Skip to main content

Resistive Magnetohydrodynamics

  • Chapter
Plasma Physics

Abstract

Although the plasma relevant to fusion research can normally be treated as being collisionless, the collisional resistivity, however small, often plays a crucial role in the macroscopic processes of MHD plasmas. Indeed, the resistivity causes a “reconnection” of different magnetic field lines, which never happens in an ideal MHD plasma because of the “frozen-in” condition of the fluid, and results in a topological change of the magnetic configuration accompanied by magnetic energy dissipation. Magnetic field line reconnection takes place in a very thin layer where the resistivity cannot be ignored because the parallel electric field locally vanishes, i.e., EB = 0. In this chapter, we shall be concerned mainly with this problem. First in Sect. 11.1, we derive the reduced MHD equations [11.1–5] which describe the plasma in the presence of a strong longitudinal magnetic field with shear. Then the tearing mode instability that occurs in a local resistive layer and the resulting magnetic island formation are described in Sect 11.2. The next section is devoted to the resistive modification of the kink instability discussed in Sect. 10.5 [11.4]. Ballooning instability, which is a localized Rayleigh-Taylor instability [11.6], and resistive modification of the interchange instability are described in Sects. 11.4,5 [11.1,3.4]. Disruptive instabilities observed in tokamaks are briefly explained in Sect. 11.6. Section 11.7 deals with the nonlinear magnetic reconnection driven by an external plasma flow. The final section is devoted to the description of the plasma self-organization process due to the topological change via magnetic reconnection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.P. Furth, J. Killeen, M .N. Rosenbluth: Finite-Resistivity Instabilities of a Sheet Pinch, Phys. Fluids 6, 459 (1963)

    Article  ADS  Google Scholar 

  2. J.M. Greene: Introduction to Resistive Instabilities, Centre de Recherches en Physique des plasmas report LRP 114/76 (Lausanne, Switzerland 1976)

    Google Scholar 

  3. B.B. Kadomtsev, O.P. Pogutse: Turbulence in Toroidal Systems”, in Reviews of Plasma Physics, Vol5 (Consultants Bureau, New York 1967) p. 247

    Google Scholar 

  4. R.B. White: “Resistive Instabilities and Field Line Reconnection”, in Basic Plasma Physics I, ed. by A.A. Galeev, R.N. Sudan (North-Holland, Amsterdam 1983) p. 611

    Google Scholar 

  5. H.R. Strauss: Dynamics of High ß Tokamaks, Phys. Fluids 20, 1354 (1977)

    Article  ADS  Google Scholar 

  6. J.W. Connor, R J. Hastie, J.B. Taylor: Shear, Periodicity, and Plasma Ballooning Modes, Phys. Rev. Lett. 40, 396 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  7. B. Coppi, A. Ferreira, J J. Ramos: Self-Healing of Confined Plasma with Finite Pressure, Phys. Rev. Lett. 44, 990 (1980)

    Article  ADS  Google Scholar 

  8. M.S. Chance, “MHD Stability Limits on High-ß Tokamaks”, in Proc. of 7th IAEA Conf. on Plasma Phys. and Controlled Nucl. Fusion Research, Vol I (1978) p. 677

    ADS  Google Scholar 

  9. F. Troyon, R. Gruber, H. Saurenmann, S. Semenzato, S. Succi: MHD-Limits to Plasma Confinement, Plasma Phys. 26, 209 (1984)

    Google Scholar 

  10. J.M. Greene, J.L. Johnson: Determination of Hydromagnetic Equilibria, Phys. Fluids 5, 875 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  11. H.R. Strauss: Stellarator Equations of Motion, Plasma Physics 22, 733 (1980)

    Article  ADS  Google Scholar 

  12. S. von Goeler, W. Stodiek, N. Sauthoff: Studies of Internal Disruptions and m=l Oscillations in Tokamak Discharges with Soft-X-Ray Techniques, Phys. Rev. Lett. 33, 1201 (1974)

    Article  ADS  Google Scholar 

  13. J.D. Callen, G.L. Johns: Experimental Measurement of Electron Heat Diffusivity in a Tokamak, Phys. Rev. Lett. 38, 491 (1977)

    Article  ADS  Google Scholar 

  14. B.B. Kadomtsev: Disruptive Instability in Tokamaks, Sov. J. Plasma Phys. 1, 389 (1975)

    ADS  Google Scholar 

  15. B.V. Waddel, M.N. Rosenbluth, D.A. Monticello, R.B. White: Nonlinear Growth of the m=l Tearing Mode, Nucl. Fusion 16, 528 (1976)

    Article  ADS  Google Scholar 

  16. A. Sykes, J.A. Wesson: Relaxation Instabilities in Tokamaks, Phys. Rev. Lett. 37, 140 (1976)

    Article  ADS  Google Scholar 

  17. PJL Rutherford: Nonlinear Growth of the Tearing Mode, Phys. Fluids 16, 1903 (1973)

    Article  ADS  Google Scholar 

  18. B.V. Waddel, B. Carreras, H.R. Hicks, J.A. Holmes: Nonlinear Interaction of Tearing Modes in Hightly Resistive Tokamaks, Phys. Fluids 22, 896 (1979)

    Article  ADS  Google Scholar 

  19. KP. Furth, PJL Rutherford, H. Selberg: Tearing Mode in the Cylindrical Tokamak, Phys. Fluids 16, 1054 (1973)

    Article  ADS  Google Scholar 

  20. B. Coppi, R. Galvao, R. Pellet, M.N. Rosenbluth, PJL Rutherford, Resistive Internal Kink Modes, Sov. J. Plasma Phys. 2, 533 (1976)

    ADS  Google Scholar 

  21. A.W. Edwards et al.: Rapid Collapse of a Plasma Sawtooth Oscillation in the JET Tokamak, Phys. Rev. Lett. 57, 210 (1986)

    Article  ADS  Google Scholar 

  22. A. Hasegawa, T. Sato: Space Plasma Physics 1 (Springer, Heidelberg, Berlin 1989)

    Book  Google Scholar 

  23. T. Sato, T. Hayashi: Externally Driven Magnetic Reconnection and a Powerful Magnetic Energy Convenor, Phys. Fluids 22, 1189 (1979)

    Article  ADS  Google Scholar 

  24. T. Sato: Nonlinear Driven Reconnection, HIFT-97, Institute For Fusion Theory (Hiroshima University Press 1984)

    Google Scholar 

  25. J.B. Taylor: Relaxation of Toroidal Plasma and Generation of Diverse Magnetic Fields, Phys. Rev. Lett. 33, 1139(1974)

    Article  ADS  Google Scholar 

  26. R. Horiuchi, T. Sato: Self-Organization and Energy Relaxation in a Three-Dimensional Mag-netohydrodynamic Plasma, Phys. Fluids 29, 1161 (1986)

    Article  ADS  MATH  Google Scholar 

  27. A. Reiman: Minimum Energy State of a Toroidal Discharge, Phys. Fluids 23, 230 (1980)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nishikawa, K., Wakatani, M. (1994). Resistive Magnetohydrodynamics. In: Plasma Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03068-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03068-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56854-4

  • Online ISBN: 978-3-662-03068-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics