 

  • Sun CN (1958) The survival of excised pea seedlings after drying and freezing in liquid nitrogen. Bot Gaz 119: 234–236

    Article  Google Scholar 

  • Sun DL, Sun LH, Jian LC (1988) Plant regeneration from cryopreserved Panicum miliaceam calli. Chin Acad Sci 5: 230–239

    Google Scholar 

  • Sun LH, Jian LC (989) The cryopreservation of maize (Zea mays L.) calli. Chinese Bull Bot 6: 28–30

    Google Scholar 

  • Sun LH, Jian LC (1990) Cryopreservation of sainfoin tissue cultures and their ultrastructural observation. Acta Bot Sin 32: 262–267

    Google Scholar 

  • Takeuchi M, Matasushima H, Sugawara Y (1980) Long-term freeze-preservation of protoplasts of carrot and Marchantia. Cryo-Lett 1: 519

    CAS  Google Scholar 

  • Takeuchi M, Matasushima H, Sugawara Y (1982) Totipotency and viability of protoplasts after long-term freeze preservation. In: Fujiwara A (ed) Plant tissue culture 1982. Maruzen, Tokyo, pp 797–798

    Google Scholar 

  • Taniguchi K, Tanaka R, Ashitani N, Miyagawa H (1988) Freeze preservation of tissue cultured shoot primordia of the annual Haplopappus gracilis (2n = 4). Jpn J Genet 63: 267–272

    Article  Google Scholar 

  • Tannoury M, Ralambosoa J, Kaminski M, Dereuddre J (1991) Cryoconservation par vitrification d’apex enrobés d’oeillet (Dianthus caryophyllus L.) cultive in vitro. CR Acad Sci Paris, Ser III 313: 633–638

    Google Scholar 

  • Tessereau H, Lecouteux C, Florin B, Schlienger C, Petiard V (1991) Use of a simplified freezing process and dehydration for the storage of embryogenic cell lines and somatic embryos. Rev Cytol Biol Végétal Bot 14: 297–310

    Google Scholar 

  • Tisserat B, Ulrich JM, Finkle BJ (1981) Cryogenic preservation and regeneration of date palm tissue HortSci. 16: 47–48

    Google Scholar 

  • Touchell DH, Dixon KW, Tan B (1992) Cryopreservation of shoot-tips of Grevillea scapigera ( Proteaceae) from western Australia. Australian J Bot 40: 305–310

    Google Scholar 

  • Towill LE (1981)Solanum etuberosum a model for studying the cryobiology of shoot-tips in the tuber bearing Solanum species. Plant Sci Lett 20: 315–324

    Google Scholar 

  • Towill LE (1984) Survival at ultra-low temperature of shoot tips from Solanum tuberosum groups andigena, phureja, stenotomum, tuberosum, and other tuber-bearing Solanum species. Cry Lett 5: 319–326

    Google Scholar 

  • Towill LE (1990) Cryopreservation of isolated mint shoot tips by vitrification. Plant Cell Rep 9: 178–180

    Article  Google Scholar 

  • Towill E, Jarret RL (1992) Cryopreservation of sweet potato [Ipomoea batatas ( L.) Lam.] shoot tips by vitrification. Plant Cell Rep 11: 175–178

    Google Scholar 

  • Tyler NJ, Stushnoff C (1988) The effects of prefreezing and controlled dehydration on cryopreservation of dormant vegetative apple buds. Can J Plant Sci 68: 1163–1167

    Article  Google Scholar 

  • Uemura M, Sakai A (1980) Survival of carnation (Dianthus caryphyllus L.) shoot apices frozen to the temperature of liquid nitrogen. Plant Cell Physiol 21: 85–94

    CAS  Google Scholar 

  • Ulrich JM, Finkle BJ, Moore PH, Ginoza H (1979) Effect of a mixture of cryoprotectants in attaining liquid nitrogen survival of callus cultures of a tropical plant. Cryobiology 16: 550–556

    Article  PubMed  CAS  Google Scholar 

  • Uragami A, Sakai A, Nagai M, Takahashi T (1989) Survival of cultured cells and somatic embryos of Asparagus offtcinalis cryopreserved by vitrification. Plant Cell Rep 8: 418–421

    Article  Google Scholar 

  • Uragami A, Sakai A, Nagai M (1990) Cryopreservation of dried axillary buds from plantlets of Asparagus officinalis L. grown in vitro. Plant Cell Rep 9: 328–331

    Article  Google Scholar 

  • Uragami A, Lucas MO, Ralambosa J, Renard M, Dereuddre J (1993) Cryopreservation of microspore embryos of rapeseed Brassica napus L. by dehydration in air with or without alginate encapsulation. Cryobiology 2: 83–90

    Google Scholar 

  • Vertucci CW, Berjak P (1991) Cryopreservation of embryonic axes of an homeohydrous (recalcitrant) seed in relation to calorimetric properties of tissue water. Cryo-Lett 12: 339–350

    Google Scholar 

  • Watanabe K, Mitsuda H, Yamada Y (1983) Retention of metabolic and differentiation potential of green Lovandula vera callus after freeze-preservation. Plant Cell Physiol 24: 119–122

    CAS  Google Scholar 

  • Watanabe K, Ueno S, Mitsuda H (1990) Differences in viability after freeze-preservation in liquid nitrogen among rice callus lines. Jpn Agric Biol Chem 54: 1295–1296

    Article  Google Scholar 

  • Weber G, Roth EJ, Schweiger HG (1983) Storage of cell suspensions and protoplasts of Glycine max (L.) Merr., Brassica napus (L.), Datura innoxia (Mill.), and Daucus carota ( L.) by freezing. Z Pflanzenphysiol 109: 29–39

    Google Scholar 

  • Wesley-Smith J, Vertucci CW, Berjak P, Pammenter NW, Crane J (1992) Cryopreservation of desiccation-sensitive axes of Camellia sinenis in relation to dehydration, freezing rate and the thermal properties of tissue water. J Plant Physiol 140: 596–604

    Article  Google Scholar 

  • Withers LA (1978) The freeze-preservation of synchronously dividing cultured cells of Acer pseudoplatanus L. Cryobiology 15: 87–92

    Google Scholar 

  • Withers LA (1979) Freeze-preservation of somatic embryos and clonal plantlets of carrot (Daucus carota L.). Plant Physiol 63: 460–467

    Google Scholar 

  • Withers LA, King Pl (1979) Proline — a novel cryoprotectant for the freeze-preservation of cultured cells of Zea mays L. Plant Physiol 64: 675–678

    Article  PubMed  CAS  Google Scholar 

  • Withers LA, Benson EE, Martin M (1988) Cooling rate/medium interactions in the survival and structural stability of cryopreserved shoot tips of Brassica napus. Cryo-Lett 9: 114–119

    Google Scholar 

  • Yakuwa H, Oka S (1988) Plant regeneration through meristem culture from vegetative buds of mulberry (Morus bombycis Koidz) stored in liquid nitrogen. Ann Bot 62: 79–82

    Google Scholar 

  • Yamada T, Sakai A, Matsumura T, Higuchi S (1991) Cryopreservation of apical meristems of white clover (Trifolium repens L.) by vitrification. Plant Sci 78: 81–87

    Google Scholar 

  • Yoshimatsu K, Yamaguchi H, Shimomura K (1995) Cold storage and cryopreservation of hairy roots of Panax ginseng. Plant Cell Rep (in press)

    Google Scholar 

  • Zhang SB, Jian LC, Qian YQ, Bajaj YPS (1994) Cryopreservation of germplasm of maize. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 25. Maize. Springer, Berlin Heidelberg New York, pp 619–628

    Google Scholar 

  • Zhang SB, Jian LC, Kuo CS, Qu GP, Qian YQ (1990) Bud and root differentiation of maize (Zea mays L.) protoplasts after cryopreservation. Acta Biol Exp Sin 23: 117–121

    Google Scholar 

  • Zheng Guang-zhi, He Jing-bo, Wang Shi-ling (1983) Cryopreservation of calli and their suspension culture cells of Anisodus acutangulus. Acta Bot Sin 25: 512–517 (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bajaj, Y.P.S. (1995). Cryopreservation of Plant Cell, Tissue, and Organ Culture for the Conservation of Germplasm and Biodiversity. In: Bajaj, Y.P.S. (eds) Cryopreservation of Plant Germplasm I. Biotechnology in Agriculture and Forestry, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03096-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03096-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08184-2

  • Online ISBN: 978-3-662-03096-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics