Skip to main content

Abstract

Lysosomes are organelles with a single membrane. They are present in almost all types of body cells. Their number varies greatly from one cell to another, depending on its type and function. They display a considerable structural heterogeneity and appear in all shapes, sizes and densities. They have been given their name because they are small bodies (soma=body) containing various enzymes that are hydrolytic (lysis= dissolution). These hydrolytic enzymes, hydrolases, catalyze reactions in which macromolecules and macromolecular structures are broken down into smaller components. One of the hydrolytic enzymes contained in lysosomes, is acid phosphatase. This enzyme is most easily tested for using histochemical techniques, and its demonstration in a membranous organelle is usually taken as proof that the organelle is a lysosome. Other lysosmal enzymes are proteases, nucleases, glycosidases, lipases, phospholipases, sulfatases and phosphatases. Between 40 and 50 different enzymes have been identified. These give the lysosome the ability to digest almost all types of macromolecules present in biological material, such as proteins, polysaccharides, lipids and nucleic acids. The low molecular components, that are released, are transported to the cytoplasm to be reutilized. The lysosomal membrane is necessary in order to separate the hydrolytic enzymes from the rest of the cytoplasm and to prevent lysis of components of the cytoplasmic matrix. The acidic interior of lysosomes provides a favorable environment for the digestive activities of the enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alroy J, Warren CD, Raghavan SS, Kolodny EH (1989) Animal models for lysosomal storage diseases: their past and future contribution. Hum Pathol 20: 823–826

    Article  PubMed  CAS  Google Scholar 

  • Beem EP (1989) Structural aspects of lysosomal enzymes; implications for their cellular localization in normal and pathological tissues. Thesis. Krips, Meppel

    Google Scholar 

  • Bohley P, Seglen PO (1992) Proteases and proteolysis in the lysosome. Experientia 48: 151–157

    Article  PubMed  CAS  Google Scholar 

  • Dahmst NM, Lobel P, Kornfeld S (1989) Mannose 6-phosphate receptors and lysosomal enzyme targeting. J Biol Chem 264: 12115–12118

    Google Scholar 

  • de Duve C, Pressman BC, Gianetto R, Wattiaux R, Appelmans F (1955) Tissue fractionation studies. Biochem J 60: 604–617

    Google Scholar 

  • Draye JP, Quitart J, Courtoy PJ, Baudhuin P (1987) Relations between plasma membrane and lysosomal membrane. 1. Fate of covalently labelled plasma membrane protein. Eur J Biochem 170: 395–403

    Google Scholar 

  • Fürst W, Sandhoff K (1992) Activator proteins and topology of lysosomal sphingolipid catabolism. Biochim Biophys Acta 1126: 1–16

    Article  PubMed  Google Scholar 

  • Galjart NJ, Morreau H, Willemsen R, Gillemans N, Bonten EJ, dAzzo A (1991) Human lysosomal protective protein has cathepsin A-like activity distinct from its protective function. J Biol Chem 266: 14754–14762

    PubMed  CAS  Google Scholar 

  • Glew RH, Basu A, Prence EM, Remaley AT (1985) Biology of disease; lysosomal storage diseases. Lab Invest 53: 250–269

    PubMed  CAS  Google Scholar 

  • Gonzales-Noriega A, Coutino R, Saavedra VM, Barrera R (1989) Adsorptive endocytosis of lysosomal enzymes by human fibroblasts:presence of two different functional systems that deliver an acid hydrolase to lysosomes. Arch Biochem Biophys 268: 649–658

    Article  Google Scholar 

  • Gordon PB, Hoyvik H, Seglen PO (1992) Prelysosomal and lysosomal connections between autophagy and endocytosis. Biochem J 283: 361–369

    PubMed  Google Scholar 

  • Hasilik A (1992) The early and late processing of lysosomal enzymes:proteolysis and compartmentation. Experientia 48: 130–151

    Article  PubMed  CAS  Google Scholar 

  • Holtzman E, Novikoff AB (1976) Cells and organelles, 3rd edn. Saunders, Philadelphia

    Google Scholar 

  • Kelly BM, Waheed A, van Etten R, Chang PL (1989) Heterogeneity of lysosomes in human fibroblasts. Mol Cell Biochem 87: 171–183

    Article  PubMed  CAS  Google Scholar 

  • Kornfeld S (1985) Trafficking of lysosomal enzymes in normal and disease states. J Clin Invest 77: 1–6

    Article  Google Scholar 

  • Kornfeld S (1987) Trafficking of lysosomal enzymes. FASEB J 1: 462–468

    PubMed  CAS  Google Scholar 

  • Kornfeld S (1990) Lysosomal enzyme targeting. Biochem Soc Trans 18: 367–274

    PubMed  CAS  Google Scholar 

  • Kornfeld S, Mellman I (1989) The biogenesis of lysosomes. Annu Rev Cell Biol 5: 483–525

    Article  PubMed  CAS  Google Scholar 

  • Lang T, Chastellier de C, Ryter A, Thilo L (1988) Endocytic membrane traffic with respect to phagosomes in macrophages infected with non-pathogenic bacteria: phagosomal membrane acquires the same composition as lysosomal membrane. Eur J Cell Biol 46: 39–50

    PubMed  CAS  Google Scholar 

  • Moser HW (1992) New concepts in the diagnosis and treatment of lysosomal and peroxisomal disorders. Curr Opin Neurol Neurosurg 5: 355–258

    PubMed  CAS  Google Scholar 

  • Neufeld EF (1991) Lysosomal storage diseases. Annu Rev Biochem 60: 257–280

    Article  PubMed  CAS  Google Scholar 

  • OBrien JS, Kishimoto Y (1991) Saposin proteins: structure, function, and role in human lysosomal storage disorders. FASEB J 5: 301–308

    CAS  Google Scholar 

  • Paton BC, Schmid B, Kustermann-Kuhn B, Poulos A, Harzer K (1992) Additional biochemical findings in a patient and fetal sibling with a genetic defect in the sphingolipid activator protein ( SAP) precursor, prosaposin. Biochem J 285: 481–488

    Google Scholar 

  • Pfeffer SR (1988) Mannose 6-phosphate receptors and their role in targeting proteins to lysosomes. J Membr Biol 103: 716

    Google Scholar 

  • Plomp PJAM, Gordon PB, Meijer AJ, Hoyvik H, Seglen PO (1989) Energy dpendence of different steps in the autophagic-lysosomal pathway. J Biol Chem 264: 6699–6704

    PubMed  CAS  Google Scholar 

  • Storrie B (1988) Assembly of lysosomes: perspectives from comparative molecular cell biology. Int Rev Cytol 11: 53–105

    Article  Google Scholar 

  • Tager JM (1987) Inborn errors of cellular organelles: an overview. J Inherited Metab Dis 10 Suppl 11: 3–10

    Article  Google Scholar 

  • Tanaka Y, Yano S, Furuno K, Ishikawa T, Himeno M, Kato K (1990) Transport of acid phosphatase to lysosomes does not involve passage through the cell surface. Biochem Biophys Res Commun 170: 1067–1073

    Article  PubMed  CAS  Google Scholar 

  • Von Figura K, Hasilik A (1986) Lysosomal enzymes and their receptors. Annu Rev Biochem 55: 167–193

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van der Knaap, M.S., Valk, J. (1995). Lysosomes and Lysosomal Disorders. In: Magnetic Resonance of Myelin, Myelination, and Myelin Disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03078-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03078-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03080-6

  • Online ISBN: 978-3-662-03078-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics