Skip to main content

Role of Polyamines in Somatic Embryogenesis

  • Chapter

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 30))

Abstract

The aliphatic amines putrescine, spermidine, and spermine are present in all living organisms. Since the demonstration of “an essential nutritional function” for putrescine in the bacterium Hemophilus parainfluenzae (Herbst and Snell 1948), polyamines have attracted a great deal of attention from workers in diverse fields of the life sciences. The first reports of the existence of putrescine in plants date back to 1911 (see Smith 1991 for a historical summary).

Scientific Contribution Number 1853 from the New Hampshire Agricultural Experiment Station

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman A, Levin N, Cohen P, Schneider M, Nadel B (1988) Polyamines in growth and differentiation of plant cell cultures: the effect of nitrogen nutrition, salt stress and embryogenic media. In: Zappia V, Pegg AE (eds) Progress in polyamine research. Plenum, New York, pp 559–571

    Chapter  Google Scholar 

  • Apelbaum A, Burgoon AC, Anderson JD, Lieberman M, Ben-Arie R, Mattoo A K (1981) Polyamines inhibit biosynthesis of ethylene in higher plant tissue and fruit protoplasts. Plant Physiol 68: 453–456

    Article  PubMed  CAS  Google Scholar 

  • Apelbaum A, Goldlust A, Icekson I (1985) Control by ethylene of arginine decarboxylase activity in pea seedlings and its implication for hormonal regulation of plant growth. Plant Physiol 79: 635–640

    Article  PubMed  CAS  Google Scholar 

  • Baker SR, Yon RJ (1983) Characterization of ornithine carbamoyltransferase from cultured carrot cells of low embryogenic potential. Phytochemistry 22: 2171–2174

    Article  CAS  Google Scholar 

  • Bastola DR (1994) Genetic engineering of the polyamine biosynthetic pathway and somatic embryogenesis in carrot (Daucus carota L.). PhD Thesis, University of New Hampshire, Durham, NH, 173 pp

    Google Scholar 

  • Bell E, Malmberg RL (1990) Analysis of a cDNA encoding arginine decarboxylase from oat reveals similarity to the Escherichia coli arginine decarboxylase and evidence of protein processing. Mol Gen Genet 224: 431–436

    Article  PubMed  CAS  Google Scholar 

  • Biondi S, Diaz T, Iglesias I, Gamberini G, Bagni N (1990) Polyamine and ethylene in relation to adventitious root formation in Prunus avium shoot cultures. Physiol Plant 78: 474–483

    Article  Google Scholar 

  • Boyle SM, Markham GD, Hafner EW, Wright JM, Tabor H, Tabor CW (1984) Expression of the cloned genes encoding the putrescine biosynthetic enzymes and ethionine adenosyltransferase of E. coli (Spe A, Spe B, Spe C, met K). Gene 30: 129–136

    Google Scholar 

  • Boyle SM, Wright JM, Satishchandran C, Buch J (1989) Regulation of the putrescine biosynthetic genes (SpeA, SpeB, SpeC) in Escherchia coli. In: Bachrach U, Heimer YM (eds). The physiology of polyamines II. CRC Press, Boca Raton, pp 73–84

    Google Scholar 

  • Bradley PM, El-Fike F, Giles KL (1984) Polyamines and arginine affect somatic embryogenesis of Daucus carota. Plant Sci Lett 34: 397–401

    Article  CAS  Google Scholar 

  • Chasan R (1993) Embryogenesis: new molecular insights. Plant Cell 5: 597–599

    Google Scholar 

  • Cooke TJ, Racusen RH, Cohen JD (1993) The role of auxin in plant embryogenesis. Plant Cell 5: 1494–1495

    PubMed  CAS  Google Scholar 

  • De Jong AJ, Schmidt EDL, De Vries SC (1993) Early events in higher plant embryogenesis. Plant Mol Biol 22: 367–377

    Article  PubMed  Google Scholar 

  • De Scenzo RA, Minocha SC (1993) Modulation of cellular polyamines in tobacco by transfer and expression of mouse ornithine decarboxylase cDNA. Plant Mol Biol 22: 113–127

    Article  Google Scholar 

  • de Vries SC, Hilbert B, Peter M, Huisman G, Wilde HD, Thomas TL, van Kammen A (1988) Acquisition of embryogenic potential in carrot cell-suspension cultures. Planta 176: 196–204

    Article  Google Scholar 

  • El Hadrami I, D’Auzac J (1992) Effects of polyamine biosynthetic inhibitors on somatic embryogenesis and cellular polyamines in Hevea brasiliensis. J Plant Physiol 140: 33–36

    Article  Google Scholar 

  • Evans PT, Malmberg RL (1989) Do polyamines have roles in plant development? Annu Rev Plant Physiol Plant Mol Biol 40: 235–269

    Article  CAS  Google Scholar 

  • Even-Chen Z, Mattoo AK, Goren R (1982) Inhibition of ethylene biosynthesis by AVG and by polyamines shunts label from 3,4-[14C] methionine into spermidine in aged orange peel slices. Plant Physiol 69: 385–388

    Article  PubMed  CAS  Google Scholar 

  • Federico R, Angelini R (1991) Polyamine catabolism in plants. In: Slocum RD, Flores H E (eds) Biochemistry and physiology of polyamines in plants. CRC Press, Boca Raton, pp 41–56

    Google Scholar 

  • Feirer RP, Mignon G, Litvay JD (1984) Arginine decarboxylase and polyamines required for embryogenesis in the wild carrot. Science 223: 1433–1435

    Article  PubMed  CAS  Google Scholar 

  • Feirer RP, Wann SR, Einspahr DW (1985) The effects of spermidine synthesis inhibitors on in vitro plant development. Plant Growth Regul 3: 319–327

    Article  CAS  Google Scholar 

  • Fienberg AA, Choi JH, Lubich WP, Sung ZR (1984) Developmental regulation of polyamine metabolism in growth and differentiation of carrot culture. Planta 162: 532–539

    Article  CAS  Google Scholar 

  • Flores H, Galston AW (1984) Osmotic stress-induced polyamine accumulation in cereal leaves. Plant Physiol 75: 102–109

    Article  PubMed  CAS  Google Scholar 

  • Flores HE, Arteca R N, Shannon JC (eds) (1990) Polyamines and ethylene: biochemistry, physiology, and interactions. Am Soc Plant Physiol, Rockville, MD, pp 1–425

    Google Scholar 

  • Flores HE, Martin-Tanguy J (1991) Polyamines and plant secondary metabolism. In: Slocum RD, Flores HE (eds) Biochemistry and physiology of polyamines in plants. CRC Press, Boca Raton, pp 57–76

    Google Scholar 

  • Fobert PR, Webb DT (1988) Effect of polyamines, polyamine precursors, and polyamine biosynthetic inhibitors on somatic embryogenesis from eggplant (Solanum melongena) cotyledons. Can J Bot 66: 1734–1742

    CAS  Google Scholar 

  • Galston AW (1983) Polyamines as modulators of plant development. Bioscience 33: 382–388

    Article  CAS  Google Scholar 

  • Galston AW, Flores HE (1991) Polyamines and plant morphogenesis. In: Slocum RD, Flores HE (eds). Biochemistry and physiology of polyamines in plants. CRC Press, Boca Raton, pp 175–186

    Google Scholar 

  • Gamborg OL (1966) Aromatic metabolism in plants. II. Enzymes of the shikimate pathway in suspension cultures of plant cells. Can J Biochem 44: 791–799

    Article  PubMed  CAS  Google Scholar 

  • Glass JR, MacKrell M, Duffy JJ, Gerner E W (1987) Ornithine decarboxylase production in vitro by using mouse cDNA. Biochem J 245: 127–132

    PubMed  CAS  Google Scholar 

  • Herbst EJ, Snell EE (1948) Putrescine as a growth factor for Hemophilus parainfluenzae. J Biol Chem 176: 989–990

    PubMed  CAS  Google Scholar 

  • Kahana C (1989) Molecular genetics of mammalian ornithine decarboxylase. In: Bachrach U, Heimer YM (eds) The physiology of polyamines 1. CRC Press, Boca Raton, pp 281–295

    Google Scholar 

  • Kanchanapoom M, Antognoni F, Pistocchi R, Bagni N (1991) Effect of auxins on spermidine uptake into carrot protoplasts. Physiol Plant 82: 19–23

    Article  CAS  Google Scholar 

  • Khan AJ, Minocha SC (1991) Polyamines and somatic embryogenesis in carrot. II. The effects of cyclohexylammonium phosphate. J Plant Physiol 137: 446–452

    Google Scholar 

  • Kiyosue T, Takano K, Kamada H, Harada H (1990) Induction of somatic embryogenesis in carrot by heavy metal ions. Can J Bot 68: 2301–2303

    Article  CAS  Google Scholar 

  • Kontula KK, Torkkeli TK, Bardin CW, Jänne OA (1984) Androgen induction of ornithine decarboxylase mRNA in mouse kidney as studied by complementary DNA. Proc Natl Acad Sci USA 81: 731–735

    Article  PubMed  CAS  Google Scholar 

  • Litz RE, Schaffer B (1987) Polyamines in adventitious and somatic embryogenesis in mango (Mangifera indica L.). J Plant Physiol 128: 251–258

    Article  CAS  Google Scholar 

  • Liu C-M, Xu Z-H, Chua N-H (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5: 621–630

    PubMed  CAS  Google Scholar 

  • Malmberg RL, Hiatt AC (1989) Polyamines in plant mutants. In: Bachrach U, Heimer UM (eds) The physiology of polyamines II. CRC Press, Boca Raton, pp 148–159

    Google Scholar 

  • McCann PP, Pegg AE, Sjoerdsma A (1987) Inhibition of polyamine metabolism. Academic Press, New York, 371 pp

    Google Scholar 

  • McConlogue L, Gupta M, Wu L, Coffino P (1984) Molecular cloning and expression of the mouse ornithine decarboxylase gene. Proc Natl Acad Sci USA 81: 540–544

    Article  PubMed  CAS  Google Scholar 

  • Meijer EGM, Simmonds J (1988) Polyamine levels in relation to growth and somatic embryogenesis in tissue cultures of Medicago sativa L. J Exp Bot 39: 787–794

    Article  CAS  Google Scholar 

  • Mengoli M, Bagni N, Biondi S (1987) Effect of a-difluoromethylornithine on carrot cell cultures. J Plant Physiol 129: 479–485

    Article  CAS  Google Scholar 

  • Mengoli M, Bagni N, Luccarini G, Ronchi VN, Serafini-Fracassini D (1989). Daucus carota cell cultures: polyamines and effect of polyamine biosynthesis inhibitors in the preembryogenic phase of different embryo stages. J Plant Physiol 134: 389–394

    Google Scholar 

  • Michalczuk L, Cooke TJ, Cohen JD (1992a) Auxin levels at different stages of carrot embryogenesis. Phytochemistry 31: 1097–1103

    Article  CAS  Google Scholar 

  • Michalczuk L, Ribnicky DM, Cooke TJ, Cohen JD (1992b) Regulation of indole-3-acetic acid biosynthetic pathways in carrot cell cultures. Plant Physiol 100: 1346–1353

    Article  PubMed  CAS  Google Scholar 

  • Minocha R, Kvaalen H, Minocha SC, Long S (1993) Polyamines in embryogenic cultures of Norway spruce (Picea abies) and red spruce (Picea rubens). Tree Physiol 13: 365–377

    Article  PubMed  CAS  Google Scholar 

  • Minocha SC (1988) Relationship between polyamine and ethylene biosynthesis in plants — its significance in morphogenesis in cell cultures. In: Zappia V, Pegg AE (eds) Progress in polyamine research. Plenum, New York, pp 601–616

    Chapter  Google Scholar 

  • Minocha SC, Khan A J (1991) Effects of combinations of polyamine biosynthetic inhibitors on cellular polyamines in carrot cell cultures. J Plant Physiol 137: 507–510

    Article  CAS  Google Scholar 

  • Minocha SC, Minocha R, Robie CA (1990a) A high-performance liquid chromatographic method for the determination of dansyl-polyamines. J Chromatogr 511: 177–183

    Article  CAS  Google Scholar 

  • Minocha SC, Robie CA, Khan AJ, Papa N, Samuelsen AI (1990b) Polyamine and ethylene biosynthesis in relation to somatic embryogenesis in carrot (Daucus carota) cell cultures. In: Flores HE, Arteca RN, Shannon JC (eds) Polyamines and ethylene: biochemistry, physiology and interactions. Am Soc Plant Physiol, Rockville, MD, pp 339–342

    Google Scholar 

  • Minocha SC, Papa NS, Khan AJ, Samuelsen AI (1991a) Polyamines and somatic embryogenesis in carrot. III. Effects of methylglyoxal bis(guanylhydrazone). Plant Cell Physiol 32: 395–402

    Google Scholar 

  • Minocha SC, Minocha R, Komamine A (1991b) The effects of polyamine biosynthesis inhibitors on S-adenosylmethionine synthetase and 5-adenosylmethionine decarboxylase activities in carrot cell cultures. Plant Physiol Biochem 29: 231–237

    CAS  Google Scholar 

  • Montague MJ, Koppenbrink JW, Jaworski EG (1978) Polyamine metabolism in embryogenic cells of Daucus carota. I. Changes in intracellular content and rates of synthesis. Plant Physiol 62: 430–433

    Google Scholar 

  • Montague MJ, Armstrong TA, Jaworski EG (1979) Polyamine metabolism in embryogenic cells of Daucus carota L. II. Changes in arginine decarboxylase activity. Plant Physiol 63: 341–345

    Google Scholar 

  • Nissen P (1993) Stimulation of somatic embryogenesis in carrot by ethylene. In: Pech JC, Latché A, Balagué C (eds) Cellular and molecular aspects of the plant hormone ethylene. Kluwer, Dordrecht, pp 359–364

    Google Scholar 

  • Nissen P, Minocha SC (1993) Inhibition by 2,4-D of somatic embryogenesis in carrot as explored by its reversal by difluoromethylornithine. Physiol Plant 89: 673–680

    Article  CAS  Google Scholar 

  • Noh E W, Minocha SC (1994) Expression of a human 5-adenosylmethonine decarboxylase cDNA in transgenic tobacco and its effects on polyamine biosynthesis. Transgen Res 3: 26–35

    Article  CAS  Google Scholar 

  • Pajunen A, Crozat A, Jänne OA, Ihalainen R, Laitinen PH, Stanley B, Madhubala R, Pegg AE (1988) Structure and regulation of mammalian S-adenosylmethionine decarboxylase. J Biol Chem 263: 17040–17049

    PubMed  CAS  Google Scholar 

  • Papa NS (1988) The effect of methylglyoxal bis(guanylhydrazone) on somatic embryogenesis and polyamine levels in Daucus carota L. cell cultures. MS Thesis, University of New Hampshire, Durham, NH, 86 pp

    Google Scholar 

  • Pegg AE (1986) Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J 234: 249–262

    PubMed  CAS  Google Scholar 

  • Pistocchi R, Bagni N, Creus JA (1987) Polyamine uptake in carrot cell cultures. Plant Physiol 84: 374–380

    Article  PubMed  CAS  Google Scholar 

  • Pistocchi R, Keller F, Bagni N, Matile P (1988) Transport and subcellular localization of polyamines in carrot protoplasts and vacuoles. Plant Physiol 87: 514–518

    Article  PubMed  CAS  Google Scholar 

  • Rastogi R, Dulson J, Rothstein St (1993) Cloning of tomato (Lycopersicon esculentum Mill) arginine decarboxylase gene and its expression during fruit ripening. Plant Physiol 103: 829–834

    Article  PubMed  CAS  Google Scholar 

  • Robie CA (1987) The role of polyamines in the regulation of somatic embryogenesis in wild carrot (Daucus carota L.). MS Thesis, University of New Hampshire, Durham, NH, 182 pp

    Google Scholar 

  • Robie CA, Minocha SC (1989) Polyamines and somatic embryogenesis in carrot. I. The effects of difluoromethylornithine and difluoromethylarginine. Plant Sci 65: 45–54

    Google Scholar 

  • Roustan J-P, Latché A, Fallot J (1989a) Stimulation of Daucus carota somatic embryogenesis by inhibitors of ethylene synthesis: cobalt and nickel. Plant Cell Rep 8: 182–185

    Article  CAS  Google Scholar 

  • Roustan J-P, Latché A, Fallot J (1989b) Effet de l’acide salicylique et de l’acide acétylsalicylique sur la production d’ethyléne et l’embryogenése somatique de suspensions cellulaires de carotte (Daucus carota L.). CR Acad Sci Paris 308: 395–399

    CAS  Google Scholar 

  • Roustan J-P, Latché A, Fallot J (1990) Control of carrot somatic embryogenesis by AgNO3, an inhibitor of ethylene action: effect on arginine decarboxylase activity. Plant Sci 67: 89–95

    Article  CAS  Google Scholar 

  • Roustan J-P, Latché A, Fallot J (1992) Influence of ethylene on the incorporation of 3,4414C] methionine into polyamines in Daucus carota cells during somatic embryogenesis. Plant Physiol Biochem 30: 201–205

    CAS  Google Scholar 

  • Sala F, Galli MG, Nielson E, Magnien E, Devreux M, Noy GP, Spadari S (1983) Synchronization of nuclear DNA synthesis in cultured Daucus carota L. cells by aphidicolin. FEBS Lett 153: 204–208

    Article  CAS  Google Scholar 

  • Samuelsen AI (1990) Effects of inhibitors of polyamine and ethylene biosynthesis on ACC and ethylene production in carrot (Daucus carota L.) cell suspension cultures. MS Thesis, University of New Hampshire, Durham, NH 101 pp

    Google Scholar 

  • Santanen A, Simola LK (1992) Changes in polyamine metabolism during somatic embryogenesis in Picea abies. J Plant Physiol 140: 475–480

    Article  CAS  Google Scholar 

  • Shirahata A, Takahashi N, Beppu T, Hosoda H, Samejima K (1993) Effect of inhibitors of spermidine synthase and spermine synthase on polyamine synthesis in rat tissues. Biochem Pharmacol 45: 1897–1903

    Article  PubMed  CAS  Google Scholar 

  • Slocum RD, Flores HE (eds) (1991) Biochemistry and physiology of polyamines in plants. CRC Press, Boca Raton, 264 pp

    Google Scholar 

  • Slocum RD, Galston AW (1985) In vivo inhibition of polyamine biosynthesis and growth in tobacco ovary tissue. Plant Cell Physiol 26: 1519–1526

    PubMed  CAS  Google Scholar 

  • Slocum RD, Kaur-Sawhney R, Galston AW (1984) The physiology and biochemistry of polyamines in plants. Arch Biochem Biophys 235: 283–303

    Article  PubMed  CAS  Google Scholar 

  • Smith TA (1985) Polyamines. Annu Rev Plant Physiol 36: 117–143

    Article  CAS  Google Scholar 

  • Smith TA (1990) Plant polyamines–metabolism and function. In: Flores HE, Arteca RN, Shannon JC (eds) Polyamines and ethylene: biochemistry, physiology and interactions. Am Soc Plant Physiol, Rockville, MD, pp 1–17

    Google Scholar 

  • Smith TA (1991) A historical perspective on research in plant polyamine biology. In: Slocum RD, Flores HE (eds) Biochemistry and physiology of polyamines in plants, CRC Press, Boca Raton, pp 1–22

    Google Scholar 

  • Sung ZR, Fienberg A, Chorneau R, Borkird C, Fulmer I, Smith J (1984) Developmental biology of embryogenesis from carrot culture. Plant Mol Biol Rep 2: 3–14

    Article  Google Scholar 

  • Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53: 749–790

    Article  CAS  Google Scholar 

  • Tabor CW, Tabor H (1989) Microbial mutants deficient in polyamine synthesis. In: Bachrach U, Heimer YM (eds) The physiology of polyamines II. CRC Press, Boca Raton, pp 63–72

    Google Scholar 

  • Tautorus TE, Fowke LC, Dunstan DI (1991) Somatic embryogenesis in conifers. Can J Bot 69: 1873–1899

    Article  Google Scholar 

  • Taylor MA, Mad Arif SA, Kumar A, Davies HV, Scobie LA (1992) Expression and sequence analysis of cDNAs induced during the early stages of tuberisation in different organs of the potato plant (Solanum tuherosum L). Plant Mol Biol 20: 641–651

    Article  PubMed  CAS  Google Scholar 

  • Tiburcio AF, Campos JL, Figueras X, Besford RT (1993) Recent advances in the understanding of polyamine functions during plant development. Plant Growth Regul 12: 331–340

    Article  CAS  Google Scholar 

  • Tisserat B, Murashige T (1977) Effects of ethephon, ethylene, and 2,4-dichlorophenoxyacetic acid on asexual embryogenesis in vitro. Plant Physiol 60: 437–439

    Article  PubMed  CAS  Google Scholar 

  • van Kranen HJ, van de Zande L, van Kreije CF, Bisschop A, Wieringa B (1987) Cloning and nucleotide sequence of rat ornithine decarboxylase cDNA. Gene 60: 145–155

    Article  PubMed  Google Scholar 

  • Verma DC, Tarka T (1984) Influence of 1-aminocyclopropanecarboxylic acid (ACC) and consequent ethylene biosynthesis on growth and somatic embryogenesis in wild carrot (Daucus carota L.) cell suspensions. In: Terzi M, Pitto L, Sung Z R (eds) Somatic embryogenesis. IPRA, Rome, pp 151–158

    Google Scholar 

  • Xie Q-W, Tabor WC, Tabor H (1989) Spermidine biosynthesis in Escherichia coli: promoter and termination regions of the SpeD operon. J Bacteriol 171: 4457–4465

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Minocha, S.C., Minocha, R. (1995). Role of Polyamines in Somatic Embryogenesis. In: Bajaj, Y.P.S. (eds) Somatic Embryogenesis and Synthetic Seed I. Biotechnology in Agriculture and Forestry, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03091-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03091-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08183-5

  • Online ISBN: 978-3-662-03091-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics