Role of Polyamines in Somatic Embryogenesis

  • S. C. Minocha
  • R. Minocha
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 30)

Abstract

The aliphatic amines putrescine, spermidine, and spermine are present in all living organisms. Since the demonstration of “an essential nutritional function” for putrescine in the bacterium Hemophilus parainfluenzae (Herbst and Snell 1948), polyamines have attracted a great deal of attention from workers in diverse fields of the life sciences. The first reports of the existence of putrescine in plants date back to 1911 (see Smith 1991 for a historical summary).

Keywords

Nicotine Arginine Methionine Ornithine eDNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman A, Levin N, Cohen P, Schneider M, Nadel B (1988) Polyamines in growth and differentiation of plant cell cultures: the effect of nitrogen nutrition, salt stress and embryogenic media. In: Zappia V, Pegg AE (eds) Progress in polyamine research. Plenum, New York, pp 559–571CrossRefGoogle Scholar
  2. Apelbaum A, Burgoon AC, Anderson JD, Lieberman M, Ben-Arie R, Mattoo A K (1981) Polyamines inhibit biosynthesis of ethylene in higher plant tissue and fruit protoplasts. Plant Physiol 68: 453–456PubMedCrossRefGoogle Scholar
  3. Apelbaum A, Goldlust A, Icekson I (1985) Control by ethylene of arginine decarboxylase activity in pea seedlings and its implication for hormonal regulation of plant growth. Plant Physiol 79: 635–640PubMedCrossRefGoogle Scholar
  4. Baker SR, Yon RJ (1983) Characterization of ornithine carbamoyltransferase from cultured carrot cells of low embryogenic potential. Phytochemistry 22: 2171–2174CrossRefGoogle Scholar
  5. Bastola DR (1994) Genetic engineering of the polyamine biosynthetic pathway and somatic embryogenesis in carrot (Daucus carota L.). PhD Thesis, University of New Hampshire, Durham, NH, 173 ppGoogle Scholar
  6. Bell E, Malmberg RL (1990) Analysis of a cDNA encoding arginine decarboxylase from oat reveals similarity to the Escherichia coli arginine decarboxylase and evidence of protein processing. Mol Gen Genet 224: 431–436PubMedCrossRefGoogle Scholar
  7. Biondi S, Diaz T, Iglesias I, Gamberini G, Bagni N (1990) Polyamine and ethylene in relation to adventitious root formation in Prunus avium shoot cultures. Physiol Plant 78: 474–483CrossRefGoogle Scholar
  8. Boyle SM, Markham GD, Hafner EW, Wright JM, Tabor H, Tabor CW (1984) Expression of the cloned genes encoding the putrescine biosynthetic enzymes and ethionine adenosyltransferase of E. coli (Spe A, Spe B, Spe C, met K). Gene 30: 129–136Google Scholar
  9. Boyle SM, Wright JM, Satishchandran C, Buch J (1989) Regulation of the putrescine biosynthetic genes (SpeA, SpeB, SpeC) in Escherchia coli. In: Bachrach U, Heimer YM (eds). The physiology of polyamines II. CRC Press, Boca Raton, pp 73–84Google Scholar
  10. Bradley PM, El-Fike F, Giles KL (1984) Polyamines and arginine affect somatic embryogenesis of Daucus carota. Plant Sci Lett 34: 397–401CrossRefGoogle Scholar
  11. Chasan R (1993) Embryogenesis: new molecular insights. Plant Cell 5: 597–599Google Scholar
  12. Cooke TJ, Racusen RH, Cohen JD (1993) The role of auxin in plant embryogenesis. Plant Cell 5: 1494–1495PubMedGoogle Scholar
  13. De Jong AJ, Schmidt EDL, De Vries SC (1993) Early events in higher plant embryogenesis. Plant Mol Biol 22: 367–377PubMedCrossRefGoogle Scholar
  14. De Scenzo RA, Minocha SC (1993) Modulation of cellular polyamines in tobacco by transfer and expression of mouse ornithine decarboxylase cDNA. Plant Mol Biol 22: 113–127CrossRefGoogle Scholar
  15. de Vries SC, Hilbert B, Peter M, Huisman G, Wilde HD, Thomas TL, van Kammen A (1988) Acquisition of embryogenic potential in carrot cell-suspension cultures. Planta 176: 196–204CrossRefGoogle Scholar
  16. El Hadrami I, D’Auzac J (1992) Effects of polyamine biosynthetic inhibitors on somatic embryogenesis and cellular polyamines in Hevea brasiliensis. J Plant Physiol 140: 33–36CrossRefGoogle Scholar
  17. Evans PT, Malmberg RL (1989) Do polyamines have roles in plant development? Annu Rev Plant Physiol Plant Mol Biol 40: 235–269CrossRefGoogle Scholar
  18. Even-Chen Z, Mattoo AK, Goren R (1982) Inhibition of ethylene biosynthesis by AVG and by polyamines shunts label from 3,4-[14C] methionine into spermidine in aged orange peel slices. Plant Physiol 69: 385–388PubMedCrossRefGoogle Scholar
  19. Federico R, Angelini R (1991) Polyamine catabolism in plants. In: Slocum RD, Flores H E (eds) Biochemistry and physiology of polyamines in plants. CRC Press, Boca Raton, pp 41–56Google Scholar
  20. Feirer RP, Mignon G, Litvay JD (1984) Arginine decarboxylase and polyamines required for embryogenesis in the wild carrot. Science 223: 1433–1435PubMedCrossRefGoogle Scholar
  21. Feirer RP, Wann SR, Einspahr DW (1985) The effects of spermidine synthesis inhibitors on in vitro plant development. Plant Growth Regul 3: 319–327CrossRefGoogle Scholar
  22. Fienberg AA, Choi JH, Lubich WP, Sung ZR (1984) Developmental regulation of polyamine metabolism in growth and differentiation of carrot culture. Planta 162: 532–539CrossRefGoogle Scholar
  23. Flores H, Galston AW (1984) Osmotic stress-induced polyamine accumulation in cereal leaves. Plant Physiol 75: 102–109PubMedCrossRefGoogle Scholar
  24. Flores HE, Arteca R N, Shannon JC (eds) (1990) Polyamines and ethylene: biochemistry, physiology, and interactions. Am Soc Plant Physiol, Rockville, MD, pp 1–425Google Scholar
  25. Flores HE, Martin-Tanguy J (1991) Polyamines and plant secondary metabolism. In: Slocum RD, Flores HE (eds) Biochemistry and physiology of polyamines in plants. CRC Press, Boca Raton, pp 57–76Google Scholar
  26. Fobert PR, Webb DT (1988) Effect of polyamines, polyamine precursors, and polyamine biosynthetic inhibitors on somatic embryogenesis from eggplant (Solanum melongena) cotyledons. Can J Bot 66: 1734–1742Google Scholar
  27. Galston AW (1983) Polyamines as modulators of plant development. Bioscience 33: 382–388CrossRefGoogle Scholar
  28. Galston AW, Flores HE (1991) Polyamines and plant morphogenesis. In: Slocum RD, Flores HE (eds). Biochemistry and physiology of polyamines in plants. CRC Press, Boca Raton, pp 175–186Google Scholar
  29. Gamborg OL (1966) Aromatic metabolism in plants. II. Enzymes of the shikimate pathway in suspension cultures of plant cells. Can J Biochem 44: 791–799PubMedCrossRefGoogle Scholar
  30. Glass JR, MacKrell M, Duffy JJ, Gerner E W (1987) Ornithine decarboxylase production in vitro by using mouse cDNA. Biochem J 245: 127–132PubMedGoogle Scholar
  31. Herbst EJ, Snell EE (1948) Putrescine as a growth factor for Hemophilus parainfluenzae. J Biol Chem 176: 989–990PubMedGoogle Scholar
  32. Kahana C (1989) Molecular genetics of mammalian ornithine decarboxylase. In: Bachrach U, Heimer YM (eds) The physiology of polyamines 1. CRC Press, Boca Raton, pp 281–295Google Scholar
  33. Kanchanapoom M, Antognoni F, Pistocchi R, Bagni N (1991) Effect of auxins on spermidine uptake into carrot protoplasts. Physiol Plant 82: 19–23CrossRefGoogle Scholar
  34. Khan AJ, Minocha SC (1991) Polyamines and somatic embryogenesis in carrot. II. The effects of cyclohexylammonium phosphate. J Plant Physiol 137: 446–452Google Scholar
  35. Kiyosue T, Takano K, Kamada H, Harada H (1990) Induction of somatic embryogenesis in carrot by heavy metal ions. Can J Bot 68: 2301–2303CrossRefGoogle Scholar
  36. Kontula KK, Torkkeli TK, Bardin CW, Jänne OA (1984) Androgen induction of ornithine decarboxylase mRNA in mouse kidney as studied by complementary DNA. Proc Natl Acad Sci USA 81: 731–735PubMedCrossRefGoogle Scholar
  37. Litz RE, Schaffer B (1987) Polyamines in adventitious and somatic embryogenesis in mango (Mangifera indica L.). J Plant Physiol 128: 251–258CrossRefGoogle Scholar
  38. Liu C-M, Xu Z-H, Chua N-H (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5: 621–630PubMedGoogle Scholar
  39. Malmberg RL, Hiatt AC (1989) Polyamines in plant mutants. In: Bachrach U, Heimer UM (eds) The physiology of polyamines II. CRC Press, Boca Raton, pp 148–159Google Scholar
  40. McCann PP, Pegg AE, Sjoerdsma A (1987) Inhibition of polyamine metabolism. Academic Press, New York, 371 ppGoogle Scholar
  41. McConlogue L, Gupta M, Wu L, Coffino P (1984) Molecular cloning and expression of the mouse ornithine decarboxylase gene. Proc Natl Acad Sci USA 81: 540–544PubMedCrossRefGoogle Scholar
  42. Meijer EGM, Simmonds J (1988) Polyamine levels in relation to growth and somatic embryogenesis in tissue cultures of Medicago sativa L. J Exp Bot 39: 787–794CrossRefGoogle Scholar
  43. Mengoli M, Bagni N, Biondi S (1987) Effect of a-difluoromethylornithine on carrot cell cultures. J Plant Physiol 129: 479–485CrossRefGoogle Scholar
  44. Mengoli M, Bagni N, Luccarini G, Ronchi VN, Serafini-Fracassini D (1989). Daucus carota cell cultures: polyamines and effect of polyamine biosynthesis inhibitors in the preembryogenic phase of different embryo stages. J Plant Physiol 134: 389–394Google Scholar
  45. Michalczuk L, Cooke TJ, Cohen JD (1992a) Auxin levels at different stages of carrot embryogenesis. Phytochemistry 31: 1097–1103CrossRefGoogle Scholar
  46. Michalczuk L, Ribnicky DM, Cooke TJ, Cohen JD (1992b) Regulation of indole-3-acetic acid biosynthetic pathways in carrot cell cultures. Plant Physiol 100: 1346–1353PubMedCrossRefGoogle Scholar
  47. Minocha R, Kvaalen H, Minocha SC, Long S (1993) Polyamines in embryogenic cultures of Norway spruce (Picea abies) and red spruce (Picea rubens). Tree Physiol 13: 365–377PubMedCrossRefGoogle Scholar
  48. Minocha SC (1988) Relationship between polyamine and ethylene biosynthesis in plants — its significance in morphogenesis in cell cultures. In: Zappia V, Pegg AE (eds) Progress in polyamine research. Plenum, New York, pp 601–616CrossRefGoogle Scholar
  49. Minocha SC, Khan A J (1991) Effects of combinations of polyamine biosynthetic inhibitors on cellular polyamines in carrot cell cultures. J Plant Physiol 137: 507–510CrossRefGoogle Scholar
  50. Minocha SC, Minocha R, Robie CA (1990a) A high-performance liquid chromatographic method for the determination of dansyl-polyamines. J Chromatogr 511: 177–183CrossRefGoogle Scholar
  51. Minocha SC, Robie CA, Khan AJ, Papa N, Samuelsen AI (1990b) Polyamine and ethylene biosynthesis in relation to somatic embryogenesis in carrot (Daucus carota) cell cultures. In: Flores HE, Arteca RN, Shannon JC (eds) Polyamines and ethylene: biochemistry, physiology and interactions. Am Soc Plant Physiol, Rockville, MD, pp 339–342Google Scholar
  52. Minocha SC, Papa NS, Khan AJ, Samuelsen AI (1991a) Polyamines and somatic embryogenesis in carrot. III. Effects of methylglyoxal bis(guanylhydrazone). Plant Cell Physiol 32: 395–402Google Scholar
  53. Minocha SC, Minocha R, Komamine A (1991b) The effects of polyamine biosynthesis inhibitors on S-adenosylmethionine synthetase and 5-adenosylmethionine decarboxylase activities in carrot cell cultures. Plant Physiol Biochem 29: 231–237Google Scholar
  54. Montague MJ, Koppenbrink JW, Jaworski EG (1978) Polyamine metabolism in embryogenic cells of Daucus carota. I. Changes in intracellular content and rates of synthesis. Plant Physiol 62: 430–433Google Scholar
  55. Montague MJ, Armstrong TA, Jaworski EG (1979) Polyamine metabolism in embryogenic cells of Daucus carota L. II. Changes in arginine decarboxylase activity. Plant Physiol 63: 341–345Google Scholar
  56. Nissen P (1993) Stimulation of somatic embryogenesis in carrot by ethylene. In: Pech JC, Latché A, Balagué C (eds) Cellular and molecular aspects of the plant hormone ethylene. Kluwer, Dordrecht, pp 359–364Google Scholar
  57. Nissen P, Minocha SC (1993) Inhibition by 2,4-D of somatic embryogenesis in carrot as explored by its reversal by difluoromethylornithine. Physiol Plant 89: 673–680CrossRefGoogle Scholar
  58. Noh E W, Minocha SC (1994) Expression of a human 5-adenosylmethonine decarboxylase cDNA in transgenic tobacco and its effects on polyamine biosynthesis. Transgen Res 3: 26–35CrossRefGoogle Scholar
  59. Pajunen A, Crozat A, Jänne OA, Ihalainen R, Laitinen PH, Stanley B, Madhubala R, Pegg AE (1988) Structure and regulation of mammalian S-adenosylmethionine decarboxylase. J Biol Chem 263: 17040–17049PubMedGoogle Scholar
  60. Papa NS (1988) The effect of methylglyoxal bis(guanylhydrazone) on somatic embryogenesis and polyamine levels in Daucus carota L. cell cultures. MS Thesis, University of New Hampshire, Durham, NH, 86 ppGoogle Scholar
  61. Pegg AE (1986) Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J 234: 249–262PubMedGoogle Scholar
  62. Pistocchi R, Bagni N, Creus JA (1987) Polyamine uptake in carrot cell cultures. Plant Physiol 84: 374–380PubMedCrossRefGoogle Scholar
  63. Pistocchi R, Keller F, Bagni N, Matile P (1988) Transport and subcellular localization of polyamines in carrot protoplasts and vacuoles. Plant Physiol 87: 514–518PubMedCrossRefGoogle Scholar
  64. Rastogi R, Dulson J, Rothstein St (1993) Cloning of tomato (Lycopersicon esculentum Mill) arginine decarboxylase gene and its expression during fruit ripening. Plant Physiol 103: 829–834PubMedCrossRefGoogle Scholar
  65. Robie CA (1987) The role of polyamines in the regulation of somatic embryogenesis in wild carrot (Daucus carota L.). MS Thesis, University of New Hampshire, Durham, NH, 182 ppGoogle Scholar
  66. Robie CA, Minocha SC (1989) Polyamines and somatic embryogenesis in carrot. I. The effects of difluoromethylornithine and difluoromethylarginine. Plant Sci 65: 45–54Google Scholar
  67. Roustan J-P, Latché A, Fallot J (1989a) Stimulation of Daucus carota somatic embryogenesis by inhibitors of ethylene synthesis: cobalt and nickel. Plant Cell Rep 8: 182–185CrossRefGoogle Scholar
  68. Roustan J-P, Latché A, Fallot J (1989b) Effet de l’acide salicylique et de l’acide acétylsalicylique sur la production d’ethyléne et l’embryogenése somatique de suspensions cellulaires de carotte (Daucus carota L.). CR Acad Sci Paris 308: 395–399Google Scholar
  69. Roustan J-P, Latché A, Fallot J (1990) Control of carrot somatic embryogenesis by AgNO3, an inhibitor of ethylene action: effect on arginine decarboxylase activity. Plant Sci 67: 89–95CrossRefGoogle Scholar
  70. Roustan J-P, Latché A, Fallot J (1992) Influence of ethylene on the incorporation of 3,4414C] methionine into polyamines in Daucus carota cells during somatic embryogenesis. Plant Physiol Biochem 30: 201–205Google Scholar
  71. Sala F, Galli MG, Nielson E, Magnien E, Devreux M, Noy GP, Spadari S (1983) Synchronization of nuclear DNA synthesis in cultured Daucus carota L. cells by aphidicolin. FEBS Lett 153: 204–208CrossRefGoogle Scholar
  72. Samuelsen AI (1990) Effects of inhibitors of polyamine and ethylene biosynthesis on ACC and ethylene production in carrot (Daucus carota L.) cell suspension cultures. MS Thesis, University of New Hampshire, Durham, NH 101 ppGoogle Scholar
  73. Santanen A, Simola LK (1992) Changes in polyamine metabolism during somatic embryogenesis in Picea abies. J Plant Physiol 140: 475–480CrossRefGoogle Scholar
  74. Shirahata A, Takahashi N, Beppu T, Hosoda H, Samejima K (1993) Effect of inhibitors of spermidine synthase and spermine synthase on polyamine synthesis in rat tissues. Biochem Pharmacol 45: 1897–1903PubMedCrossRefGoogle Scholar
  75. Slocum RD, Flores HE (eds) (1991) Biochemistry and physiology of polyamines in plants. CRC Press, Boca Raton, 264 ppGoogle Scholar
  76. Slocum RD, Galston AW (1985) In vivo inhibition of polyamine biosynthesis and growth in tobacco ovary tissue. Plant Cell Physiol 26: 1519–1526PubMedGoogle Scholar
  77. Slocum RD, Kaur-Sawhney R, Galston AW (1984) The physiology and biochemistry of polyamines in plants. Arch Biochem Biophys 235: 283–303PubMedCrossRefGoogle Scholar
  78. Smith TA (1985) Polyamines. Annu Rev Plant Physiol 36: 117–143CrossRefGoogle Scholar
  79. Smith TA (1990) Plant polyamines–metabolism and function. In: Flores HE, Arteca RN, Shannon JC (eds) Polyamines and ethylene: biochemistry, physiology and interactions. Am Soc Plant Physiol, Rockville, MD, pp 1–17Google Scholar
  80. Smith TA (1991) A historical perspective on research in plant polyamine biology. In: Slocum RD, Flores HE (eds) Biochemistry and physiology of polyamines in plants, CRC Press, Boca Raton, pp 1–22Google Scholar
  81. Sung ZR, Fienberg A, Chorneau R, Borkird C, Fulmer I, Smith J (1984) Developmental biology of embryogenesis from carrot culture. Plant Mol Biol Rep 2: 3–14CrossRefGoogle Scholar
  82. Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53: 749–790CrossRefGoogle Scholar
  83. Tabor CW, Tabor H (1989) Microbial mutants deficient in polyamine synthesis. In: Bachrach U, Heimer YM (eds) The physiology of polyamines II. CRC Press, Boca Raton, pp 63–72Google Scholar
  84. Tautorus TE, Fowke LC, Dunstan DI (1991) Somatic embryogenesis in conifers. Can J Bot 69: 1873–1899CrossRefGoogle Scholar
  85. Taylor MA, Mad Arif SA, Kumar A, Davies HV, Scobie LA (1992) Expression and sequence analysis of cDNAs induced during the early stages of tuberisation in different organs of the potato plant (Solanum tuherosum L). Plant Mol Biol 20: 641–651PubMedCrossRefGoogle Scholar
  86. Tiburcio AF, Campos JL, Figueras X, Besford RT (1993) Recent advances in the understanding of polyamine functions during plant development. Plant Growth Regul 12: 331–340CrossRefGoogle Scholar
  87. Tisserat B, Murashige T (1977) Effects of ethephon, ethylene, and 2,4-dichlorophenoxyacetic acid on asexual embryogenesis in vitro. Plant Physiol 60: 437–439PubMedCrossRefGoogle Scholar
  88. van Kranen HJ, van de Zande L, van Kreije CF, Bisschop A, Wieringa B (1987) Cloning and nucleotide sequence of rat ornithine decarboxylase cDNA. Gene 60: 145–155PubMedCrossRefGoogle Scholar
  89. Verma DC, Tarka T (1984) Influence of 1-aminocyclopropanecarboxylic acid (ACC) and consequent ethylene biosynthesis on growth and somatic embryogenesis in wild carrot (Daucus carota L.) cell suspensions. In: Terzi M, Pitto L, Sung Z R (eds) Somatic embryogenesis. IPRA, Rome, pp 151–158Google Scholar
  90. Xie Q-W, Tabor WC, Tabor H (1989) Spermidine biosynthesis in Escherichia coli: promoter and termination regions of the SpeD operon. J Bacteriol 171: 4457–4465PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • S. C. Minocha
    • 1
  • R. Minocha
    • 2
  1. 1.Department of Plant BiologyUniversity of New HampshireDurhamUSA
  2. 2.USDA Forest Service, NEFESDurhamUSA

Personalised recommendations